
AgentCubes: Incremental 3D end-user development

Andri Ioannidou a,�, Alexander Repenning a,b, David C. Webb b

a AgentSheets, Inc., USA
b University of Colorado at Boulder, USA

a r t i c l e i n f o

Keywords:

Incremental 3D

Game design

Visual programming

End-user development

IT fluency

Computational thinking

a b s t r a c t

3D game development can be an enticing way to attract K-12 students to computer

science, but designing and programming 3D games is far from trivial. Students need to

achieve a certain level of 3D fluency in modeling, animation, and programming to be

able to create compelling 3D content. The combination of innovative end-user

development tools and standards-based curriculum that promotes IT fluency by shifting

the pedagogical focus from programming to design, can address motivational aspects

without sacrificing principled educational goals. The AgentCubes 3D game-authoring

environment raises the ceiling of end-user development without raising the threshold.

Our formal user study shows that with Incremental 3D, the gradual approach to

transition from 2D to 3D authoring, middle school students can build sophisticated 3D

games including 3D models, animations, and programming.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction: why Incremental 3D?

Kindergarten to 12th grade (K-12) Information Tech-

nology (IT) education fails to attract the necessary number

of students to Computer Science (CS) especially at the

middle school level, when students make critical career

decisions by judging their own aptitudes for math and

science. Fueled by bad experiences with programming,

middle school IT curricula have disintegrated into key-

boarding, web browsing, word processing and PowerPoint

workshops with little authentic enticement foreshadow-

ing CS careers. This is a very serious problem because,

despite the growing need for IT workers, the enrollment in

undergraduate degree-granting CS programs in the US

dropped by 70% between 2000 and 2005 [1].

The notion of IT fluency is slowly gaining momentum

in education as a means to train and evaluate IT skills

beyond just using applications. For instance, the National

Academy of Sciences’ Fluency with Information Technol-

ogy (FIT) framework [2] postulates a set of skills including

meta-skills such as problem solving, creativity, working in

groups, algorithmic thinking, and computational thinking

[3]. Game design [4] and computational science [5] are

gradually establishing themselves as application domains

capable of balancing the educational and motivational

concerns of IT fluency and attracting not only boys, but

students underrepresented in CS such as girls and

minorities. In fact, an independent study conducted by

the Stanford School of Education using AgentSheets [6–9],

our 2D authoring environment, suggested that girls and

boys alike are interested in game design [10]. With the

right combination of tools, curriculum and teacher

training, game design can be employed effectively to

teach IT to middle school students in a motivating way.

A fundamental challenge to the notion of fluency is the

need to define skills, explore motivational means of

promoting skills, and devise ways to assess these skills.

Some talk about programming as the new literacy [11].

The focus of our research is to promote the notion of 3D

fluency. People live in a 3D world; meanwhile, because

of computer gaming, today’s computers are highly capable

of processing 3D information. Unfortunately, creating

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

ARTICLE IN PRESS

1045-926X/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2009.04.001

� Corresponding author.

E-mail addresses: andri@agentsheets.com (A. Ioannidou),

alexander@agentsheets.com (A. Repenning), dcwebb@colorado.edu

(D.C. Webb).

Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2009.04.001
mailto:andri@agentsheets.com
mailto:alexander@agentsheets.com
mailto:dcwebb@colorado.edu
mailto:dcwebb@colorado.edu
dx.doi.org/10.1016/j.jvlc.2009.04.001


computational 3D artifacts and games can be a truly

daunting task. Even end users familiar with making 2D

games are likely to find the transition to 3D to be difficult.

A completely new set of tools is usually necessary to

create 3D models that can be animated and programmed.

For instance, there is very little skill transfer from 2D paint

programs such as Photoshop to a 3D modeling editor such

as Maya 3D. This raises the question: Is this discontinuity

a conceptual consequence of 2D vs. 3D with potential

roots in human cognition, or is it more of an accidental

consequence of computational tools that have emerged

disjointedly for 2D and 3D applications?

Our goal is to promote 3D fluency through a gradual

approach that we call Incremental 3D. We reconceptualize

the universe of 2D and 3D tools and skills as a continuum

rather than a dichotomy. Most tools support either 2D or

3D authoring. For example, NetLogo [12] and Scratch [13]

are 2D authoring environments aimed at K-12; BlueJ

[14,15] and GreenFoot [16] are targeted for more advanced

students, typically at the undergraduate level, and

Macromedia Flash at professional designers. Alice [17],

NetLogo 3D, StarLogo TNG [18], DarkBASIC [19], and

Macromedia Director are 3D authoring environments

with varying degrees of usability for different audiences.

Some 2D tools are starting to integrate 3D authoring.

However, some of them have a limited degree of

integration with the 2D product (e.g. Swift3D is a separate

component for Flash) or force the user to drop from a

visual language level to a textual language with a 3D

application programming interface (API) (e.g. GameMaker

[20]). AgentCubes, on the other hand, is a tool that

supports 3D authoring through incremental approaches

for all components of the 3D authoring process, namely

modeling, animation, and programming. A gentle slope

[21–23] approach allows end users to develop 3D games

by first creating a 2D version of that game and then

gradually moving along well-defined stepping-stones

towards a 3D version. Our hope is that this incremental

process ultimately allows end users to make 3D applica-

tions just as easily as 2D applications by transferring

existing skills.

This article assesses the idea of Incremental 3D as an

approach for end users to create 3D games and acquire IT

fluency in the process. The focus of the paper is not the

technical implementation but to describe and evaluate the

notion of Incremental 3D. A more detailed description of

the AgentCubes architecture can be found elsewhere [30].

We first describe the components of Incremental 3D,

namely incremental modeling, animation, and program-

ming, in the context of AgentCubes, then outline the steps

to transform a 2D into a 3D application, and report the

findings from assessing 3D fluency in two schools.

2. AgentCubes: an Incremental 3D authoring

environment

AgentCubes is a 3D rapid game-prototyping environ-

ment that enables even 10-year-old children to make

simulations and games in just a few hours. While simple

ARTICLE IN PRESS

Fig. 1. The AgentCubes technical architecture.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]2

dx.doi.org/10.1016/j.jvlc.2009.04.001


compared with commercial games, these are complete,

playable games. Versatility is an essential characteristic

for systems to be used for Scalable Game Design [9]. They

should enable students to easily create simple content,

but also allow the creation of more sophisticated content.

AgentSheets [7,9], our 2D simulation and game-authoring

tool, has a low threshold and a relatively high ceiling, but

AgentCubes raises the ceiling considerably while keeping

the threshold low. Rich media such as audio, 2D images,

and 3D models, a 3D environment with layers, and camera

controls to switch perspectives (first-person vs. bird’s eye

view), and sophisticated user-controlled animations en-

able the creation of 3D games.

The AgentCubes architecture (Fig. 1) provides the

following layers of functionality:

� Application layer: At the highest level, AgentCubes

supports the creation of games and computational

science applications that can be embedded in curricu-

lum material to implement Scalable Game Design.

� Pattern layer: AgentCubes enables the customization of

templates to instantiate model shapes (e.g. templates

for inflatable icons) and patterns of behavior (e.g.

templates for perspective-dependent programming).

� End-user development layer: End-user development

[24] in AgentCubes is supported by Incremental 3D

modeling, animation, programming, and visualization

(for details, see Section 3).

� Engine layer: AD3D, the underlying simulation/game

engine in AgentCubes, is built on top of our open-

source Open Agent Engine. It provides the necessary

APIs to the low-level functionality.

� Media layer: AgentCubes provides libraries and inter-

faces to low-level functionality such as OpenGL for 3D

graphics and QuickTime for media capabilities (sounds,

2D/3D images, models, movies). It also provides a

unique interface to XML used for specifying resources

and fonts.

AgentCubes is an agent-based framework. Agents are

computational objects that can have autonomous beha-

viors [25] defined by end users. In AgentCubes, an agent

has a visual manifestation on the screen called a shape.

With this shape, the agent can represent real-world

objects such as cars, people, and animals or more abstract

entities such as ideas and numbers. In AgentCubes, agents

are organized spatially in a three-dimensional space

called the agentcube. An agentcube consists of layers.

Each layer has a row–column grid similar to a spread-

sheet. Each cell identified by a row, column, and layer can

contain a stack of agents. In Fig. 2(2), stacks of agents

organized in a layer of a cube are used to represent a city

with agents such as cars, road pieces, and building

components.

AgentCubes components (Fig. 2) include the following:

(1) Gallery: The gallery (Fig. 2(1)) is the project inventory

where end users create and manage agents. Through

the gallery, users select agents and access their shapes

and behaviors.

(2) World: The world (Fig. 2(2)) contains all the agents

organized in the agentcube. In the world, users add,

select, delete, and copy agents. Using drag and drop,

users move agents from one location to another in the

same world or even into different worlds. The world

toolbar includes tools for camera control (e.g. zoom,

pan, and rotate), animation control (from running as

fast as possible without any animation all the way to

ARTICLE IN PRESS

Fig. 2. A Traffic Simulation in AgentCubes: (1) the gallery where all the agents and their shapes are defined; (2) the world where the simulation or game

unfolds; (3) an Inflatable Icons Editor for creating 3D objects from 2D images; (4) rule-based agent behavior defined in Visual AgenTalk 3D, using

conditions (5), and actions (6).

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 3

dx.doi.org/10.1016/j.jvlc.2009.04.001


animating all transitions that result from moving and

rotating agents – details in Section 3.2), process

control (run, stop, and step simulations) and screen

control (window mode or full screen mode). Agents

can be piled up in the world as stacks or can be

positioned in suspended layers.

(3) Inflatable Icons Editor: The Inflatable Icons Editor

(Fig. 2(3)) allows end users to quickly draft 3D shapes

by drawing 2D icons, which they render into an

organic 3D shape through an inflation process [26].

The ability to quickly draft 3D shapes is an important

part of the design process (Section 3.1).

(4) Behavior Editor: Behavior Editors (Fig. 2(4)) are used to

define, modify and test agent behaviors. Visual

AgenTalk 3D (VAT3D) is a conceptual extension of

Visual AgentTalk (VAT) [6,8] which is part of Agent-

Sheets. VAT3D is a rule-based language based on

conditions and actions which end users assemble

through a drag and drop mechanism into complete

behaviors. Groups of rules can be turned into methods

with a name. These methods can then be invoked

through actions sending messages spatially, e.g. send

an ‘‘impact’’ message to the agent to the right of you,

or via more general mechanisms such as broadcasting,

e.g. send the ‘‘melt’’ message to all agents anywhere in

the world of type ‘‘candle’’. Like VAT in AgentSheets,

VAT3D includes a number of helpful testing and

debugging tools [8] including the ability to test if

conditions are true with the currently selected agent

or to run actions on the currently selected agent to see

what they do (Section 3.3).

(5) Condition Palette: Conditions (Fig. 2(5)) are language

primitives used to test the environment and receive

input from users. Basic conditions can check for

agents next to the agent that executes them, deal

with probability or with timers. Attribute conditions

can check and compare the values of agent attributes

and simulation properties. User input includes key-

board, mouse and game pads. Camera control condi-

tions can determine if the world is in bird’s eye or

first-person view and if there is a camera attached to a

specific agent.

(6) Action Palette: Actions (Fig. 2(6)) make agents do

things. Basic actions include the ability to move

and rotate. Message actions allow agents to send

messages to other agents through space or by class

association. Sound and speech actions allow agents to

play sounds and speak synthesized text. Attribute

actions enable agents to set attributes and simulation

properties and to plot in 3D visualizations overlaid on

the world.

Some of these components of AgentCubes are also

discussed in subsequent sections in the context of

incrementally building interactive 3D worlds (Section 4),

and problem-solving situations (Section 5.1). While 3D

authoring is far from a simple task, AgentCubes’ Incre-

mental 3D approach is a scaffolding mechanism [27–29]

that provides considerable support for modeling, anima-

tion, and programming.

3. Incremental 3D

Incremental 3D [30] is a design approach featured in

AgentCubes for media-rich end-user development with

low threshold, i.e. a low barrier of entry to create simple

projects, and high ceiling, i.e. the ability to create highly

sophisticated projects. The fundamental idea of Incre-

mental 3D is that a user should be able to suspend

important design decisions to the point in the design and

development process when the decision really needs to be

made. Many game and simulation applications can start as

simple 2D applications that may be turned into 3D

applications. Initially, the user should not have to worry

about the precise look, size, orientation, and location of

objects in 3D space or how objects need to be animated

when they move. For instance, by utilizing grids we

transition from dealing with Euclidian information (e.g.

move my object 1.5m to the right), to topological

information (e.g. move my object right to the next space).

The main aim of Incremental 3D is not just to address

usability concerns, but also to support a gradual design

and problem-solving process aligned with computational

thinking [3]. Specifically this means that Incremental 3D

must support a gradual formalization process. Problem

descriptions may initially exist in textual form. Users can

recognize objects through nouns and relationships be-

tween objects through verbs, in ways consistent with

object-oriented design. To facilitate computational think-

ing, users should be able to gradually capture objects and

their relationships. Initially, they may represent objects as

highly abstract 2D blobs. As their understanding of the

problem gradually increases, they should be able refine or

change existing representations. This way, a game or a

science simulation will gradually transition from an

informal set of 2D blobs with no behavior, to a formal,

fully working 3D application.

Our Incremental 3D approach no longer limits the

scope of authoring to programming, but includes all

aspects of development necessary to create 3D applica-

tions, namely modeling, animation, programming, and

visualization.

3.1. Incremental modeling

Incremental 3D modeling is enabled through the

Inflatable Icons technology [26]. Instead of limiting end

users to using only stock 3D art, including licensed

characters such as The Sims in Alice, or professional 3D

modeling tools with very steep learning curves, such as

Maya 3D, we enable them to gradually acquire 3D fluency

in modeling by creating their own 3D models. With

Inflatable Icons, users draw 2D images and gradually turn

them into 3D models using diffusion-based inflation

techniques.

Early user-testing in local schools confirmed that

students were able to make basic inflatable icons

quickly, but needed additional means for producing

more sophisticated 3D models, including benchmark

shapes such as bugs and cars. Selection-based inflation

is one such feature. We therefore created an Adobe

ARTICLE IN PRESS

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]4

dx.doi.org/10.1016/j.jvlc.2009.04.001


Photoshop-inspired set of tools that allows users to make

and extend pixel selections. For instance, we included a

magic wand tool to make selections based on pixel color

values.

Say we want to create a frog. First we use the 2D

editor with the symmetry mode enabled to sketch a frog

(Fig. 3a). In the 3D view, the frog looks completely flat

(Fig. 3b). Inflating the entire frog is a good start (Fig. 3c),

but fails to highlight the strong legs of the frog. Using the

magic wand, the frog legs get selected and inflated more

(Fig. 3d).

3.2. Incremental animation

End users who program 3D worlds appear to have

higher expectations for run-time behavior. For instance, if

agents move or rotate, users would like to have at least the

option to have the world change in an animated way. With

no animation, the agents in Fig. 4a, which are pro-

grammed to simply move and rotate randomly, would

instantly arrive at the next frame (Fig. 4c) without seeing

any in-between frames. However, with animation, the

agents move and rotate smoothly in a series of frames

such as the one shown in Fig. 4b.

AgentCubes supports incremental animations. That is,

initially users may not need or want to deal with

animations. As they are getting ready, they can access

animation parameters that are optional to language pieces

such as move and rotate actions. Moreover, built-in scene

awareness assisted by the notions of grids, stacks, and

layers (e.g. built-in gravity) significantly scaffolds 3D

animation authoring for users. Finally, the Parallel Time-

Jump animation approach [30] allows any number of

agents to animate in parallel without the need to track

object locations and the overhead of sequential animation.

An important role of animation is to communicate

complex relationships among objects. We have devised a

novel animation approach that can be employed incre-

mentally.

Facilitating the perception of causality through anima-

tion: With his work on the perception of causality,

Michotte [31] showed that humans perceive causality

between objects depending on the exact timing of move-

ments. To be able to achieve the desired effect in the

Michottian sense, AgentCubes includes a number of

mechanisms to enable and control animations. Users can

adjust the time, the trajectory, and the acceleration of an

animation.

Separation of logic and animation: An important aspect

of Incremental 3D is that logic and animation are kept

ARTICLE IN PRESS

Fig. 3. A frog as an Incremental 3D shape.

Fig. 4. (a) Cube agents programmed to move up to 4 cells and rotate randomly. (b) A snapshot of a frame in the middle of animation, showing the agents

moving and rotating. (c) Agents arrive at their final positions at the end of the cycle. Without animation, the viewer would only see the first and last frame

without the intermediate animation frames.

Fig. 5. Separate logic from animation: (a) move right action; (b)

disclosed version showing additional parameters relevant to animation.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 5

dx.doi.org/10.1016/j.jvlc.2009.04.001


separate. The logic part describes what the agent will do.

For instance, in a Frogger game, the cursor-controlled frog

will move one grid space to the right. The user will simply

use the Move /rightS action to achieve this (Fig. 5a). Later

in the development process, the user may want to add

animation information by using an accelerated animation

in which the agent continuously accelerates and at the

mid-point starts to decelerate until it comes to a complete

stop (Fig. 5b).

Scene awareness: Animations quickly become complex

for users if they have no physical awareness of a scene.

The Move action hides enormous complexity, as it

includes automatic interpretations of the world. In 2D

environments, a move will simply remove an agent from

one location in the grid and add it to a new one. It should

not be any harder for a user to do this in 3D, but the

system has to interpret a move in 3D space. An agent

moving from one stack to another will automatically

move on top of the new stack, using a trajectory of

automatically generated x, y, z animation components to

avoid object intersections. If an agent moves out of the

middle of a stack, then the stack will be compacted.

Consistent with a world with gravity, all the agents above

that agent will drop.

Parallel Time-Jump: AgentCubes uses the novel Parallel

Time-Jump animation approach to allow any number of

agents to animate in parallel. Even in a simple simulation

in which agents are moving around randomly, agents

moving to the same stack in the same layer will have to

pile up (Fig. 6). This would not be a problem if animation

was handled sequentially, with the first agent moving to

the stack and then the second agent moving on op of it.

The total time it takes to transition an agent world from

one step to the next will be the product of the animation

time and the number of agents. While this would work

with a small number of agents, animating, for example,

1000 agents with 0.3 s per animation would total in a

seemingly never-ending 5-min animation. In such a case,

animation should be done in parallel. But if animations

need to be done in parallel, we can knowwhere the agents

are moving only once all the agents got dispatched and

moved to their final destinations. Parallel Time-Jump [30]

deals with this by moving forward and backward in time.

Conceptually speaking, the Parallel Time-Jump will first

dispatch, move and rotate all agents without animation

and without displaying the changes on the screen. Then it

leaps back in time and generates all the transitional

animations from where the agents currently are to where

they should end up. This way, 1000 agents will only take

0.3 s to be animated in parallel.

3.3. Incremental programming

To support 3D fluency, we needed a programming

language that would allow students to create behavior in

3D. Our conceptual starting point was our previous

work with the Visual AgentTalk programming language

in AgentSheets [6]. VAT had established the usability

of the rule-based approach for authoring 2D games

and simulations and computational science applications

in school settings [32]. For AgentCubes, we enhanced

the language to include the notion of Incremental

3D, leading to Visual AgentTalk 3D, which includes the

ability to author and run 2D projects and gradually add

control over 3D aspects. VAT 3D has the following

characteristics:

� 3D grid: Worlds in AgentCubes consist of layers

with stacks of agents. VAT 3D features conditions

and actions that orient and move agents in 3D,

providing incremental support through optional para-

meters.

� Camera control: Attaching cameras to agents (first-

person view) makes the agent the location of the

camera. If the agent moves, the camera will move too.

If this agent turns, the camera will turn too. This

seemingly simple extension resulted in a number of

cognitively interesting challenges, including the need

to have conditions to test if the simulation is currently

running in bird’s eye or first-person view.

� Lighting control: End-user support for the use of light

sources in sophisticated scene rendering.

� Formula language: The formula language allows users

to express equations as functions of agent attributes

using special notation to access agents via their grid

locations in relative and absolute terms similar to

spreadsheets. For instance, the expression ‘‘weight+-

weight[left]’’ adds the value of the agent’s attribute

called ‘‘weight’’ with the value of the ‘‘weight’’

attribute of the agent to the left. Unlike AgentSheets,

which features a 2D spatial structure and operators to

express computation in 2D, AgentCubes allows users to

express computation in 3D.

� Animation support: Optional animation parameters in

movement and orientation language constructs (i.e.

conditions and actions) enable the separation of logic

and animation in agent behavior, thus ensuring that

the logic part works without obliging the user to first

define animation.

Examples of programming in AgentCubes are given in

subsequent sections.

ARTICLE IN PRESS

Fig. 6. (a) Two crate agents (left, right) both want to move on top of the

brick agent. (b) Right crate gets dispatched first, but both crates know

where they need to move to. Both crates move in parallel to their

respective destinations. The animation makes the left crate overshoot

vertically to avoid intersection.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]6

dx.doi.org/10.1016/j.jvlc.2009.04.001


3.4. Incremental visualization

AgentCubes includes some sophisticated 3D visualiza-

tion capability. Embedded live 3D plots are rendered as

an overlay on game and simulation worlds. For example,

Figs. 7 and 8 show visualizations of the collaborative

diffusion [33,34] algorithm used for AI path-finding in

different games. The visualization is a logarithmic 3D

surface plot of the collaborative diffusion values. Colla-

borative diffusion spreads target values trough space in a

way allowing agents to find target efficiently. The targets

manifest themselves as peeks in the surface plot. In

Pacman (Fig. 7), the user-controlled Pacman character is

the target, creating the peek in the upper left corner,

attacked by ghosts. Walls in the Pacman world stop

diffusion values and create a complex diffusion landscape

indicating where ghosts need to go to track down the

Pacman. In soccer (Fig. 8), the ball is the target of the

soccer players. The presence of other players modulates

the collaborative diffusion values in a way to allow

collaborative interactions between players from the same

team.

Our early experience with these kinds of visualizations

is that they can be essential in explaining complex

mathematical relationships relevant to numerous Science,

Technology, Engineering and Mathematics (STEM) topics.

One of the unique strengths of our AgentSheets 2D

authoring tool is that it can be used for game design as

well as for computational science [5] applications, which

can provide students with IT fluency leading to scientific

careers outside CS.

4. Incremental 3D process in game design

Student progression to 3D fluency is established by

having a process that is gradual enough to keep students

in the optimal flow of learning [35]. The process of

creating a 3D game starting with a 2D game involves four

successive steps: (1) creating a 2D game; (2) creating a

first-person 2D game; (3) creating a first-person 3D

Game; and (4) constructing a 3D world. These steps are

described below:

(1) Creating a 2D game: Students are guided through a

game design process we call Gamelet Design to create

an initial 2D version of a game. We typically use the

classic arcade game of Frogger (http://en.wikipe-

dia.org/wiki/Frogger) because even young children

are aware of it and it seems to be gender neutral.

The result is a simple, but completely playable version

of the first level of the Frogger game. In this version, a

cursor-controlled frog tries to cross a highway with

cars driving across. Cars get automatically generated

and absorbed at the beginning and end of the

highway, respectively. Finally, the game deals with

the car–frog collision that results in the frog perishing

and being generated again, if there are any lives left.

The 2D version of the game (Fig. 9a) does not include

custom animations or 3D models at this point.

(2) Creating a first-person 2D game: Using incremental

modeling, animation, and programming, the look and

basic behavior of the 2D Frogger game gets trans-

formed to 3D. We motivate the transition from 2D to

3D by attaching the camera to the user-controlled

character, namely the frog, and therefore changing

perspectives from a world-view where the user looks

at the game world from a bird’s eye view to a first-

person view where the user sees the game world

through the ‘‘eyes’’ of the frog (Fig. 9b). After the

initial ‘‘the world is flat’’ shock, students typically

want to create 3D looking objects. Inflatable Icons are

used for incremental modeling to create 3D game

objects from the 2D images that the students had

created during the previous step (Fig. 9c). Seeing the

game run and the jerky movement of the cars prompts

students to change the animation parameters for the

movement. To make the games seem more realistic,

AgentCubes supports different animation modes (con-

stant vs. accelerated). For cars, for instance, it makes

sense to have constant animation speed, whereas for

the frog it is better to have accelerated animation to

simulate jumping. Moreover, simple behavior changes

are incrementally implemented. With the camera

attached to the frog, the students see the need to

ARTICLE IN PRESS

Fig. 7. Collaborative Pacman Game. The user-controlled Pacman is in the

upper left corner. The Pacman ‘‘scent’’ is diffused over the entire

worksheet. Diffusion values are plotted logarithmically. The plot is

intersected by the worksheet. Walls are obstacle agents with a zero

diffusion value.

Fig. 8. Ball diffusion in a soccer game simulation. Peak indicates the

location of the ball.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 7

http://en.wikipedia.org/wiki/Frogger
http://en.wikipedia.org/wiki/Frogger
dx.doi.org/10.1016/j.jvlc.2009.04.001


rotate the character when it changes direction, so they

add rotation actions to the behavior.

(3) Creating a first-person 3D game: Modifying the look of

game objects is not enough to create a 3D game. The

transition from bird’s eye to first-person camera view

also means that the coordinate system changes, which

presents a conceptual perspective issue for navigation.

The ‘‘absolute’’ right, left, up, down directions that

make sense when looking at the world from a bird’s

eye view no longer make sense in first-person mode

(Figs. 10 and 11). Students expect the user-controlled

character to transition seamlessly from absolute to

relative coordinates (Table 1). Instead, they need to

implement additional navigation behavior to deal

with the relative coordinate system.

With an incremental behavior approach, students are

taught how to implement world-view vs. first-person

navigation, extending existing code with language

able to deal with different versions of character

navigation based on the camera position. This is a

fairly difficult concept that requires more than trivial

programming, but at the same time presents great

opportunities for learning about coordinate systems

and modulo arithmetic – a concept not covered in the

middle school math curriculum. Game design pro-

vides many such opportunities for learning complex

concepts on demand, rendering it an experience that

synthesizes many different STEM skills, not just

programming. Indicative of this was a quote from

the only student who indicated he knew about

modulo arithmetic in our experiment: ‘‘I knew about

modulo arithmetic, I understood it, but now I know

how to apply it.’’

(4) Constructing a 3D world: At this point, students have a

simple but complete 3D game. As a final step, we

introduce students to a truly 3D world. Not only are

the objects of the game 3D, but there is movement in

all three dimensions using layers in the 3D grid. This

3D environment enables students to first navigate a

ready-made 3D maze and then construct their own

mazes by directing the movement and rotation of a

spaceship drilling holes in a solid cube. Indicators of

ARTICLE IN PRESS

Fig. 9. (a) Bird’s eye view of Frogger; (b) flat frog in first person looking at flat cars; (c) 3D frog looking at 3D cars.

Fig. 10. (a) Lobster in bird’s eye view; (b) result of using the left arrow

key: the lobster turns and faces to the left.

Fig. 11. (a) Lobster in bird’s eye view; (b) lobster in first-person view; (c)

result of using the left arrow key: the lobster turns to its left; (d) result

viewed from birds’ eye view: lobster is actually facing up in the absolute

coordinate system.

Table 1

Perspective-dependent interpretation of user input.

Bird’s eye perspective Cursor control 1st person perspective

Move left Turn left 901

Move right Turn right 901

Move up Move forward in direction

Move down Move backward in direction

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]8

dx.doi.org/10.1016/j.jvlc.2009.04.001


3D fluency in this activity are specific design aspects

of the mazes students create (e.g. toggling between

bird’s eye and first-person views, toggling between

visible and invisible walls to evaluate the maze

structure, rotating the world to view the possible

routes in the maze) and the use of orientation and

visualization tools to verify that the maze satisfies the

given design criteria.

5. Impact of AgentCubes on IT fluency

We formally evaluated the effectiveness of the Incre-

mental 3D approach as a way to achieve 3D and IT fluency

at the middle school level. In this section, the design of the

study, the requirements of the troubleshooting scenarios

used as a culminating activity, the context of the study

and the findings are reported.

5.1. Study design

The evaluation study was designed in collaboration

with educational researchers from the University of

Colorado’s School of Education, who have experience in

working with students in technology-intensive instruc-

tional environments, as well as expertise in conducting

classroom-based research in K-12 settings. The study was

designed to document the impact of student use of

AgentCubes on identifiable learning objectives with

respect to the development of student IT and 3D fluencies,

mainly following the Fluency with Information Technol-

ogy framework. Given the scope of the feasibility study,

we focused on a subset of FIT and 3D fluency elements

that included IT Skills such as using a graphics package to

create illustrations, IT Concepts such as algorithmic

thinking and programming, and Intellectual Capabilities

such as managing complexity, engaging in sustained

reasoning, and managing problems in faulty situations [2].

Instruction followed the Incremental 3D steps men-

tioned above. In addition to formative evaluations during

instruction, as an activity to measure fluency during the

final session, we designed problem-solving situations in

which students were asked to troubleshoot programming

scenarios. Instead of traditional pre- and post-tests, we

opted to perform an authentic assessment [36,37] that

would require students to draw upon what they had

learned about game design and programming agent

behavior to identify and solve problems in troubleshoot-

ing scenarios that involved an intentionally defective

version of a 3D Frogger game. Within a 45-min period in

the fifth (and last) session, students had to figure out at

least five things that were wrong with the game and re-

program the agents’ behaviors to fix those problems.

These included issues with movement in world and first-

person views, missing behaviors, and defective generation

rates.

Specifically, the students had to solve the following:

(1) Car movement bug: One type of car was not moving on

the highway from left to right, as it should. Its

behavior was missing the rule that specified that the

car should move to the right if there is highway; as a

result, the car remained stationary. Students had to

identify the correct method (Fig. 12) where the

movement rule (Fig. 13) was to be inserted and add it.

(2) Car generation bug: On one side of the highway, the

cars generated to move from left to right were

stacking up (Fig. 14a and b). The behavior of the car

generator was set up so that it was creating cars too

often and without checking whether there was an

empty piece of highway there first (Fig. 16). Detecting

these kinds of issues in 3D is much easier than in the

equivalent 2D environment. Because of the third

dimension, the piling cars are discernible immediately

(Fig. 14a) without even tilting the 3D world (Fig. 14b).

The 2D equivalent of the situation cannot be discerned

just by looking at the world. Multiple car agents can

be stacked on top of each other, but one cannot tell

just by looking at it (Fig. 14c). Situations like this can

lead to performance degradation of the system, since

one can end up with thousands of agents piled up

using up system resources without the user knowing

why, making debugging of such issues extremely

difficult, especially for novices. To fix the faulty

behavior (Fig. 15), students had to slow down the

generation rate and put a check to see if there

is an empty piece of highway before creating a new

car (Fig. 16).

ARTICLE IN PRESS

Fig. 12. Faulty behavior for the car that causes the car to be stationary.

To fix the problem, the missing rule for actually moving the car (shown

in Fig. 13) should be inserted in the ‘‘Advance’’ method.

Fig. 13. Missing rule for the car to be added to the behavior in Fig. 12 to make it move right, but only if there is road ahead of it.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 9

dx.doi.org/10.1016/j.jvlc.2009.04.001


(3) 2D navigation bug: The movement for the Frog in bird’s

eye view perspective was incorrect. The rule for

when the left and right arrow key was pressed did

not match the direction in which the frog should

move (second and fourth rule in Fig. 17). Students had

to locate the relevant method in the behavior and

change the movement direction to match the key

pressed.

(4) 3D navigation bug: The movement for the frog in

first-person perspective was incorrect. In the move-

in-direction method (Fig. 19) called from the navigate-

first-person method (Fig. 18), there was a duplicate

condition for dealing with direction ¼ 0. That essen-

tially means that the frog could never turn left in first-

person mode. The condition of the second rule in the

move-in-direction method needed to be changed from

testing for direction ¼ 0 to direction ¼ 1. Students had

to locate the relevant method in the behavior and fix

the error (Fig. 19).

(5) Turtle generation bug: There were not enough turtles

being generated for the frog to make a successful

crossing of the river (shown in Fig. 14a and b). This

turned out to be an elusive problem for the students

to identify, as it was a usability issue, not a program-

ming issue, per se. To fix it, the turtle generation

should have been increased by lowering the frequency

with which the generation rule was checked (once-

every condition) and possibly increasing the percen-

tage of generation (Fig. 20).

These troubleshooting tasks were unfamiliar situations

to students and were not discussed in previous sessions.

Students were required to complete the activity on their

own and could only ask the instructors questions of

ARTICLE IN PRESS

Fig. 14. Identifying the car generation issue with cars piling up: (a) looking at the 3D world top-down you can still see the piling cars; (b) looking at the 3D

world from a different perspective; and (c) in the 2D equivalent, the problem is not apparent at all.

Fig. 15. Faulty behavior for the Car Generator agent. New car creation

gets called too often and with high probability. There is no check for an

empty spot to create the car either.

Fig. 16. Fixed behavior for the piling cars issue.

Fig. 17. Faulty behavior of 2D navigation bug. When the right and left

arrow keys are pressed the frog does not move in correct direction.

Notice in 2nd and 4th rule the opposite arrows checked in the key

condition and the arrows of movement in the move action.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]10

dx.doi.org/10.1016/j.jvlc.2009.04.001


clarification. The debugging scenarios were challenging

since students were neither told what the problems were

nor how to locate the problematic procedures within the

AgentCubes environment. They needed to identify the

problem, locate the problematic agent and its behavior,

locate the exact problematic procedure in the code, and

correct the program for the agent.

We recognized that offering students an opportunity to

engage in troubleshooting was an authentic experience

familiar to any computer programmer. It required mana-

ging problems in faulty situations in addition to sustained

engagement in reasoning and application of programming

skills. Our eagerness with presenting such tasks to students

was tempered by uncertainty regarding students’ ability to

identify the problems, students’ insight in locating the

problematic procedures for a given agent, and knowing

how to resolve the problems. However, using the trouble-

shooting assessment to gather evidence of student FITness

was rewarded by the intensity of student engagement

throughout the assessment and what students were able to

accomplish, which is discussed in the findings section.

5.2. Contexts

The evaluation study was administered in collabora-

tion with Science Discovery, the University of Colorado’s

science outreach program, and was conducted in the

context of four after-school classes in two middle schools,

one in Boulder and one in Aurora, Colorado. Forty students

attended the initial session. The race and ethnic back-

ground of students recruited for the AgentCubes course

was a close approximation to the background of students

found at the participating schools, with the majority of

participants at the Boulder school reporting a Caucasian

background and the majority of participants at the Aurora

school reporting a Hispanic background (Table 2). Parti-

cipation was voluntary. A large number of students were

recruited by researchers and teachers. School administra-

tion and teachers reduced the recruitment group down to

the 40 students we could accommodate in the experi-

ment. The requirements included having two groups of

all-female students and a participant sample that repre-

sented the school population. It is also interesting to note

ARTICLE IN PRESS

Fig. 18. Method implementing first-person navigation. This part of the

behavior is correct, but calls the ‘‘Move-in-Direction’’ method (Fig. 19)

that contains the faulty behavior.

Fig. 19. Faulty behavior for first-person navigation. Notice that there is

condition to correctly handle movement to the left (direction ¼ 1), but

instead a duplicate rule for checking for direction ¼ 0. Therefore, the frog

can never turn to the left in first-person perspective.

Fig. 20. Faulty turtle generation behavior. Generation frequency and

chance are too low for the game to be winnable, as there are not enough

turtles for the frog to jump onto to cross the river.

Table 2

Study participants from Aurora (top) and Boulder (bottom) schools.

Male Female Total AgentCubes (%) School (%)

African-Am 4 2 6 30 17

Asian-Am 0 1 1 5 3

Caucasian 1 0 1 5 11

Hispanic 4 6 10 50 68

Multi-Eth 0 1 1 5 nr

Native-Am 1 0 1 5 1

10 10 20

African-Am 1 0 1 5 1

Asian-Am 0 0 0 0 4

Caucasian 7 8 15 75 84

Hispanic 0 1 1 5 11

Multi-Eth 1 2 3 15 nr

Native-Am 0 0 0 0 o1

9 11 20

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 11

dx.doi.org/10.1016/j.jvlc.2009.04.001


that the Boulder school is located in a technology hub

region whereas the Aurora school is located in a less

affluent, blue-collar area.

5.3. Findings

The findings resulting from the overall evaluation

study are grouped in three categories: technology;

curriculum; and broadening participation.

5.3.1. Technology

For the technology category, the criterion to measure

success was whether students could build a simple game

from scratch, including 3D models and behavior program-

ming in a short period of time (less than 5h). The

technology findings (TF) were as follows:

TF1 – All students were able to create a working 3D game

in less than 5 h: All students made at least one game.

Several students went beyond what was expected in class

and created extra games. It is interesting to note that it

was mostly boys from the Aurora school who created the

extra games.

TF2 – All students were able to create sophisticated 3D

models from scratch using Inflatable Icons: The Inflatable

Icons technology turned out to be highly accessible to all

students. Inflatable Icons were able to cover the spectrum

from rough and ready abstract looking 3D model drafts all

the way to sophisticated 3D models. It is interesting to

note that, on average, girls spent more time and paid more

attention to detail in creating their 3D models than the

boys.

TF3 – All students were able to add animations to their

games incrementally and customize animation parameters:

Students managed to enable and disable animations as

well as customize them. Customization allowed students

to control the animation timing and acceleration para-

meters. The incremental nature of the animation approach

built into AgentCubes allowed students first to build a

game and then, when necessary, add the animations after

they had developed the main game mechanics.

TF4 – Most students (85%) were able to program their

own character control in 1st person and bird’s eye view

successfully: This was a very challenging task: it included

understanding and application of modulo arithmetic, a

concept unfamiliar to most middle school students. Even

so, students were able to follow instruction and 85% of

them were able to complete the implementation of the

first-person navigation. Also, 75% of them were able to fix

the intentionally defective version of first-person naviga-

tion in the unassisted troubleshooting session.

5.3.2. Curriculum

The criterion to evaluate curriculum was based on

achievements towards FITness goals. During the sessions,

an AgentCubes FITness Observation Protocol (AFOP) was

used along with a pre-assessment observation checklist to

document students’ opportunities to engage in activities

that had the potential to promote Fluency in Information

Technology. During the final session, an additional

observation checklist was used to document students’

problem solving and design of 3D mazes in AgentCubes,

and students’ ability to solve various troubleshooting

scenarios using AgentCubes.

The curriculum findings (CF) were as follows:

CF1: Most students (75%) were able to solve most issues

(60% or more) in the troubleshooting activity. Almost all

students demonstrated sustained engagement and persis-

tence in resolving these problems. All students were able

to identify at least three of the problems and attempted to

resolve the problem by reprogramming agent behavior. As

a matter of fact, 75% of students solved the majority of the

issues (3 or more).

Table 3 summarizes the percentages of students able to

troubleshoot each scenario. Out of the 40 original

participants, 24 students participated on the day the

troubleshooting activity took place. In addition to overall

results, data are disaggregated by school, gender, and

ethnicity. It is worth noting that female students and

students at the Boulder School were more successful in

resolving car movement and generation issues. Male

ARTICLE IN PRESS

Table 3

Percentage of students identifying and completing the five troubleshooting tasks discussed in Section 5.1: (1) cars not moving; (2) cars piling up; (3) frog

2D movement; (4) frog 3D movement; and (5) turtle generation.

Groups Troubleshooting tasks

N Cars not

moving (%)

Cars piling

up (%)

Frog movement

(2D) (%)

Frog movement

(3D) (%)

Turtle generation

(%)

Average

(%)

All students 24 67 88 79 75 42 70

Schools

Boulder 14 71 93 64 64 50 69

Aurora 10 60 80 100 90 30 72

Gender

Male 16 63 81 88 88 50 74

Female 8 75 100 63 50 25 63

Ethnicity

Caucasian 13 69 92 69 62 46 68

Hispanic 5 60 80 100 100 20 72

Afr-Am 3 67 100 100 100 33 80

Other 3 67 67 67 67 67 67

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]12

dx.doi.org/10.1016/j.jvlc.2009.04.001


students and students at the Aurora school were more

successful in resolving the scenarios related to frog

movement.

Furthermore, 25% of the students went beyond the

scope of the activity and improved the program in other

ways, such as using the graphics tools to change or inflate

game components such as cars and turtles so they would

be easier to see in first-person view.

CF2 – Scalable Game Design is a feasible strategy to create

a FIT-oriented curriculum using AgentCubes: Data from the

AFOP were analyzed to reveal opportunities to address the

five elements of the FIT framework [2] that were

prioritized for observation and assessment:

� Using a graphics package to create illustrations.

� Algorithmic thinking and programming.

� Managing complexity.

� Engaging in sustained reasoning.

� Managing problems in faulty situations.

A hierarchical rating scheme was developed to distin-

guish potential opportunities from observed opportunities

with and without guidance. As summarized in Table 4,

every session included opportunities to address multiple

goals, but what distinguished the latter sessions from the

earlier ones were the opportunities for students to

demonstrate their achievement of FIT goals apart from

instruction. Since the last session included several

assessment-like activities, there were several opportu-

nities for students to demonstrate their ability to engage

in sustained reasoning, troubleshoot errant programming,

and manage faulty situations (which, in fact, the majority

of students demonstrated, as illustrated in the results for

the troubleshooting assessment).

As an example of how these FIT goals were addressed

within a particular session, in Session 1 students were

asked to complete a brief survey and complete a set of

10–16 visualization tasks involving blocks. Students were

then introduced to AgentCubes through a bridge design

simulation and the Sokoban game (http://en.wikipe-

dia.org/wiki/Sokoban). These computer-based assessment

activities and problem-solving challenges provided stu-

dents an opportunity to engage in sustained reasoning

through most of Session 1 (Level 5 intensity). During the

same session, students also had the opportunity to use a

graphics package as they selected agents in the bridge

design simulation and modified the design to construct a

bridge with the fewest number of bridge elements. The

creation of illustrations, therefore, was a secondary FIT

goal that students had the opportunity to explore in

Session 1 (Level 4 intensity). A few students were able to

devise an algorithm for placing blocks and solving levels

in Sokoban (Level 2 intensity). Although there were some

opportunities in Session 1 for students to manage

complexity, in terms of programming agent behavior,

students were directed to a different activity before they

had the chance to explore this feature in AgentCubes

(Level 1 intensity).

CF3 – Students have capacity for visualization and

representing 3D objects as illustrated by their ability to

navigate 3D mazes and create their own: All students were

ARTICLE IN PRESS

Table 4

Intensity level of opportunities for student development of FITness.

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 13

http://en.wikipedia.org/wiki/Sokoban
http://en.wikipedia.org/wiki/Sokoban
dx.doi.org/10.1016/j.jvlc.2009.04.001


able to navigate existing mazes and create their own 3D

mazes with varying degrees of complexity. Students could

create a 3D maze with AgentCubes, by designing path-

ways through a large solid cube, following specific design

criteria and with the expressed goal of constructing a

maze that would offer sufficient challenge to the maze

user.

5.3.3. Broadening participation

The criterion we used to evaluate this category was

whether the technology and curriculum could be used

across ethnicity and gender, both in technology hub areas

and inner city school cultures. The broadening participa-

tion findings (BPF) are as follows:

BPF1 – The idea of Game Design is compelling to middle

school girls. We were able to easily recruit more than 50%

girls: The percentage of female students involved at both

schools was greater than 50%. Organizing the weekly

sessions by gender may have had some influence on the

ability to recruit a higher percentage of female students to

agree to participate in these sessions. This was influenced

by earlier experiences in recruiting female students in

after-school STEM courses offered by Science Discovery.

Student attendance over the five sessions experienced

some attrition, with the most significant attrition occur-

ring among the Aurora school female group. Based on

follow-up discussions with teachers and students, it

appears that there were various reasons for this attrition

such as overlapping family commitments or other after-

school commitments.

BPF2 – Students from the Aurora school did better than

the tech hub school in authentic assessment (but the

difference was not statistically significant): The trouble-

shooting performance of students at both schools was

essentially the same. The Aurora students outperformed

the Boulder students on the challenging frog movement

tasks.

BPF3 – There was no major difference between the

ethnicity groups in troubleshooting performance: From Table

3, we see that African American students on average

completed 80% of the troubleshooting tasks during the

authentic assessment activities. Hispanic students on

average completed 72% of the tasks. Caucasian students

on average completed 68% of the tasks. Other Ethnicity

students on average completed 67% of the tasks. Note that

both the African American and the Other Ethnicity groups

were small (n ¼ 3).

6. Conclusions and future work

Our preliminary experiences and findings with Scal-

able Game Design, our low-threshold/high-ceiling frame-

work supporting skills beyond programming, ranging

from theoretical design skills to concrete development

skills, lead us to believe that we can establish IT fluency

and broaden participation in computer science with game

design activities. The results from the study described

herein indicate that it is educationally effective to use

AgentCubes as a low-threshold game design environment

featuring Incremental 3D for teaching IT skills to middle

school students. The AgentCubes instructional sequence

did result in opportunities to promote student fluency and

the troubleshooting scenarios designed to be used with

AgentCubes can be used to document student IT fluency.

Promoting student IT fluency: The results suggest that

10h of instruction using AgentCubes did result in the

development of student IT fluency across several ele-

ments, in particular algorithmic thinking, programming,

and managing faulty situations. Even though students had

some prior experience with computer software, no

student had previous experience with AgentCubes and

yet by the end of five sessions they were able to

demonstrate that they could identify and remediate

problematic agent behavior. Data from the observation

protocol outline how particular activities and instruc-

tional emphases contributed to the development of

student IT fluency and the results from the troubleshoot-

ing activity confirm that students understood some key

features of AgentCubes, game design, and programming.

Promoting computational thinking: The discussion on

what computational thinking [3] is and how to promote it

is an ongoing discussion. We believe that the combination

of incremental approaches with the low-threshold end-

user programming of AgentCubes is an essential combina-

tion for building computational thinking tools. Perhaps

the most important aspect of Incremental 3D with respect

to computational thinking is the support of incremental

formalization. The ability to draw simple, abstract 2D or

3D shapes that can be manipulated without the need for

any programming can facilitate design, or more generally,

the thinking process. Similar to classic LEGO blocks, these

agents can be employed to represent just about anything.

Then, the process of adding behaviors and evolving the

simple 2D objects into more sophisticated 3D objects,

becomes an essential part of a computational thinking

process.

Using troubleshooting scenarios as authentic assessment:

Designing assessments that reveal what students have

learned through use of computer software necessarily

relies more on how students can apply what they have

learned rather than showing learning gains beyond a pre-

assessment. Given students’ lack of familiarity with the

AgentCubes interface and the relatively brief contact time

with students, it was important to design an activity that

could be motivating to students, have some instructional

value (i.e. the assessment was a learning opportunity),

and serve as an assessment of student fluency.

We would argue that the troubleshooting activity is an

authentic assessment [36,37], since it emulates the type of

work expected of game designers and computer program-

mers, requires the application and synthesis of knowledge

and skills to find a solution to a problem worth solving,

involves some degree of self-assessment on the students’

part to determine when the goals are satisfied, and leaves

room for student creativity. The results demonstrated that

students were not only quite successful in completing

most of the tasks, but they were also fully engaged in the

activity for the entire time. It is worth emphasizing that

the participants in this study were sixth and seventh

grade students who had no previous experience with

AgentCubes, and yet very few students demonstrated any

ARTICLE IN PRESS

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]14

dx.doi.org/10.1016/j.jvlc.2009.04.001


outward signs of frustration or reluctance to improve

agent behavior. The major finding from this study rests, in

part, with the results from this authentic assessment. That

is, over the five sessions, students developed sufficient

fluency with programming agent behavior to be able to

apply their knowledge of AgentCubes procedures in new

problem scenarios. Furthermore, we would argue that the

troubleshooting activity is an appropriate authentic

assessment to use with middle school students and is

likely the ideal approach to assessing students’ under-

standing of how to use new software. Although students’

facility with these activities may be the result of the user-

friendliness of the AgentCubes’ programming interface,

we feel this type of activity is worth pursuing to assess

student fluency with other design software.

Differential commitments for female and male students:

While there may be some differential gender effects

regarding sustained attendance of female students in

AgentCubes sessions, there is no indication from survey

results or school personnel who assisted with recruitment

that the course was less attractive to female students.

Rather, anecdotal evidence suggests that other after-

school commitments (e.g. band, clubs, sports, etc.) seemed

to have had a greater impact on attendance, in general, at

the Aurora school and may have had a greater impact on

attendance of female students. The after-school sessions

can be a productive time for many students; school

administrators are also supportive of using after-school

time in this way. However, for some students other after-

school activities, transportation arrangements, and family

commitments challenge sustained attendance in an after-

school CS program. In addition, the greater the duration of

the instructional sequence, the greater the chance stu-

dents will be absent from sessions which will hinder their

opportunity to stay with the rest of the group in terms of

learning new programming and design techniques.

Although the reasons for these differential attendance

patterns are conjectures, we feel that a promising strategy

to improve the attrition rate would be to either offer the

AgentCubes sessions during the school day (i.e. as part of

an applied technology or computer applications course) or

provide a more compact session over the course of one

week (five half-day sessions) rather than organized as 2-h

sessions each week over a period of 5 weeks.

Recommendations for future studies: The five sessions of

AgentCubes provided a sufficient balance of instruction

with the user interface, essential aspects of agent

behavior, and programming needs to transition from 2D

to 3D behavior. The sufficiency of instruction was

demonstrated by what students were able to accomplish

within the context of instructional activities and assess-

ment tasks. There is, however, a sense that students were

eager to learn quite a bit more about game design and

would have continued to attend additional sessions, if

offered. To enhance middle school students’ IT fluency,

conceptions of design, or programming of agent behavior,

additional instructional time is required. We plan to

explore these learning potentials in subsequent studies.

In our future work, we intend to study the systemic

needs and impact of the implementation of this approach

to increase IT fluency among middle and high school

students. To accomplish this we will scale up research and

development along different dimensions:

� Technology: provide more scaffolding techniques

[27–29] especially for incremental programming.

� Content and curriculum: develop longer modules

offered as part of the curriculum for comprehensive

coverage of IT standards.

� Teacher training: a systematic approach to teacher

training is essential for technology adoption in schools.

� Social factors: explore the factors leading to the some-

what disappointing attrition rates for girls, given their

interest in game design and ability to achieve the level

of fluency required to create their own games.

Acknowledgements

This work was supported by the National Science

Foundation (NSF) under Grant no. IIP 0712571. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the NSF.

References

[1] Computer Research Association, CRA Bulletin: Enrollments and
Degree Production at US CS Departments Drop Further in 2006/
2007, 2008.

[2] Committee on Information Technology Literacy, Computer Science
and Telecommunications Board, Commission on Physical Sciences,
Mathematics, and Applications, National Research Council, Being
Fluent with Information Technology, National Academy Press,
Washington, DC, 1999. Available from: /http://newton.nap.edu/
html/beingfluent/S.

[3] J.M. Wing, Computational thinking, Communications of the ACM 49
(3) (2006) 33–35.

[4] K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals,
MIT Press, Cambridge, MA, 2003.

[5] President’s Information Technology Advisory Committee (PITAC),
Report to the President: Computational Science: Ensuring America’s
Competitiveness, June 2005.

[6] A. Repenning, A. Ioannidou, Behavior processors: layers between
end-users and Java virtual machines, in: Proceedings of the 1997
IEEE Symposium of Visual Languages, Capri, Italy, 1997,
pp. 402–409.

[7] A. Repenning, A. Ioannidou, Agent-based end-user development,
Communications of the ACM 47 (9) (2004) 43–46.

[8] A. Repenning, A. Ioannidou, What makes end-user development
tick? 13 design guidelines, in: H. Lieberman, F. Paternò, V.
Wulf (Eds.), End User Development, Springer, New York, NY, 2006,
pp. 51–86.

[9] A. Repenning, A. Ioannidou, Broadening participation through
scalable game design, in: Proceedings of the ACM Special Interest
Group on Computer Science Education Conference (SIGCSE 2008),
Portland, OR, USA, 2008, pp. 305–309.

[10] S. Walter, B. Barron, K. Forssell, C. Martin, Continuing motivation for
game design, in: CHI 2007, San Jose, CA, USA, 2007, pp. 2735–2740.

[11] M. Prensky, Programming: The New Literacy, in Edutopia. Available
from: /http://www.edutopia.org/programming-the-new-literacyS,
2008.

[12] U. Wilensky, W. Stroup, Learning through participatory simulations:
network systems learning in classrooms, in: Computer Supported
Collaborative Learning (CSCL 099), Stanford University, CA, USA,
December 12–15, 1999.

[13] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick,
Scratch: a sneak preview, in: Second International Conference on
Creating, Connecting, and Collaborating through Computing, Kyoto,
Japan, 2004, pp. 104–109.

[14] D.J. Barnes, M. Kölling, Objects First with Java: A Practical Intro-
duction using BlueJ, third ed., Pearson Education/Prentice-Hall,
Englewood Cliffs, New Jersey, 2006.

ARTICLE IN PRESS

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 15

http://newton.nap.edu/html/beingfluent/
http://newton.nap.edu/html/beingfluent/
http://www.edutopia.org/programming-the-new-literacy
dx.doi.org/10.1016/j.jvlc.2009.04.001


[15] M. Klling, B. Quig, A. Patterson, J. Rosenberg, The BlueJ system and
its pedagogy, Computer Science Education 13 (4) (2003) 249–268.

[16] H. Poul, K. Michael, Greenfoot: combining object visualisation with
interaction, in: Companion to the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages,
and Applications, ACM, Vancouver, BC, Canada, 2004, pp. 73–82.

[17] M. Barbara, L. Deborah, C. Stephen, Evaluating the effectiveness of a
new instructional approach, in: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education Norfolk,
ACM, VA, USA, 2004.

[18] E. Klopfer, S. Yoon, Developing games and simulations for today and
tomorrow’s tech savvy youth, TechTrends 49 (3) (2005) 33–41.

[19] J.S. Harbour, J.R. Smith, Beginner’s Guide to DarkBASIC Game
Programming, Course Technology PTR, Florence, KY, 2003.

[20] M. Overmars, Teaching computer science through game design,
Computer 37 (4) (2004) 81–83.

[21] M. Dertouzos, Creating the People’s Computer, vol. 100(3), MIT
Technology Review, Cambridge, MA, 1997, pp. 20–28.

[22] A. Henderson, M. Kyng, There’s no place like home. Continuing
design in use, in: Design at Work, Lawrence Erlbaum Association
Publishers, London, 1991, pp. 219–240.

[23] A.I. Mørch, Three levels of end-user tailoring: customization,
integration, and extension, in: M. Kyng, L. Mathiassen (Eds.),
Computers and Design in Context, MIT Press, Cambridge, MA,
1997, pp. 51–76.

[24] H. Lieberman, F. Paternò, V. Wulf, End User Development, vol. 9,
Springer, Berlin, 2006, p. 492.

[25] P. Maes, Designing Autonomous Agents, MIT Press, Cambridge, MA,
1990.

[26] A. Repenning, Inflatable icons: diffusion-based interactive extrusion
of 2D images into 3D models, Journal of Graphical Tools 10 (1)
(2005) 1–15.

[27] M. Guzdial, Software-realized scaffolding to facilitate programming
for science learning, Interactive Learning Environments 1 (1994).

[28] B.J. Reiser, Scaffolding complex learning: the mechanisms of
structuring and problematizing student work, Journal of the
Learning Sciences 13 (3) (2004) 273–304.

[29] L.A. Shepard, Linking formative assessment to scaffolding, Educa-
tional Leadership 63 (3) (2005) 66–70.

[30] A. Repenning, A. Ioannidou, AgentCubes: raising the ceiling of end-
user development in education through incremental 3D, in: IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’06), Brighton, United Kingdom, 2006, pp. 27–34.

[31] A. Michotte, The Perception of Causality, Methuen, Andover, MA,
1962.

[32] A. Ioannidou, A. Repenning, C. Lewis, G. Cherry, C. Rader, Making
constructionism work in the classroom, International Journal of
Computers for Mathematical Learning 8 (1) (2003) 63–108.

[33] A. Repenning, Collaborative diffusion: programming antiobjects, in:
OOPSLA 2006, ACM SIGPLAN International Conference on Object-
oriented Programming Systems, Languages, and Applications,
Portland, Oregon, 2006, pp. 574–585.

[34] A. Repenning, Excuse me, I need better AI!: employing collaborative
diffusion to make game AI child’s play, in: ACM SIGGRAPH
Symposium on Videogames, Boston, MA, USA, 2006, pp. 169–178.

[35] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience,
Harper Collins, New York, 1990.

[36] J. Gulikers, T. Bastiaens, P. Kirschner, A five-dimensional framework
for authentic assessment, Educational Technology Research and
Development 52 (3) (2004) 67–86.

[37] F. Newmann, W. Secada, G. Wehlage, A Guide to Authentic
Instruction and Assessment: Vision, Standards, and Scoring,
Wisconsin Center for Education Research (WCER), University of
Wisconsin, Madison, WI, 1995.

ARTICLE IN PRESS

Please cite this article as: A. Ioannidou, et al., AgentCubes: Incremental 3D end-user development, Journal of Visual
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.001

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]16

dx.doi.org/10.1016/j.jvlc.2009.04.001

	AgentCubes: Incremental 3D end-user development
	Introduction: why Incremental 3D?
	AgentCubes: an Incremental 3D authoring environment
	Incremental 3D
	Incremental modeling
	Incremental animation
	Incremental programming
	Incremental visualization

	Incremental 3D process in game design
	Impact of AgentCubes on IT fluency
	Study design
	Contexts
	Findings
	Technology
	Curriculum
	Broadening participation


	Conclusions and future work
	Acknowledgements
	References


