
Agentized, Contextualized Filters for Information Management

David A. Evans, Gregory Grefenstette, Yan Qu, James G. Shanahan, Victor M. Sheftel

Clairvoyance Corporation
5001 Baum Boulevard, Suite 700, Pittsburgh, PA 15213-1854, USA

{dae, grefen, y.qu, jimi, v.sheftel}@clairvoyancecorp.com

Abstract
Every time a user engaged in work reads or writes, the user
spontaneously generates new information needs: to
understand the text he or she is reading or to supply more
substance to the arguments he or she is creating. Simul-
taneously, each Information Object (IO) (i.e., word, entity,
term, concept, phrase, proposition, sentence, paragraph,
section, document, collection, etc.) encountered or produced
creates context for the other IOs in the same discourse. We
present a conceptual model of Agentized, Contextualized
Filters (ACFs)—agents that identify an appropriate context
for an information object and then actively fetch and filter
relevant information concerning the information object in
other information sources the user has access to. We
illustrate the use of ACFs in a prototype knowledge
management system called ViviDocs.

Information Management
Developing technology for information management (IM)
is a challenge because our systems cannot be based on the
perfection of any single function—such as superior
information retrieval, for example—but rather must derive
their usefulness from an interaction of many functions.
Effective IM will depend on the integration (and exploita-
tion) of models of (1) the user, (2) the context, and (3) the
application (or information purpose) with (4) the
processing of source data. Integration will be the dominant
factor in making information management systems useful.
To aid such integration, we seek to mobilize information in
the user’s environment.

IM tasks are highly contextualized, highly linked to other
tasks and related information—never tasks in isolation.
Every time a user engaged in work reads or writes, the user
spontaneously generates new information needs: to
understand the text he or she is reading or to supply more
substance to the arguments he or she is creating.
Simultaneously, each Information Object (IO)—word,
entity, term, concept, phrase, proposition, sentence,
paragraph, section, document, collection, etc.—encoun-
tered or produced creates context for the other IOs in the
same discourse. An effective IM system will automatically
link varieties of such IOs, dynamically preparing answers
to implicit information needs.

Copyright © 2003, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

To this end, rather than focus on a system that performs a
single “end-to-end” function—processing a request for in-
formation or finding “similar” documents or even
“answering a question”—we have been focusing on the
critical components of a system (which we call
“ViviDocs”) that operates behind more ordinary user tasks,
such as reading messages or writing reports. These tasks
are not, explicitly, directed at finding information. But
when performed in the workplace, these tasks continually
generate new information needs; and to address these, we
require a system that can ground a document in a structured
web of authoritative information.

Agentized, Contextualized Filters
In ViviDocs, while a person reads or writes a text (an e-
mail message; a report), the components of the text are
continually analyzed into candidate IOs. A variety of
agents are generated for each new IO. These agents
identify an appropriate (typically local) context for the
IO—represented by other text or information in the user’s
environment—and then actively fetch and filter relevant
information concerning the IO in information sources the
user has access to. We call such agents “Agentized,
Contextualized Filters” (ACFs). They are agents in the
sense that they operate autonomously and asynchronously;
they are triggered by some event; they use their own data;
and they perform specific functions on the data; and they
adjust to changing conditions, potentially learning from the
user’s behavior (Genesereth and Ketchpel 1994). They are
contextualized because they are anchored to specific IOs in
contexts of use.

A Conceptual Model of ACFs
We define an ACF as a function that links one information
object (as anchor) with another information object (output),
taking into account the context of the task and the context
of the user’s work environment. Formally, we define an
ACF as:

),,,,,,,,(iiiiiiiiii FTCUHSRPACF θ

where (for time/instance i) Pi represents the feature profile
of the information object, Ri, the associated knowledge
resources, Si, the target sources, iθ , the threshold, Hi, the
history lists, Ui, the utility function for the user, Ci, the

From: AAAI Technical Report SS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

processing context, Ti, the triggering condition that
activates the agent, and Fi, the response function and
format. We elaborate on each of these factors below.

Profile (Pi). The Profile is a representation of the
information object based on its textual content. For
example, in an information retrieval system, a profile
representing an IO (e.g., a document or paragraph) might
consist of a list of terms with associated weights to reflect
their usages in the document or with respect to a document
collection.

Resource (Ri). Resource refers to language resources (e.g.,
stop words, grammar, lexicons, etc.), knowledge resources
(e.g., abstract lexical-semantic types, taxonomies or
classification schemata, semantic networks, inference rules,
etc.), and statistical models (e.g., term frequency and
distribution counts, language models, etc.) used for
processing.

Source (Si). Source refers to the target or available
information sources, accessible to the user or to the agent,
in which responses to information needs may be found. In
a workgroup, this might include all the user’s files and the
accessible files of the members of the user’s team or
department. In a general business setting, this might
include the contents of the company intranet, extranet, and,
selectively, the internet, as well as the user’s personal files.

History (Hi). History consists of lists of information
objects (and perhaps “scores”) that have been generated by
previous actions of ACFs. For example, in information
retrieval with user feedback, the initial ranked list of
documents considered as relevant by the system can be
regarded as the history for the next round of retrieval with
additional user feedback.

Threshold (iθ). A threshold is used to control the cut-off
points in decision making. Thresholds can be absolute
numbers (e.g., the top 100 documents or passages),
similarity scores, or confidence scores applied to retrieved
information.

Utility (Ui). Utility is used to measure and rank system
outputs based on the benefits they produce for the user or
on the degree to which they satisfy the user’s information
needs minus the associated costs. Such measures are
commonly used in information filtering and are typically
calculated from an explicit or implicit statement of the
tolerance for “noise” (the ratio of true-positive to false-
positive responses) in the output.

Context (Ci). Context provides additional information that
can be associated with the profile. While this concept is
inherently open-ended (and subject to overuse), we restrict
it to information that can be determined operationally by
the system. We distinguish at least three kinds of context:
(a) global context, (b) local context, and (c) focus. In an
IR-like action anchored to a specific IO (e.g., word or
phrase), the global context might be the document in which
the IO occurs; the local context the paragraph; the focus the
sentence (essentially, the proposition expressed).

Consider, for example, the following passage in a text on
the German military campaign in the Soviet Union during
World War II:

The Battle of Stalingrad represented a major turning
point for the Germany Army. The German general
Paulus was out-foxed by the Russian Generals by
being drawn into the city. The Russians eventually
wore the Germans down, cut off their supply lines,
and made retreat impossible.

The simple IO corresponding to “Paulus” has several
constraining contexts. The global context establishes
Paulus as a German general in WWII. Local context relates
specifically to his participation in the battle of Stalingrad.
Focus involves his particular role in the event, namely,
being “out-foxed” by the Russian generals. If we imagine
stepping through the document and selecting each such IO
(e.g., person-name reference) in sequence, we can see that
the general context is stable, and does not need to be
updated as we move from IO to IO; the local will change
frequently, from passage to passage; and focus will vary
from sentence to sentence. If the user were writing a text,
we could imagine focus changing quite dynamically, even
as the user wrote a new sentence or deleted an old one.

User profiles and work-tasks can be treated as another
source of context. On projects, the current set of documents
that a user is working on or has access to may supply the
global context, the specific document in which the
information object is found can be the local context, and
the immediate vicinity of the IO can be the focus.

Trigger (Ti). Triggers activate the ACFs. The action
associated with opening a document or beginning to
compose a message could launch a battery of ACFs. Under
a GUI, triggers can take the form of highlighting, typing,
clicking, etc. For example, every time the user types a full
stop, an ACF can be triggered on the most recently
completed sentence. Likewise ACFs could be triggered
every twenty-four hours, updating the information that they
associate with the IOs they are attached to.

Function (Fi). Function specifies the relation that is to be
established between the IO and other information by the
ACF, including the format for extracting or presenting such
information. The function might be as simple as
“retrieval”—finding a rank-ordered list of documents or
passages—or “answer” (a simple sentence) in response to
an implicit question. But the function might also be
considerably more complex, such as establishing the
background facts that support the proposition that the IO
asserts. Functions have associated presentation require-
ments or formats. Formats typically require that a set of
(possibly contrastive) information be developed, such as
the ranked list of responses to a query, or clusters of
passages that each represents different senses of a response.
More ambitious combinations of functions and formats
might involve providing the user with a sense of the
structure of the space of answers (via topic modeling,
perhaps (Evans et al. 2002)); or the location of centers of

importance (via semantic hubs and authorities, perhaps); or
of related topical "regions" (via semantic-space abstrac-
tions).

ACF Parameters
Generally, of course, parameters of an ACF interact with
each other. For example, our model of the user affects
utility. If the user is an analyst who already knows a great
deal about a topic, then we probably want to maximize the
novelty aspect of any information we link to the user’s
work and discount the information already in the user’s
background (files, past work, workgroup, etc.). On the
other hand, even in the case of a user whose “normal” type
is well understood, based on the user’s response to infor-
mation or changing assignments, we may need to update or
revise the user model and other parameters frequently.

The issue of parameter interaction and calibration would
seem to doom the model, especially if one considers the
need to adapt to specific users over time: the “training”
problem could be daunting. However, though parameters
can vary quite widely in theory, we observe that, for many
practical application types, the actual values of parameters
may be quite limited. In short, in practical use, only a few
of the parameters will vary freely and these will over-
whelmingly assume only a few possible values.

As an illustration, consider one of the most general
functions an ACF can perform: association—finding
relevant related material. Note that, while this might be
implemented as a simple IR task, taking the text of a
document as a query and searching available external
sources, the proper association of information to a
document is not a trivial matter. For example, a long
document, taken as a query, will typically give high rank to
documents (responses) that share terms with its dominant
(high-frequency/low-distribution) terms. If the external
sources are large, it is likely that virtually all the top-ranked
responses will be biased to the “summary” or “centroid”
sense of the document. Thus, in order to insure that all the
parts of the document are properly represented, an associ-
ation process should formulate many separate queries from
the text of the document and merge results in a fashion that
insures that all parts will be represented in “high-ranking
responses.” An ACF that performs such a task on “start
up” (when a document is opened, for example) might well
follow a standard procedure to decompose the document
into sequences of passages (each serving as a source of a
query (P)), use default resources for term extraction (R) on
each passage of approximately paragraph size, and target a
default large external source (S). Such an ACF might
ignore context (C) and history (H), since the document
itself is term rich and the user’s session is just beginning,
being triggered (T) upon opening the document. The
function to be performed—in this case, multi-pass IR (F)—
can be specified to establish a local cache of material that
will be of high value if the user wants to explore topics or
answer questions that arise in reading the text. Thus, the
only open questions relate to what the operational
interpretation of utility (U) and threshold (θ) should be. In

this regard, a variety of heuristics may prove serviceable,
e.g., (1) insure that each passage brings back at least n
documents and all documents (up to a maximum, m) that
score above the threshold; (2) vary the threshold for each
passage based solely on the scoring potential of the passage
against the data being searched; (3) aim for a final cache of
documents in the range of 100 to 10,000. This might be
achieved by ranking the results of each passage-query using
normalized scoring—dividing the term score of each
responding document by the term score of the first-ranked
document—using a fixed threshold, e.g., 0.7 or 0.6
normalized score, and returning (and caching) the top n
responses and any other responses (up to the mth) that
score at or above threshold. Since we know how big the
document is (the count of the number of passages we
extract from it), we can set n and m to insure that the
resulting information cache is in the target range (e.g., 100
to 10,000 documents).

Figure 1 gives the parameter settings in schematic form
for a FindRelevantDocs ACF that can effect the association
function described above. Note that the actual implementa-
tion of an ACF such as this one requires a host of
supporting operations, such as document-structure process-
ing (e.g,, to find passages), term extraction (e.g., NLP to
identify the unit features of the profile for each passage), an
indexing system (for the external sources), and a filtering
or IR system with mechanisms for using reference data
(resources) to weight and score terms and for enforcing
thresholded retrieval. In addition, these must be integrated
with the system’s document-handling and editing functions
and GUI. However, if such supporting operations are
available, the interpretation of an ACF is straightforward
and the processing (e.g., multi-pass retrieval) can be made
quite efficient.

FindRelevantDocs

Profile: <terms in Passagei∈ Document,
 passage-count=I>
Resource: <English lexicon, English grammar>
Source: <specified Source>
History: <empty>
Threshold: <all documents d in Source to rank =

max(n,min(count(norm-score(d)≥0.7),m)),
 where n=100/I and m=10,000/I>
Utility: <not defined>
Context: <empty>
Trigger: <opening of Document>
Function: <retrieve documents from Source for each

Passagei ; cache results>

Figure 1: Schematic FindRelevantDocs ACF

The essential observation we make is that the number
and type of parameters in an ACF, itself, is not a barrier to
ACF development. In fact, we believe that the total
number of ACF types required in order to establish full and
rich functionality in a system such as ViviDocs probably is

less than fifty and possibly less than twenty five. Most of
these will have a small number of variable parameters in
practice, related directly to the type of function (e.g.,
retrieval vs. question-answering) the ACF performs.

Types of Information Needs and ACFs
The user’s information needs, whether implicit or explicit,
can be organized in a hierarchy of increasing complexity.
On the first level, we have implicit information needs that
are local to the information objects mentioned: factoids
(such as those supplied by current QA systems),
definitions, localizations, elaborations on information
objects mentioned. On a higher level, we have argumenta-
tive and discovery needs: authoritative evidence for facts,
recognition of arguments being made, finding support for
and against arguments, discovery of unmentioned inform-
ation (e.g., third parties associated with mentioned parties).

Corresponding to the types of information needs, we
design ACFs that generate a hierarchy of investigative
discourse answer types. These answers range from the
relatively simple to the very complex and include (a)
definitions (“factoids” such as who, what, when, where,
etc.), (b) descriptions (contextualized facts), (c) elabor-
ations (information that expands the background of a
contextualized fact), (d) explanations (a set or sequence of
facts that are causatively related to one another or the
anchor IO), (e) arguments (a set of facts that reflects
alternative points of view on the anchor IO), (f) synthesis (a
set of facts ordered to reflect steps in a logical process,
oriented to a goal or outcome), and (g) discovery (a set of
facts represnting new knowledge).

The simpler types of information needs, such as
definitions, descriptions, and elaborations, may be
addressed with functions such as small-passage-level IR or
question answering, especially if these can be targeted to
sources that are designed to provide answers—dictionaries;
encyclopaedias; gazetteers; phone and address books;
company directories; FAQ databases; etc. Even over free
texts, we can design processes that will retrieve a large
amount of information, cluster it (for organization), and
then order related information for complementary coverage
of a topic.

Clearly, some types of information needs may be very
difficult to satisfy (even if a human agent were addressing
them). In increasing order of difficulty, explanation,
argumentation, synthesis, and discovery are at the core of
higher intelligence. We do not imagine that there is a facile
solution to the challenges they pose. However, we do
believe that selective components of such functions can be
automated and will be useful even though they may be
primitive. For example, the explanation of an event or
conclusion may lie in antecedent information. The set of
such prior information, assembled, sorted for topic, and
chronologically presented to the user, may be precisely the
response required to support the user’s own, efficient
discovery of an underlying cause.

We believe that it is less important that an ACF perform
a specific function flawlessly than that an ACF perform a

function well enough to provide the user with information
that the user can use to complete the function efficiently.

Networks of Information
When ACFs are activated, they produce a network of
linked IOs, with the following features.

• Asymmetric The ACFs serve as links that process the
given information object and pass information from it to
another information object. For example, in ViviDocs, a
FindRelevantDocs filter starts with a query and returns a
list of ranked documents that are relevant to the query. A
FindDescriptionWhere filter starts with a question and
returns a list of documents with location names. In
general, the linking between two information objects is
directional from the anchor to the output.

• Dynamic Links are created virtually between informa-
tion objects that may themselves be in flux. The relation
of one object to another—which might serve as a basis
for establishing context, for example—can change as a
result of information being passed.

• Personalized The interpretation and processing of
information objects at linking time reflect the user’s
unique perspectives. For example, consider the in-
formation request “find documents about ATM.” In the
global context of a financial analyst, the appropriate
responses are likely to be related to Automated Teller
Machines (ATMs), while in the global context of a
network engineer, the appropriate responses are likely to
be related to Asynchronous Transfer Mode (ATM).

• Contextualized The interpretation and processing of
information objects at linking time depends upon context
scope. In the Battle-of-Stalingrad example, the informa-
tion returned about Paulus in the local context is dif-
ferent from the information about Paulus in the global
context, which tells us about the person and his career.

• Structured The information that is found by ACFs
naturally lends itself to a structured interpretation. For
example, different ACFs (anchored to different IOs in a
user’s document) may “touch” the same passages in
external sources or in the local store of information
associated with the document many times. Any such
individual passage is thus “validated” as useful to the
document by many independent agents; it can be
interpreted as an “authority” passage for the document.
Similarly, if an external document is the source of many
separate passages, each of which is referenced by
independent ACFs, that document can be regarded as
playing the role of a “hub” document. In short, the links
established by ACFs in the set of related documents and
passages create a quantifiable, network structure, directly
anchored to the user’s task.

The notion of linked information was already present in
the original MEMEX vision (Bush 1945). Many people
regard the World Wide Web as the practical realization of

MEMEX since the Web offers a concrete example of
linked IOs. Parts of a document may be linked to whole
other documents or parts of other documents; the link
lattice can be used to move from point to point along
pathways of relevance (or, at least, association). But the
network itself is relatively static and the types of links are
quite general—and must be created “by hand,” explicitly.
Thus the possible interpretations of information must be
decided at link time—by individuals creating links,
reflecting their unique perspectives. The possibility that
the “same” information might be linked to multiple, distinct
other objects, depending on the information needs of a
given user, cannot be accommodated. Such a static ap-
proach is limited. True “knowledge networks” will be
subject to constant change and “re-linking” of information,
dynamically. Thus, the original vision of MEMEX—as a
knowledge network—has not been realized in the Web.

Illustration and Use Case
We have implemented a prototype to study the behavior of
ACFs. The prototype only demonstrates a limited set of the
design features of ViviDocs. For instance, in the current
version, history lists produced at different times are not
maintained; only immediate history lists are available.
Also, there is no modeling of contexts at different times;
only the latest contexts are maintained. Utility has not been
incorporated (except in default settings).

ViviDocs is build on the back of the CLARIT informa-
tion-management system (Evans et al. 1991; Evans and
Lefferts 1995), which encompasses numerous IM functions
ranging over NLP, extraction (of typed entities), IR, filter-
ing, question answering, and concept clustering. In con-
trast, the current GUI supports little more than reading and
writing a text and is not integrated with other productivity
software, such as e-mail. We present examples below.

An Example Based on Writing
When the user begins to write a text, ViviDocs attempts to
anticipate the types of information the user may need.
Figure 2 shows the simple ViviDocs screen editor, in which
the user has just typed “Hostage taking has become a con-
temporary crisis.” The period at the end of the sentence is
a trigger (T) that activates several ACFs working in the
background. Here the IO is by default the new text
“hostage taking has become a contemporary crisis.” The
profile (P) for this IO is represented as a vector of terms
that have been extracted using CLARIT NLP, which uses
lexicons and grammars to identify linguistically meaningful
units (R) from text and also uses a reference database (R)
to obtain occurrence (distribution) statistics. The following
list shows the terms and their distribution statistics:

contemporary crisis: 0
hostage taking: 22
hostage: 587
contemporary: 2387
crisis: 4149
taking: 12042

The FindRelevantDocs ACF uses this information to create
a query over an available source (S), a collection of AP
newswire articles. The threshold (θ) is set to retrieve the
top 100 relevant documents. The response is cached as
new IOs (F). Both the history list and the context are
initially empty.

Other ACFs begin to work on the cached IOs as soon as
they are available. Each of these ACFs performs a spec-
ified function, using the IOs in the text as anchors. If the
user wants to see different factual aspects of the topics that
have been fetched in the background, he right-clicks the
mouse and gets a menu of the set of ACFs that have been
activated (Figure 3). Selecting the Description→→→→Where
menu item displays the responses produced by the Find-
DescriptionWhere filter (Figure 4). The FindDescription-
Where filter reformulates the original written text as a
question, and produces documents relevant to the question
by specifically finding information related to locations. The
additional resources (R) it exploits include resources for
extracting locative entities. Now, the history list (H)
contains the ranked documents returned by the
FindRelevantDocs filter, which serves as local context for
the locations.

Figure 2: The editor screen of ViviDocs

Figure 3: Menu for specifying results from ACFs

Figure 4: Responses of the FindDescriptionWhere filter

Figure 5: Updated responses of FindDescriptionWhere

After the user browses through passages on hostage

taking in different locations, he wants to know more about
the hijacking of the TWA jet from Athens to Beirut in June
1985. So he cuts the text “The TWA jet was hijacked to
Beirut on a flight from Athens in June 1985” from the
results form and pastes it to the original editor. High-
lighting (T) of the new text in addition to the original text
updates the linking maintained by the ACFs. Now selecting
the Description→→→→Where menu item returns passages that
discuss the hijacking of the TWA jet specifically (Figure
5).

The parameters used in the two ACFs discussed above
are given in Figures 6 and 7. Note that information
passages (IO2) created by the first ACF (FindRelevantDocs)
are in the history list and serve as the appropriate task
context for future use. The retrieved passages are indexed
into a local database (D2), which subsequently is the source
used by the second ACF (FindDescriptionWhere). Upon
right-clicking of the mouse and selecting of the
Description→→→→Where option in the GUI, the FindDescription-
Where agent is activated and formulates the original IO as a
where question to extract factual answers from the source
(D2). Currently, instead of returning the exact factual
answers, the agent brings back passages that potentially
contain the correct answers.

FindRelevantDocs

Profile: <contemporary crisis: 0; hostage taking: 22;

hostage: 587; contemporary: 2387; crisis:
4149; taking: 12042>

Resource: <English lexicon, English grammar >
Source: <indexed AP88 database built with 3-sentence

passages>
History: <empty>
Threshold: <N=100>
Utility: <not defined>
Context: <empty>
Trigger: <typing of ”.”>
Function: <retrieval ; caching (=IO2)>
Figure 6: Instantiated FindRelevantDocs ACF

FindDescriptionWhere

Profile: <contemporary crisis: 0; hostage taking: 22;

hostage: 587; contemporary: 2387; crisis:
4149; taking: 12042>

Resource: <English lexicon, English grammar >
Source: <indexed database built based on IO2>
History: <IO2>
Threshold: <N=10>
Utility: <not defined>
Context: <IO2>
Trigger: <mouse click and menu selection>
Function: <answer-where>
Figure 7: Instantiated FindDescriptionWhere ACF

An Example Based on Reading
When a user begins to read a document in the current
version of ViviDocs, the system segments the document
into passages (paragraphs) and the FindRelevantDocs ACF
polls external sources for information that is related to the
document, as described above. The returned passages/doc-
uments constitute an information repository that can
subsequently be used by other ACFs to find more detailed
information. These other ACFs proceed through the
document, passage by passage, and attempt to perform their
respective functions for each IO they encounter. In such
cases, the local context will be the passage itself and the
focus will be the sentence or proposition in which the IO is
located. At any time, if the user selects an IO or a local
context, the system is prepared to return the information
that has been found by the ACFs that operated on that IO.
Typically, this results in sets of information that reflect
multiple perspectives on the IO.

In the case illustrated in Figure 8, the user has opened an
AP-newswire document on Bush’s presidential campaign
(in 1988). The article notes that the Iran-Contra affair and
the associated indictments could be a liability for Bush. If
the user wants to know more about who was involved in the
Iran-Contra scandal, the user can activate the
Description→→→→Who filter, which brings back passages with
the relevant entities highlighted, as shown in Figure 9. For

this ACF, the highlighted entities include person names and
organization names.

Figure 8: Document opened for reading in ViviDocs

Figure 9: ACF responses relating to “Who”

Note on Details of Functionality
To summarize, in our current implementation, for both the
reading and writing tasks in Vividocs, the ACFs are based
heavily on two IM functions: retrieval/filtering and
question answering. The retrieval/filtering ACFs use
information objects (e.g., a sentence, a passage, or a whole
document) to bring back associated passages from user-
selected databases. The returned passages together serve
as an information repository and context for a battery of
other ACFs that establish relationships (such as definitions,
description, evidence) between information objects in the
user’s document and the external sources.

The ACFs that establish the description relationships rely
on a question answering system that utilizes typed entity
extraction and passage re-ranking. The QA system first
retrieves small-sized passages (e.g., 3-sentence passages in
our demo) that potentially contain the factual answers that

are of interest to the user. These passages are then re-
ranked taking into account the extracted entities associated
with the user’s interests (the selected aspect) and the
retrieval scores. For example, if the user is interested in the
who aspect of a particular topic, the FindDescriptionWho
filter will rank higher the relevant passages with person and
organization names. The extracted entity types in the
current system include person names, organization/office
names, country names, place names, time, currency, and
numerical values.

Challenges for Research
Various attempts at developing IM systems such as
ViviDocs have been proposed and attempted over the past
decade. In general, the central themes of such work have
involved the problems of (1) managing or exploiting
context or (2) anticipating user’s needs.

With regard to capturing context, much work has focused
on improving context for single queries, either explicitly or
implicitly. People often make context explicit, as when they
type additional terms to help disambiguate an information
need. For example, if a user is looking for a personal
homepage on the web, he or she could contextualize or
constrain the query by adding the word “homepage” to the
name of the person in the query. This will substantially
improve the relevance of the information retrieved. Web
search engine such as Google.com are increasingly relying
on linguistic techniques, such as entity extraction, to
provide more context for short queries.

Another attempt to capture context has been the
development of niche browsers that focus on providing
specific types of information such as research reports or
stock prices. An example of such a browser is provided by
ResearchIndex.com whose inherent implicit context (target
domain) is research papers. Other examples include
FligDog.com (for jobs) and HPSearch.com (for computer
scientists).

A number of document-centric approaches to capturing
context have been proposed in the literature. Generally,
most approaches try to capture context from the documents
that are currently being viewed or edited by the user. One
such system is the Watson system (Budzik and Hammond
2000). Watson attempts to model the context of user infor-
mation needs based on the content of documents being
edited in Microsoft Word or viewed in Internet Explorer.
The documents that users are editing or browsing are
analyzed by a heuristic term-weighting algorithm, which
aims to identify words that are indicative of the content of
the documents. Information such as font size is also used to
weight words. If a user enters an explicit query, Watson
modifies the query based on the content of the user’s
current document and forwards the modified query to web
search engines, thus automatically adding context
information to the web search. Thus, in the Watson system,
though the user is required to compose the query, the
system derives constraining context automatically.

Watson’s mode of operation is similar to the
Remembrance Agent (Rhodes and Stamer 1996; Rhodes

and Maes 2000), which indexes specified files, such as
email messages and research papers, and continually
searches for related documents while a user edits a docu-
ment in the Emacs editor.

Recently, a number of new approaches to IM have been
proposed based upon anticipating the information needs of
users. The Document Souls System (Shanahan and
Grefenstette 2001) is designed to annotate documents
actively with various types of related information that is
available on the internet or an intranet. Document Souls
specifically tries to anticipate the information needs of a
user. When a document is opened, it is associated with a
“personality” (i.e., a collection of information services and
lexicons). This personality then identifies information
objects in the current document, which are subsequently
annotated with links to other related information that may
help the user. The text of the information object, the
surrounding context, along with global information such as
the topic of the document or the surrounding subdocument
is used to construct queries that are submitted to various
information sources (e.g., databases; folders; automatically
selected regions of the classification schema of an internet
search engine; etc.). This process of annotation is
performed periodically.

Another example of an anticipatory system is
Autonomy’s Kenjin program (www.kenjin.com). Based on
the documents a user is reading or editing, Kenjin
automatically suggests additional content it derives from
from the web or local files.

ViviDocs clearly follows in the tradition of such past
efforts at extending the relevance and functionality of IM
systems. However, ViviDocs attempts to generalize the
model of relations that a document can have to external
information sources and implements a number of specific
functions, such as question answering and adaptive filter-
ing, that go beyond simple information retrieval. ACFs are
explicitly designed both to promote multifaceted
associations among information objects and also to
facilitate the interaction of filers based on feedback and
modifications of context.

Though the current set of ACFs is limited, the ViviDocs
system demonstrates novel functionality. Even in the
modest prototype, one can see surprising effects. Our
future work will focus on extending the number and variety
of ACFs, completing the integration of advanced IM proc-
essing into the system, and refining the model of the user,
the work group, and the network of linked information
generated via ACF actions. Our challenge is to bring the
system to operational completion and to begin experiments
to test the hypothesis that ACFs can make tasks more
productive and efficient and can support users in the most
creative elements of their work—discovery and integration
of new knowledge.

Acknowledgements
We thank three anonymous reviewers for their comments
on an earlier version of this paper and for their constructive
suggestions for improvements. The authors remain solely

responsible for any deficiencies in the work and in the
interpretation of the good advice of others.

References
Budzik, J., and Hammond, K.J. 2000. User interactions
with everyday applications as context for just-in-time
information access. In Proceedings of the 2000
International Conference on Intelligent User Interfaces,
New Orleans, Louisiana: ACM Press.

Bush, V. 1945. As we may think. Atlantic Monthly, 176(1)
(Jul):101−108.

Evans, D.A.; Ginther-Webster, K.; Hart, M.; Lefferts, R.G.;
and Monarch, I.A. 1991. Automatic Indexing Using Selec-
tive NLP and First-Order Thesauri. In A. Lichnerowicz
(Editor), Proceedings of RIAO '91. Amsterdam, NL:
Elsevier, 624–644.

Evans, D.A.; Grefenstette, G.; Shanahan, J.G.; Sheftel,
V.M.; Qu, Y.; and Hull, D.A. 2002. Modeling QA as
investigative discourse: creating networks of functionally-
linked information objects. ARDA AQUAINT Workshop,
Monterey, California.

Evans, D.A., and Lefferts, R.G. 1995. CLARIT–TREC
Experiments. Information Processing and Management,
31(3):385–395.

Evans, D.A.; Shanahan, J.G.; Xiang, T.; Roma, N.; Stoica,
E.; Sheftel, V.M.; Montgomery, J.; Bennett, J.; Fujita, S.;
and Grefenstette, G. 2002. Topic-specific optimization and
structuring. In E.M. Voorhees and D.K. Harman (editors),
The Tenth Text REtrieval Conference (TREC-2001). NIST
Special Publication 500-250. Washington, DC: U.S.
Government Printing Office, 132–141.

Genesereth, M.R., and Ketchpel, S.P. 1994. Software
agents. Communication of the ACM, 37(7).

Rhodes, B.J., and Maes, P. 2000. Just-in-time information
retrieval agents. IBM Systems Journal (special issue on the
MIT Media Laboratory), 39(3&4): 685-704.

Rhodes, B.J., and Starner, T. 1996. Remembrance Agent: a
continuously running automated information retrieval
system. In Proceedings of the First International Confe-
rence on the Practical Application of Intelligent Agents
and Multi Agent Technology, 487–495.

Shanahan, J.G., and Grefenstette; G. 2001. Meta-document
and method of managing meta-documents. European Patent
EP1143356. Pending (Filing Date: April 4, 2001.)

Zhai, C.; Jansen, P.; Stoica, E.; Grot, N.; and Evans, D.A.
1999. Threshold calibration in CLARIT adaptive filtering.
In E.M. Voorhees and D.K. Harman (editors), The Seventh
Text REtrieval Conference (TREC-7). NIST Special
Publication 500-242. Washington, DC: U.S. Government
Printing Office, 149–156.

