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Abstract 
Every time a user engaged in work reads or writes, the user 
spontaneously generates new information needs: to 
understand the text he or she is reading or to supply more 
substance to the arguments he or she is creating. Simul-
taneously, each Information Object (IO) (i.e., word, entity, 
term, concept, phrase, proposition, sentence, paragraph, 
section, document, collection, etc.) encountered or produced 
creates context for the other IOs in the same discourse. We 
present a conceptual model of Agentized, Contextualized 
Filters (ACFs)—agents that identify an appropriate context 
for an information object and then actively fetch and filter 
relevant information concerning the information object in 
other information sources the user has access to. We 
illustrate the use of ACFs in a prototype knowledge 
management system called ViviDocs. 
 

Information Management  
Developing technology for information management (IM) 
is a challenge because our systems cannot be based on the 
perfection of any single function—such as superior 
information retrieval, for example—but rather must derive 
their usefulness from an interaction of many functions.  
Effective IM will depend on the integration (and exploita-
tion) of models of (1) the user, (2) the context, and (3) the 
application (or information purpose) with (4) the 
processing of source data. Integration will be the dominant 
factor in making information management systems useful. 
To aid such integration, we seek to mobilize information in 
the user’s environment. 

IM tasks are highly contextualized, highly linked to other 
tasks and related information—never tasks in isolation.  
Every time a user engaged in work reads or writes, the user 
spontaneously generates new information needs: to 
understand the text he or she is reading or to supply more 
substance to the arguments he or she is creating. 
Simultaneously, each Information Object (IO)—word, 
entity, term, concept, phrase, proposition, sentence, 
paragraph, section, document, collection, etc.—encoun-
tered or produced creates context for the other IOs in the 
same discourse. An effective IM system will automatically 
link varieties of such IOs, dynamically preparing answers 
to implicit information needs. 
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To this end, rather than focus on a system that performs a 
single “end-to-end” function—processing a request for in-
formation or finding “similar” documents or even 
“answering a question”—we have been focusing on the 
critical components of a system (which we call 
“ViviDocs”) that operates behind more ordinary user tasks, 
such as reading messages or writing reports. These tasks 
are not, explicitly, directed at finding information. But 
when performed in the workplace, these tasks continually 
generate new information needs; and to address these, we 
require a system that can ground a document in a structured 
web of authoritative information. 

 

Agentized, Contextualized Filters 
In ViviDocs, while a person reads or writes a text (an e-
mail message; a report), the components of the text are 
continually analyzed into candidate IOs.  A variety of 
agents are generated for each new IO.  These agents 
identify an appropriate (typically local) context for the 
IO—represented by other text or information in the user’s 
environment—and then actively fetch and filter relevant 
information concerning the IO in information sources the 
user has access to. We call such agents “Agentized, 
Contextualized Filters” (ACFs). They are agents in the 
sense that they operate autonomously and asynchronously; 
they are triggered by some event; they use their own data; 
and they perform specific functions on the data; and they 
adjust to changing conditions, potentially learning from the 
user’s behavior (Genesereth and Ketchpel 1994).  They are 
contextualized because they are anchored to specific IOs in 
contexts of use. 
  
A Conceptual Model of ACFs 
We define an ACF as a function that links one information 
object (as anchor) with another information object (output), 
taking into account the context of the task and the context 
of the user’s work environment. Formally, we define an 
ACF as: 
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where (for time/instance i) Pi represents the feature profile 
of the information object, Ri, the associated knowledge 
resources, Si, the target sources, iθ , the threshold, Hi, the 
history lists, Ui, the utility function for the user, Ci, the 
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processing context, Ti, the triggering condition that 
activates the agent, and Fi, the response function and 
format. We elaborate on each of these factors below. 

Profile (Pi). The Profile is a representation of the 
information object based on its textual content. For 
example, in an information retrieval system, a profile 
representing an IO (e.g., a document or paragraph) might 
consist of a list of terms with associated weights to reflect 
their usages in the document or with respect to a document 
collection. 

Resource (Ri).  Resource refers to language resources (e.g., 
stop words, grammar, lexicons, etc.), knowledge resources 
(e.g., abstract lexical-semantic types, taxonomies or 
classification schemata, semantic networks, inference rules, 
etc.), and statistical models (e.g., term frequency and 
distribution counts, language models, etc.) used for 
processing. 

Source (Si). Source refers to the target or available 
information sources, accessible to the user or to the agent, 
in which responses to information needs may be found.  In 
a workgroup, this might include all the user’s files and the 
accessible files of the members of the user’s team or 
department.  In a general business setting, this might 
include the contents of the company intranet, extranet, and, 
selectively, the internet, as well as the user’s personal files. 

History (Hi). History consists of lists of information 
objects (and perhaps “scores”) that have been generated by 
previous actions of ACFs.  For example, in information 
retrieval with user feedback, the initial ranked list of 
documents considered as relevant by the system can be 
regarded as the history for the next round of retrieval with 
additional user feedback.   

Threshold ( iθ ).  A threshold is used to control the cut-off 
points in decision making. Thresholds can be absolute 
numbers (e.g., the top 100 documents or passages), 
similarity scores, or confidence scores applied to retrieved 
information. 

Utility (Ui). Utility is used to measure and rank system 
outputs based on the benefits they produce for the user or 
on the degree to which they satisfy the user’s information 
needs minus the associated costs. Such measures are 
commonly used in information filtering and are typically 
calculated from an explicit or implicit statement of the 
tolerance for “noise” (the ratio of true-positive to false-
positive responses) in the output. 

Context (Ci).  Context provides additional information that 
can be associated with the profile. While this concept is 
inherently open-ended (and subject to overuse), we restrict 
it to information that can be determined operationally by 
the system. We distinguish at least three kinds of context: 
(a) global context, (b) local context, and (c) focus.  In an 
IR-like action anchored to a specific IO (e.g., word or 
phrase), the global context might be the document in which 
the IO occurs; the local context the paragraph; the focus the 
sentence (essentially, the proposition expressed). 

Consider, for example, the following passage in a text on 
the German military campaign in the Soviet Union during 
World War II: 

The Battle of Stalingrad represented a major turning 
point for the Germany Army.  The German general 
Paulus was out-foxed by the Russian Generals by 
being drawn into the city.  The Russians eventually 
wore the Germans down, cut off their supply lines, 
and made retreat impossible. 

The simple IO corresponding to “Paulus” has several 
constraining contexts. The global context establishes 
Paulus as a German general in WWII. Local context relates 
specifically to his participation in the battle of Stalingrad. 
Focus involves his particular role in the event, namely, 
being “out-foxed” by the Russian generals. If we imagine 
stepping through the document and selecting each such IO 
(e.g., person-name reference) in sequence, we can see that 
the general context is stable, and does not need to be 
updated as we move from IO to IO; the local will change 
frequently, from passage to passage; and focus will vary 
from sentence to sentence. If the user were writing a text, 
we could imagine focus changing quite dynamically, even 
as the user wrote a new sentence or deleted an old one.  

User profiles and work-tasks can be treated as another 
source of context. On projects, the current set of documents 
that a user is working on or has access to may supply the 
global context, the specific document in which the 
information object is found can be the local context, and 
the immediate vicinity of the IO can be the focus.  

Trigger (Ti). Triggers activate the ACFs. The action 
associated with opening a document or beginning to 
compose a message could launch a battery of ACFs. Under 
a GUI, triggers can take the form of highlighting, typing, 
clicking, etc. For example, every time the user types a full 
stop, an ACF can be triggered on the most recently 
completed sentence. Likewise ACFs could be triggered 
every twenty-four hours, updating the information that they 
associate with the IOs they are attached to. 

Function (Fi).  Function specifies the relation that is to be 
established between the IO and other information by the 
ACF, including the format for extracting or presenting such 
information.  The function might be as simple as 
“retrieval”—finding a rank-ordered list of documents or 
passages—or “answer” (a simple sentence) in response to 
an implicit question.  But the function might also be 
considerably more complex, such as establishing the 
background facts that support the proposition that the IO 
asserts. Functions have associated presentation require-
ments or formats.  Formats typically require that a set of 
(possibly contrastive) information be developed, such as 
the ranked list of responses to a query, or clusters of 
passages that each represents different senses of a response.  
More ambitious combinations of functions and formats 
might involve providing the user with a sense of the 
structure of the space of answers (via topic modeling, 
perhaps (Evans et al. 2002)); or the location of centers of 



importance (via semantic hubs and authorities, perhaps); or 
of related topical "regions" (via semantic-space abstrac-
tions). 

 
ACF Parameters 
Generally, of course, parameters of an ACF interact with 
each other. For example, our model of the user affects 
utility. If the user is an analyst who already knows a great 
deal about a topic, then we probably want to maximize the 
novelty aspect of any information we link to the user’s 
work and discount the information already in the user’s 
background (files, past work, workgroup, etc.). On the 
other hand, even in the case of a user whose “normal” type 
is well understood, based on the user’s response to infor-
mation or changing assignments, we may need to update or 
revise the user model and other parameters frequently. 

The issue of parameter interaction and calibration would 
seem to doom the model, especially if one considers the 
need to adapt to specific users over time: the “training” 
problem could be daunting.  However, though parameters 
can vary quite widely in theory, we observe that, for many 
practical application types, the actual values of parameters 
may be quite limited. In short, in practical use, only a few 
of the parameters will vary freely and these will over-
whelmingly assume only a few possible values. 

As an illustration, consider one of the most general 
functions an ACF can perform: association—finding 
relevant related material.  Note that, while this might be 
implemented as a simple IR task, taking the text of a 
document as a query and searching available external 
sources, the proper association of information to a 
document is not a trivial matter.  For example, a long 
document, taken as a query, will typically give high rank to 
documents (responses) that share terms with its dominant 
(high-frequency/low-distribution) terms.  If the external 
sources are large, it is likely that virtually all the top-ranked 
responses will be biased to the “summary” or “centroid” 
sense of the document.  Thus, in order to insure that all the 
parts of the document are properly represented, an associ-
ation process should formulate many separate queries from 
the text of the document and merge results in a fashion that 
insures that all parts will be represented in “high-ranking 
responses.”  An ACF that performs such a task on “start 
up” (when a document is opened, for example) might well 
follow a standard procedure to decompose the document 
into sequences of passages (each serving as a source of a 
query (P)), use default resources for term extraction (R) on 
each passage of approximately paragraph size, and target a 
default large external source (S). Such an ACF might 
ignore context (C) and history (H), since the document 
itself is term rich and the user’s session is just beginning, 
being triggered (T) upon opening the document.  The 
function to be performed—in this case, multi-pass IR (F)—
can be specified to establish a local cache of material that 
will be of high value if the user wants to explore topics or 
answer questions that arise in reading the text.  Thus, the 
only open questions relate to what the operational 
interpretation of utility (U) and threshold (θ) should be.  In 

this regard, a variety of heuristics may prove serviceable, 
e.g., (1) insure that each passage brings back at least n 
documents and all documents (up to a maximum, m) that 
score above the threshold; (2) vary the threshold for each 
passage based solely on the scoring potential of the passage 
against the data being searched; (3) aim for a final cache of 
documents in the range of 100 to 10,000.  This might be 
achieved by ranking the results of each passage-query using 
normalized scoring—dividing the term score of each 
responding document by the term score of the first-ranked 
document—using a fixed threshold, e.g., 0.7 or 0.6 
normalized score, and returning (and caching) the top n 
responses and any other responses (up to the mth) that 
score at or above threshold.  Since we know how big the 
document is (the count of the number of passages we 
extract from it), we can set n and m to insure that the 
resulting information cache is in the target range (e.g., 100 
to 10,000 documents). 

Figure 1 gives the parameter settings in schematic form 
for a FindRelevantDocs ACF that can effect the association 
function described above.  Note that the actual implementa-
tion of an ACF such as this one requires a host of 
supporting operations, such as document-structure process-
ing (e.g,, to find passages), term extraction (e.g., NLP to 
identify the unit features of the profile for each passage), an 
indexing system (for the external sources), and a filtering 
or IR system with mechanisms for using reference data 
(resources) to weight and score terms and for enforcing 
thresholded retrieval.  In addition, these must be integrated 
with the system’s document-handling and editing functions 
and GUI.  However, if such supporting operations are 
available, the interpretation of an ACF is straightforward 
and the processing (e.g., multi-pass retrieval) can be made 
quite efficient.  
 
FindRelevantDocs 
 
Profile:   <terms in Passagei∈ Document, 
     passage-count=I> 
Resource:  <English lexicon, English grammar>  
Source:   <specified Source>  
History:  <empty> 
Threshold:  <all documents d in Source to rank = 

max(n,min(count(norm-score(d)≥0.7),m)), 
 where n=100/I and m=10,000/I> 
Utility:   <not defined> 
Context:   <empty> 
Trigger:   <opening of Document> 
Function:  <retrieve documents from Source for each 

Passagei ; cache results> 
 
Figure 1: Schematic FindRelevantDocs ACF 
 

The essential observation we make is that the number 
and type of parameters in an ACF, itself, is not a barrier to 
ACF development.  In fact, we believe that the total 
number of ACF types required in order to establish full and 
rich functionality in a system such as ViviDocs probably is 



less than fifty and possibly less than twenty five.  Most of 
these will have a small number of variable parameters in 
practice, related directly to the type of function (e.g., 
retrieval vs. question-answering) the ACF performs. 

 
Types of Information Needs and ACFs 
The user’s information needs, whether implicit or explicit, 
can be organized in a hierarchy of increasing complexity. 
On the first level, we have implicit information needs that 
are local to the information objects mentioned: factoids 
(such as those supplied by current QA systems), 
definitions, localizations, elaborations on information 
objects mentioned.  On a higher level, we have argumenta-
tive and discovery needs: authoritative evidence for facts, 
recognition of arguments being made, finding support for 
and against arguments, discovery of unmentioned inform-
ation (e.g., third parties associated with mentioned parties). 

Corresponding to the types of information needs, we 
design ACFs that generate a hierarchy of investigative 
discourse answer types.  These answers range from the 
relatively simple to the very complex and include (a) 
definitions (“factoids” such as who, what, when, where, 
etc.), (b) descriptions (contextualized facts), (c) elabor-
ations (information that expands the background of a 
contextualized fact), (d) explanations (a set or sequence of 
facts that are causatively related to one another or the 
anchor IO), (e) arguments (a set of facts that reflects 
alternative points of view on the anchor IO), (f) synthesis (a 
set of facts ordered to reflect steps in a logical process, 
oriented to a goal or outcome), and (g) discovery (a set of 
facts represnting new knowledge). 

The simpler types of information needs, such as 
definitions, descriptions, and elaborations, may be 
addressed with functions such as small-passage-level IR or 
question answering, especially if these can be targeted to 
sources that are designed to provide answers—dictionaries; 
encyclopaedias; gazetteers; phone and address books; 
company directories; FAQ databases; etc.  Even over free 
texts, we can design processes that will retrieve a large 
amount of information, cluster it (for organization), and 
then order related information for complementary coverage 
of a topic. 

Clearly, some types of information needs may be very 
difficult to satisfy (even if a human agent were addressing 
them).  In increasing order of difficulty, explanation, 
argumentation, synthesis, and discovery are at the core of 
higher intelligence.  We do not imagine that there is a facile 
solution to the challenges they pose.  However, we do 
believe that selective components of such functions can be 
automated and will be useful even though they may be 
primitive.  For example, the explanation of an event or 
conclusion may lie in antecedent information.  The set of 
such prior information, assembled, sorted for topic, and 
chronologically presented to the user, may be precisely the 
response required to support the user’s own, efficient 
discovery of an underlying cause. 

We believe that it is less important that an ACF perform 
a specific function flawlessly than that an ACF perform a 

function well enough to provide the user with information 
that the user can use to complete the function efficiently. 

 
Networks of Information 
When ACFs are activated, they produce a network of 
linked IOs, with the following features. 

• Asymmetric  The ACFs serve as links that process the 
given information object and pass information from it to 
another information object. For example, in ViviDocs, a 
FindRelevantDocs filter starts with a query and returns a 
list of ranked documents that are relevant to the query. A 
FindDescriptionWhere filter starts with a question and 
returns a list of documents with location names. In 
general, the linking between two information objects is 
directional from the anchor to the output. 

• Dynamic Links are created virtually between informa-
tion objects that may themselves be in flux. The relation 
of one object to another—which might serve as a basis 
for establishing context, for example—can change as a 
result of information being passed. 

• Personalized  The interpretation and processing of 
information objects at linking time reflect the user’s 
unique perspectives. For example, consider the in-
formation request “find documents about ATM.”  In the 
global context of a financial analyst, the appropriate 
responses are likely to be related to Automated Teller 
Machines (ATMs), while in the global context of a 
network engineer, the appropriate responses are likely to 
be related to Asynchronous Transfer Mode (ATM). 

• Contextualized  The interpretation and processing of 
information objects at linking time depends upon context 
scope. In the Battle-of-Stalingrad example, the informa-
tion returned about Paulus in the local context is dif-
ferent from the information about Paulus in the global 
context, which tells us about the person and his career. 

• Structured  The information that is found by ACFs 
naturally lends itself to a structured interpretation.  For 
example, different ACFs (anchored to different IOs in a 
user’s document) may “touch” the same passages in 
external sources or in the local store of information 
associated with the document many times.  Any such 
individual passage is thus “validated” as useful to the 
document by many independent agents; it can be 
interpreted as an “authority” passage for the document.  
Similarly, if an external document is the source of many 
separate passages, each of which is referenced by 
independent ACFs, that document can be regarded as 
playing the role of a “hub” document.  In short, the links 
established by ACFs in the set of related documents and 
passages create a quantifiable, network structure, directly 
anchored to the user’s task. 

The notion of linked information was already present in 
the original MEMEX vision (Bush 1945).  Many people 
regard the World Wide Web as the practical realization of 



MEMEX since the Web offers a concrete example of 
linked IOs. Parts of a document may be linked to whole 
other documents or parts of other documents; the link 
lattice can be used to move from point to point along 
pathways of relevance (or, at least, association).  But the 
network itself is relatively static and the types of links are 
quite general—and must be created “by hand,” explicitly.  
Thus the possible interpretations of information must be 
decided at link time—by individuals creating links, 
reflecting their unique perspectives.  The possibility that 
the “same” information might be linked to multiple, distinct 
other objects, depending on the information needs of a 
given user, cannot be accommodated. Such a static ap-
proach is limited.  True “knowledge networks” will be 
subject to constant change and “re-linking” of information, 
dynamically. Thus, the original vision of MEMEX—as a 
knowledge network—has not been realized in the Web. 
 

Illustration and Use Case 
We have implemented a prototype to study the behavior of 
ACFs. The prototype only demonstrates a limited set of the 
design features of ViviDocs. For instance, in the current 
version, history lists produced at different times are not 
maintained; only immediate history lists are available. 
Also, there is no modeling of contexts at different times; 
only the latest contexts are maintained. Utility has not been 
incorporated (except in default settings).  

ViviDocs is build on the back of the CLARIT informa-
tion-management system (Evans et al. 1991; Evans and 
Lefferts 1995), which encompasses numerous IM functions 
ranging over NLP, extraction (of typed entities), IR, filter-
ing, question answering, and concept clustering. In con-
trast, the current GUI supports little more than reading and 
writing a text and is not integrated with other productivity 
software, such as e-mail.  We present examples below. 

 
An Example Based on Writing 
When the user begins to write a text, ViviDocs attempts to 
anticipate the types of information the user may need. 
Figure 2 shows the simple ViviDocs screen editor, in which 
the user has just typed “Hostage taking has become a con-
temporary crisis.”  The period at the end of the sentence is 
a trigger (T) that activates several ACFs working in the 
background.  Here the IO is by default the new text 
“hostage taking has become a contemporary crisis.”  The 
profile (P) for this IO is represented as a vector of terms 
that have been extracted using CLARIT NLP, which uses 
lexicons and grammars to identify linguistically meaningful 
units (R) from text and also uses a reference database (R) 
to obtain occurrence (distribution) statistics. The following 
list shows the terms and their distribution statistics: 

contemporary crisis: 0 
hostage taking: 22 
hostage: 587 
contemporary: 2387 
crisis: 4149 
taking: 12042 

The FindRelevantDocs ACF uses this information to create 
a query over an available source (S), a collection of AP 
newswire articles. The threshold (θ) is set to retrieve the 
top 100 relevant documents.  The response is cached as 
new IOs (F). Both the history list and the context are 
initially empty. 

Other ACFs begin to work on the cached IOs as soon as 
they are available.  Each of these ACFs performs a spec-
ified function, using the IOs in the text as anchors. If the 
user wants to see different factual aspects of the topics that 
have been fetched in the background, he right-clicks the 
mouse and gets a menu of the set of ACFs that have been 
activated (Figure 3). Selecting the Description→→→→Where 
menu item displays the responses produced by the Find-
DescriptionWhere filter (Figure 4).  The FindDescription-
Where filter reformulates the original written text as a 
question, and produces documents relevant to the question 
by specifically finding information related to locations. The 
additional resources (R) it exploits include resources for 
extracting locative entities. Now, the history list (H) 
contains the ranked documents returned by the 
FindRelevantDocs filter, which serves as local context for 
the locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The editor screen of ViviDocs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Menu for specifying results from ACFs 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Responses of the FindDescriptionWhere filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Updated responses of FindDescriptionWhere 

 
After the user browses through passages on hostage 

taking in different locations, he wants to know more about 
the hijacking of the TWA jet from Athens to Beirut in June 
1985. So he cuts the text “The TWA jet was hijacked to 
Beirut on a flight from Athens in June 1985” from the 
results form and pastes it to the original editor. High-
lighting (T) of the new text in addition to the original text 
updates the linking maintained by the ACFs. Now selecting 
the Description→→→→Where menu item returns passages that 
discuss the hijacking of the TWA jet specifically (Figure 
5). 

The parameters used in the two ACFs discussed above 
are given in Figures 6 and 7.  Note that information 
passages (IO2) created by the first ACF (FindRelevantDocs) 
are in the history list and serve as the appropriate task 
context for future use. The retrieved passages are indexed 
into a local database (D2), which subsequently is the source 
used by the second ACF (FindDescriptionWhere). Upon 
right-clicking of the mouse and selecting of the 
Description→→→→Where option in the GUI, the FindDescription-
Where agent is activated and formulates the original IO as a 
where question to extract factual answers from the source 
(D2).  Currently, instead of returning the exact factual 
answers, the agent brings back passages that potentially 
contain the correct answers. 

FindRelevantDocs 
 
Profile:   <contemporary crisis: 0; hostage taking: 22; 

hostage: 587; contemporary: 2387; crisis: 
4149; taking: 12042> 

Resource:  <English lexicon, English grammar >  
Source:   <indexed AP88 database built with 3-sentence 

passages>  
History:   <empty> 
Threshold:  <N=100> 
Utility:   <not defined> 
Context:   <empty> 
Trigger:   <typing of ”.”> 
Function:  <retrieval ; caching (=IO2)> 
Figure 6: Instantiated FindRelevantDocs ACF 
 
FindDescriptionWhere 
 
Profile:   <contemporary crisis: 0; hostage taking: 22; 

hostage: 587; contemporary: 2387; crisis: 
4149; taking: 12042> 

Resource:  <English lexicon, English grammar >  
Source:   <indexed database built based on IO2> 
History:   <IO2> 
Threshold:  <N=10> 
Utility:   <not defined> 
Context:   <IO2> 
Trigger:   <mouse click and menu selection> 
Function:  <answer-where> 
Figure 7: Instantiated FindDescriptionWhere ACF 

 
An Example Based on Reading 
When a user begins to read a document in the current 
version of ViviDocs, the system segments the document 
into passages (paragraphs) and the FindRelevantDocs ACF 
polls external sources for information that is related to the 
document, as described above.  The returned passages/doc-
uments constitute an information repository that can 
subsequently be used by other ACFs to find more detailed 
information. These other ACFs proceed through the 
document, passage by passage, and attempt to perform their 
respective functions for each IO they encounter.  In such 
cases, the local context will be the passage itself and the 
focus will be the sentence or proposition in which the IO is 
located.  At any time, if the user selects an IO or a local 
context, the system is prepared to return the information 
that has been found by the ACFs that operated on that IO. 
Typically, this results in sets of information that reflect 
multiple perspectives on the IO.  

In the case illustrated in Figure 8, the user has opened an 
AP-newswire document on Bush’s presidential campaign 
(in 1988).  The article notes that the Iran-Contra affair and 
the associated indictments could be a liability for Bush. If 
the user wants to know more about who was involved in the 
Iran-Contra scandal, the user can activate the 
Description→→→→Who filter, which brings back passages with 
the relevant entities highlighted, as shown in Figure 9.  For 



this ACF, the highlighted entities include person names and 
organization names.   
 

 
Figure 8:  Document opened for reading in ViviDocs 
 

 
Figure 9:  ACF responses relating to “Who”  
 
Note on Details of Functionality 
To summarize, in our current implementation, for both the 
reading and writing tasks in Vividocs, the ACFs are based 
heavily on two IM functions: retrieval/filtering and 
question answering.  The retrieval/filtering ACFs use 
information objects (e.g., a sentence, a passage, or a whole 
document) to bring back associated passages from user-
selected databases.  The returned passages together serve 
as an information repository and context for a battery of 
other ACFs that establish relationships (such as definitions, 
description, evidence) between information objects in the 
user’s document and the external sources. 

The ACFs that establish the description relationships rely 
on a question answering system that utilizes typed entity 
extraction and passage re-ranking.   The QA system first 
retrieves small-sized passages (e.g., 3-sentence passages in 
our demo) that potentially contain the factual answers that 

are of interest to the user.  These passages are then re-
ranked taking into account the extracted entities associated 
with the user’s interests (the selected aspect) and the 
retrieval scores.  For example, if the user is interested in the 
who aspect of a particular topic, the FindDescriptionWho 
filter will rank higher the relevant passages with person and 
organization names.  The extracted entity types in the 
current system include person names, organization/office 
names, country names, place names, time, currency, and 
numerical values. 
 

Challenges for Research 
Various attempts at developing IM systems such as 
ViviDocs have been proposed and attempted over the past 
decade. In general, the central themes of such work have 
involved the problems of (1) managing or exploiting 
context or (2) anticipating user’s needs. 

With regard to capturing context, much work has focused 
on improving context for single queries, either explicitly or 
implicitly. People often make context explicit, as when they 
type additional terms to help disambiguate an information 
need. For example, if a user is looking for a personal 
homepage on the web, he or she could contextualize or 
constrain the query by adding the word “homepage” to the 
name of the person in the query. This will substantially 
improve the relevance of the information retrieved. Web 
search engine such as Google.com are increasingly relying 
on linguistic techniques, such as entity extraction, to 
provide more context for short queries.  

Another attempt to capture context has been the 
development of niche browsers that focus on providing 
specific types of information such as research reports or 
stock prices. An example of such a browser is provided by 
ResearchIndex.com whose inherent implicit context (target 
domain) is research papers. Other examples include 
FligDog.com (for jobs) and HPSearch.com (for computer 
scientists). 

A number of document-centric approaches to capturing 
context have been proposed in the literature. Generally, 
most approaches try to capture context from the documents 
that are currently being viewed or edited by the user. One 
such system is the Watson system (Budzik and Hammond 
2000).  Watson attempts to model the context of user infor-
mation needs based on the content of documents being 
edited in Microsoft Word or viewed in Internet Explorer. 
The documents that users are editing or browsing are 
analyzed by a heuristic term-weighting algorithm, which 
aims to identify words that are indicative of the content of 
the documents. Information such as font size is also used to 
weight words. If a user enters an explicit query, Watson 
modifies the query based on the content of the user’s 
current document and forwards the modified query to web 
search engines, thus automatically adding context 
information to the web search. Thus, in the Watson system, 
though the user is required to compose the query, the 
system derives constraining context automatically. 

Watson’s mode of operation is similar to the 
Remembrance Agent (Rhodes and Stamer 1996; Rhodes 



and Maes 2000), which indexes specified files, such as 
email messages and research papers, and continually 
searches for related documents while a user edits a docu-
ment in the Emacs editor.  

Recently, a number of new approaches to IM have been 
proposed based upon anticipating the information needs of 
users. The Document Souls System (Shanahan and 
Grefenstette 2001) is designed to annotate documents 
actively with various types of related information that is 
available on the internet or an intranet.  Document Souls 
specifically tries to anticipate the information needs of a 
user. When a document is opened, it is associated with a 
“personality” (i.e., a collection of information services and 
lexicons). This personality then identifies information 
objects in the current document, which are subsequently 
annotated with links to other related information that may 
help the user. The text of the information object, the 
surrounding context, along with global information such as 
the topic of the document or the surrounding subdocument 
is used to construct queries that are submitted to various 
information sources (e.g., databases; folders; automatically 
selected regions of the classification schema of an internet 
search engine; etc.). This process of annotation is 
performed periodically. 

Another example of an anticipatory system is 
Autonomy’s Kenjin program (www.kenjin.com). Based on 
the documents a user is reading or editing, Kenjin 
automatically suggests additional content it derives from 
from the web or local files. 

ViviDocs clearly follows in the tradition of such past 
efforts at extending the relevance and functionality of IM 
systems.  However, ViviDocs attempts to generalize the 
model of relations that a document can have to external 
information sources and implements a number of specific 
functions, such as question answering and adaptive filter-
ing, that go beyond simple information retrieval.  ACFs are 
explicitly designed both to promote multifaceted 
associations among information objects and also to 
facilitate the interaction of filers based on feedback and 
modifications of context. 

Though the current set of ACFs is limited, the ViviDocs 
system demonstrates novel functionality.    Even in the 
modest prototype, one can see surprising effects.  Our 
future work will focus on extending the number and variety 
of ACFs, completing the integration of advanced IM proc-
essing into the system, and refining the model of the user, 
the work group, and the network of linked information 
generated via ACF actions.  Our challenge is to bring the 
system to operational completion and to begin experiments 
to test the hypothesis that ACFs can make tasks more 
productive and efficient and can support users in the most 
creative elements of their work—discovery and integration 
of new knowledge.  
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