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Abstract

Algorithms for many complex computations assume that all the relevant data are available on a

single node of a computer network. In the emerging distributed and networked knowledge environments,

databases relevant for computations may reside on a number of nodes connected by a communication

network. These data resources cannot be moved to other network sites due to privacy, security, and size

considerations. The desired global computation must be decomposed into local computations to match

the distribution of data across the network. The capability to decompose computations must be general

enough to handle different distributions of data and different participating nodes in each instance of

the global computation. In this paper, we present a methodology wherein each distributed data source is

represented by an agent. Each such agent has the capability to decompose global computations into local

parts, for itself and for agents at other sites. The global computation is then performed by the agent either

exchanging some minimal summaries with other agents or travelling to all the sites and performing local

tasks that can be done at each local site. The objective is to perform global tasks with a minimum of

communication or travel by participating agents across the network.

1. Motivation

Most algorithms for complex computations have been designed for environments in which all relevant data
reside at a single node of a computer network. In the emerging networked knowledge environment, the
relevant data for many computations may reside on a number of geographically distributed databases that
are connected by communication networks. A common constraint in these situations is that the data cannot
be moved to other network sites due to security, size, privacy, and data ownership considerations. An
example of such a situation is we may need to compute decision trees, association rules, or some complex
statistical quantities using data from a census database, a diseases database, a labor statistics database, and
a few pollution databases located in ten different cities across the country. It is impossible to bring these
databases together and join them for performing some computations. Additionally, a new instance of some
computation may require data from a different set of participating nodes and databases.

Herein, we present a methodology and some algorithms in which each data source (a network node)
is represented by an agent. This agent knows all about its underlying database and can access any part of
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it, as shown in the schematic in Figure 1. If the computation does not require updates to databases, then
the agent also does not need an update privilege for its underlying data.
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Figure 1. Databases Represented by Agents.

A desired global computation, such as the need to induce a decision tree from underlying databases, is
conveyed to the agents of the participating sites. Each agent also knows about the other participating sites.
It then determines the local computations that it needs to perform, keeping in mind the constraints of shared
data with other sites and also the local results that it needs to share with other agents, in order for the
global result to evolve at either one of, or each of the participating agents. An alternative to communicating
with agents at other sites is that a single agent visits each of the participating sites and performs some
local computation at each site when it visits. Objectives of the agent’s design include minimization of
communication across the sites and enough generality of the formulation to permit agents to handle different
sets of participating sites and different patterns of knowledge-sharing across the participating nodes.

2. Integration of Distributed Data

In the situation modeled, here we consider n databases located at n different network sites, and all of them
together constitute the dataset D for the global computation. As an abstraction, we model the database

Di at each ith node by a relation containing a number of tuples.

The set of attributes contained in Di is represented by Xi . For any pair of relations, (Di and Dj ),

the corresponding sets Xi and Xj may have a set of shared attributes given by Sij . Since an arbitrary
number of independent, already existing, databases may be consulted for a computation, we cannot assume
any data normalization to have been performed for their schemas.

The implicit dataset D with which the computation is to be performed is a subset of the set of tuples
generated by a Join operation performed on all the participating relations (D1, D2, . . . , Dn ). However, the
tuples of D cannot be made explicit at any one network site by any one agent because the Di ’s cannot to be
moved in their entirety to other network sites. The tuples of D , therefore, must remain implicitly specified
only to one agent. This inability of an agent to make explicit the tuples of D is the main problem addressed
in the generalized decomposition of global algorithms and is discussed in later sections.

To facilitate computations with implicitly specified sets of tuples of D , we define a set (S ) that is the

union of all the attribute intersection sets (Sij ), that is,
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S =
⋃

i,j,i 6=j
Sij (1)

x1              x2        x2                x3              x2               x1            x2            x3     

1
2
1
2
4

5
4
4
3
3

5
5
5
3
4

7
6
8
8
6

3
4
5

1
1
1
2
1
2
4

5
5
5
4
4
3
3

7
6
8
6
6
8
8

  Database D1 Join(D1,D2)    Database D2 Shared

Figure 2. Illustration of Data Abstraction.

The set S , thus, contains the names of all those attributes that are visible to more than one agent
because they occur in more than one participating Di . We define a relation Shared containing all possible
enumerations for the attributes in the set S . This formulation of S facilitates similar treatment for
horizontally or vertically partitioned datasets because horizontal partitioning can be seen as the case where
all attributes are shared. The example in Figure 2 shows 2 databases (D1 and D2 ); the set S of shared

attributes contains only one attribute (x2 ); the relation Shared consisting of all the tuples for attribute in S

is enumerated in the third table; the explicit Join of D1 and D2 , which remains implicit for our algorithms,
is shown in the fourth table; and the last table shows a subset of the Join that may be the desired subset
of tuples for a particular instance of a data mining algorithm. The tuples that would be included in the
complete explicit Join but are not needed for the mining problem, should be excluded from consideration
by the decomposed network algorithms. The above example shows only one kind of attribute distribution
across databases. In another extreme case, each participating database may have exactly the same set of
attributes.

2.1. Nature of Data Distribution

Let us say there are n different sites containing databases D1, D2, . . . , Dn respectively. Depending on the
sets of attributes contained in each Di , there are two primary ways in which the databases, together, may
be seen as forming an implicit global dataset D .

Horizontally Partitioned Datasets: Figure 3 shows a partitioning of D into components D1, D2,

. . . , Dn such that each component Di contains the same attribute set (Xi ), but a different set of data

tuples. The set of shared attributes (S ) is the same as Xi for each database.

Vertically Partitioned Datasets: Figure 4 shows another way in which components of D may
be distributed across a network. In this case, each component (Di ) may share some attributes with other

databases (Dj and j 6= i). Each Di may also contain some attributes not shared with any other database.

In effect, each Di is a projection of an implicit global D . Vertically partitioned datasets are of
more interest because they provide an opportunity to share knowledge across the participating nodes. Our
algorithms are designed to work with vertically partitioned databases and can also work with horizontally
partitioned databases by considering all attributes are Shared.
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Figure 3. Horizontally Partitioned Datasets.
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Figure 4. Vertically Partitioned Datasets.
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2.2. Agent’s Decomposition Task

The objective of an agent is to perform the global computation by communicating with other similar agents
at other sites, and each agent performing some computation with its local database. Each agent should be
able to decompose the global computation into local computations - in the context of and as constrained by
the sharing of attributes across the participating agents and perform its local part with its own data.

Each agent i in Figure 1 represents a Di and communicates with similar agents at other nodes to
exchange the results of its local computations. The decomposition methodologies discussed here can be seen
to reside with each individual agent; each agent is also capable of initiating and completing an instance of a
global computation by either exchanging local results with other agents, while stationary at their respective
sites, or by launching a mobile agent that visits other network sites. In the case of a mobile agent, the
decomposition tools and knowledge reside with the mobile agent.

Let us say a result R is to be obtained by applying a function F to the implicit dataset D . That is:

R = F(D) (2)

When the global computation is to induce a decision tree from D , the value of R is the induced decision
tree, and F corresponds to the implementation of an algorithm for inducing R from D .

Distributed databases used by the agents cannot make explicit the tuples of D , which remain implicit
in terms of the explicitly known components D1, D2, . . . , Dn . The set S of shared attributes determines
what explicit D would be generated by the individual data components. An implementation of F in equation
2, for some S can be engineered by a functionally equivalent formulation given as:

R(S) = H [h1(D1, S), h2(D2, S), . . . , hn(Dn, S)] (3)

That is, a local computation hi(Di, S) is performed by agent Ci using the database Di and the knowledge

about the attributes shared among all the data sites (S ). The results of these local computations are
aggregated by an agent using the operation H . However, it may not be possible to decompose a complex
computation such as the full algorithm for inducing a decision tree into local computations and an aggregator.
We can decompose smaller computational primitive steps of such a complete algorithm and the agent keeps
track of the control aspects of sequencing various steps of such an algorithm.

The number and nature and hi operators and the nature of H would vary with the participating Di s
and the set of attributes (S ) shared among them. Hence, a different set of g -operators would need to be
generated by the agent for each new instance of Di ’s and S .

A schematic in Figure 5 shows the process by which the agent would compute R from the Di s. The
component operators of a decomposition (H and hi s), therefore, need to be dynamically determined by the

agent for each instance of F(D), depending on the participating nodes, the attributes contained in their
native databases, and the sharing pattern of attributes.

2.3. Stationary and Mobile Agents

We consider 2 types of agents for computing the decomposed hi and H functions. Stationary agents that
stay at their respective data sites, compute local hi ’s and send them to a coordinating agent who applies H
operation to all the local results. Mobile agents move from one site to the other, perform local hi at each
site that they visit, and at the end, apply the H operation to the gathered results. In the later discussion
we present complexity for both of these kinds of agents.
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Figure 5. Computations in Explicit vs. Implicit Data Spaces.

2.4. Cost Model for Algorithmic Complexity

Traditionally, the complexity of algorithms has been measured in terms of CPU time and the required
memory. This cost model is well-suited for computations on a single computer and the closely-coupled
processors model. When a number of loosely networked nodes are involved in a cooperative computation,
the communication cost becomes the overwhelmingly dominant component of the total cost. Complexity for
distributed query processing in databases has been discussed in [20], and the cost model used is total data
transferred for answering a query. This cost model suits those applications well, where a large amount of
data is exchanged during a computation. In our experience with the design and analysis of decomposable
network algorithms, we have found that each step of the algorithm must exchange a number of messages for
evaluating the various quantitative values. Each message is generally of a very small length, but the number
of messages may grow very fast. We have used here, and in other similar work [6], cost models involving
the number of messages exchanged and reflecting the efficiency of decomposition carried out by the network
algorithm.

3. Relevant Research

There has been extensive research in algorithms for sequential and parallel architectures [3, 4, 5, 13]. The
main focus of parallel and distributed algorithms has been on systems of closely-coupled processors, where
data can be easily shared by the processors. The distributed knowledge environment, where data cannot be
shared as easily as a shared memory and must be transmitted over a wide-area network in the form of small
message packets, needs a set of network algorithms, which minimize the traffic over the wide-area network.

Our algorithmic decompositions can be seen as regular data mining algorithms being implemented by
a number of coordinated agents either exchanging messages among themselves or visiting participating nodes
to gather results of local queries and computations. Multi-agent systems research has addressed many issues
relating to the distribution of knowledge and processing capability over a loosely connected communication
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network. In most of this work [9, 10, 12, 18], agents are modeled as having only a limited view of the global
resources and knowledge. The objective of learning by each agent is that the whole society should converge
to an optimal operating point after each agent has individually learned about its own optimal performance.
In the work on multi-agent learning [18, 21, 22], most of the focus is also on learning about the environment
by observing the behavior of other agents in the environment. In contrast, our approach is directed at
systems where cooperative agents freely access local results from other agents to evolve concepts from their
collective knowledge, while trying to minimize the communication of messages and data among themselves.

In our algorithms, the computing agent at each node does not need to have any uncertainty about
the state of data or knowledge of other sites or computing agents. The agent only needs to ask for their
local results and it would be truthfully given the needed information sought by other agents. However, this
access can be restricted to prohibit any actual data tuples flowing out of a site. All examples given in this
paper require only the results of very high level local computations from each site and actual data tuples
never leave a site. The goal of the agents in our formulation is also to minimize the exchange of information
among themselves for performing the global computations.

Two of our examples in this paper relate to learning and data mining computations, which are widely
investigated fields, and we have extensively examined [6] the decomposability of decision-tree induction

[7, 14, 15, 17] algorithms. Some other work in distributed data mining [8, 16, 19] seeks to learn local models
completely and then resolve their differences at the central coordinating site. This is in contrast to our
approach where we seek to decompose every primitive of the global computation and then perform the
decomposed steps at local sites. Algorithms for association rules [1, 2] have become very popular, but are
designed for cases when the database resides on a single network site. We have adapted these algorithms for
distributed knowledge environments. Our focus is on decomposing each primitive computational step of an
algorithm and executing it for the same results that would have been obtained if the databases were to be
moved to one single site.

Database researchers have done much work towards the optimization of queries from distributed
databases [23]. Databases from which the transfer of large amounts of actual data is not feasible cannot
participate in distributed querying, but still may be useful for participating in network algorithms by
exchanging local summaries and inferences. Intelligent Query Answering and Data Clustering in large
databases have been addressed in [11, 24], and their treatment is also limited to databases residing and
available at a single computer site.

4. Association Rules

Algorithms for discovering association rules in databases [1, 2] have been studied extensively. The main
phases of various versions of the algorithm involve iterating the following 2 steps:

1. Enumerate item-sets at level Lk from the frequent item- sets determined at level Lk−1 .

2. Determine the support and the confidence levels for the item-sets and rules at level Lk .

Decomposability of an association rule algorithm can be similarly divided into 2 major tasks: (1) Maintenance
of the active item-sets and enumeration of the candidates at the next level from the frequent item sets at
the preceding level; (2) Computation of the support and confidence levels. A general decomposition of the
algorithm can be implemented as follows: an agent at any one of the network nodes initiates the algorithm;
this agent performs within itself all the control aspects of the algorithm, such as the tasks of maintaining
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and generating the candidate item-sets; computation of support and confidence levels requires consultation
with agents at other sites and it is this step that needs to be redesigned by an agent using decomposition;
the decomposed version for support computations can then be repeated at each iterative step where the
algorithm requires it, the control being with the agent.

4.1. Computational Primitives

The most common computational primitive needed in the above algorithm is the count of all tuples in D to
be determined only by obtaining local results from each participating agent. Counts of tuples that satisfy
certain attribute-value conditions are a little bit more complex and we describe them below.

4.1.1. Count of Tuples in Implicit Space

When the tuples of D are explicitly available in a relation then the count of all its tuples can be obtained
easily. For our case of an implicitly defined set of tuples, we can decompose the counting process in such a
way that various local count requests can be sent to the agents of individual Di s and their responses can
then be composed to construct the total count for the tuples in implicit D . The decomposition for obtaining
the count Ntotal(D) is as follows:

Ntotal(D) =
∑
j

∏
t

N(Dt)condj (4)

where the subscript condJ specifies a condition composed from the attribute-value pairs of the jth tuple of
the relation Shared, n is the number of participating agents (Di s), and N(Dt)condJ is the count in relation
Dt of those tuples that satisfy the condition condj .

As per the decomposition expressed in equation 3, we can see that

hi(Di, S) = N(Dt)condj (5)

where j corresponds to the jth tuple of Shared. One such summary is needed from each agent for each
tuple in the relation Shared. The relation Shared can be controlled by one agent or maintained by each
agent separately, and thus, reduce the communication among the agents. The function H in this case would
perform a sum-of-products from the summaries as per equation 4. Each term in the product is the count
of tuples satisfying condition condj in a Di . The resulting product produces the number of distinct tuples

that would be contributed to the implicit Join of all the Di s for the condition specified by condj . The
summations in the above expression amount to selecting each tuple of Shared as condj and then summing the

product terms obtained for each tuple. This expression, therefore, simulates the effect of a Join operation
performed on all the databases without explicitly enumerating the tuples.

A very desirable aspect of the above decomposition of Ntotal(D) is that each product term N(Dt)condJ
can be translated into an SQL query; select count (*) where condj can be performed by the local agent at
Dt .

Communication Complexity: When there are k attributes in the relation Shared and each
attribute has I values on the average, the relation Shared would have k ∗ I tuples in all.

First we consider the case of stationary agents at the local sites. If there are n participating agents,
then one agent would be sending one request to each of the (n−1) agents for each tuple in Shared, amounting

to a total of (n1) ∗ k ∗ I messages being exchanged among the agents.
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However, it is possible to send a request to an agent for all hi(Di, S) values, that is, values correspond-
ing to all tuples condj of S in one request and receive all the summaries in one message. This reduces the
number of messages exchanged to n , the same as the number of participating agents. The trade-off between
the 2 approaches is that the first one may be considered more secure for transmission over a network because
each message contains only very little information about the participating databases. The second alternative
requires very few messages, but each message contains more information about each database. At no time,
though, actual data tuples are transferred across the sites; only counts of tuples satisfying certain conditions
are transferred.

Now we consider the case of mobile agents. This agent has the set Shared stored in it. During a
visit to a data site, it can compute the local hi for that site. Once all the sites have been visited, the
sum-of-products (H aggregator) can be applied to the local results collected from all the sites. Therefore,
the mobile agent needs to visit each site only once in order to compute the count of all the tuples in implicit
D .

4.1.2. Support for Candidate Sets

We can easily extend the above decomposition for count to the counts of only those tuples that satisfy a
certain new condition by simply changing condj in equation 4

Nnew−condition =
∑
j

(
n∏
t=1

(N(Dt)condj .and.new− condition)) (6)

This would be required to determine the support level for a candidate frequent item set. The values
of attributes in the frequent item set would form the new-condition

The way the support measure for a candidate frequent item-set would be computed by an agent can
be viewed as follows: In relation Shared, it retains only those tuples that match the attribute value pairs
for the conditions specified in the candidate set; determine a count of the tuples that is obtained using this
reduced Shared relation; this resulting candidate count divided by the count Ntotal provides the support
level for a candidate set of attribute-value pairs. Each count would require n messages to be exchanged and
thus a support level can be computed by exchanging 2 ∗ n messages. However, messages for each candidate
set currently under considerations can be packed into a single message. Therefore, the support levels for all
the candidate sets at a level can be computed by exchanging only 2 ∗ n messages among the nodes.

For a mobile agent, the local results for computing all the candidate relevant tuple counts and also
the total tuple counts can be gathered during a single visit to a site. Thus, the mobile agent can compute
the support levels for all its candidate item sets by visiting each site only once and then aggregating the
local results.

4.2. Full Algorithm Complexity

As seen above, frequent item-sets at each level of the association rule algorithm can be determined by
exchanging only 2∗n messages among the participating nodes. If an association rule algorithm needs to run
up to k levels, then we need to exchange a total of 2∗n∗k messages among the stationary agents to run the
association rule algorithm. This number of messages is not dependent on the number of tuples contained in
each database and the system, therefore, is easily scalable to large databases. Also, this number of messages
is much smaller than the data that may need to be transferred if we were to accumulate all databases at one
site and then perform the data mining task.
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For a mobile agent, an algorithm performing k iterations would mean visiting each site k times and
after that the agent would be able to get the global results.

While it is easy to decompose arithmetic primitives, the step-sequencing and control aspects of an
algorithm are more difficult to decompose efficiently and in a generalizable manner. For the results described
here we have assumed that the algorithm initiator node executes the control steps of the original algorithm
and decomposes each arithmetic computation as it sequences through the algorithm’s steps.

The above algorithm decomposition works well for both, horizontally partitioned and the vertically
partitioned databases. The algorithm is especially beneficial for vertically partitioned databases and can run
horizontally partitioned databases as a special case. More efficient implementations are possible when we
encounter only a horizontal database.

5. Induction of Decision Trees

We can also easily perform decomposition of a decision tree induction algorithm using minimization of
average entropy because entropy computation depends only on various tuple counts being obtained from the
participating databases.

Various tree induction algorithms [7, 17], modeled after Quinlan’s entropy-based tree-induction algo-
rithms start by considering the complete dataset D belonging at the root of the tree and then repeating
the following steps until all or a large majority of tuples at each leaf node of the tree belong to some unique
class.

1. Pick one such dataset at a leaf node, some large fraction whose tuples belong to different classes.

2. Select an attribute a, having m distinct values: aj1, aj2, . . . , ajm The attribute that results in minimum
average entropy for the resulting partitions is chosen. This entropy value can be computed by the
decomposition primitives described above, mainly the counts with various conditions placed on tuples
for determining the appropriate probability values.

3. Split D into m distinct partitions such that the kth partition contains only those tuples for which
aj = ajk

4. The m distinct partitions are added to the tree as child datasets of the partitioned parent dataset.
These child nodes reside at the end of m branches emanating from the parent node.

In the preceding discussion we have included the complexity of performing decomposition of each
computational step in terms of the number of messages to be exchanged among the nodes. We show
below an expression for the number of messages that need to be exchanged among the stationary agents
by transferring only one hi(Di, S) summary at a time for generating a simple decision tree using entropy
minimization at each step and dealing with the implicit set of tuples. Let us say:

• There are n databases, D1, D2, . . . , Dn , residing at n different network sites.

• There are k attributes in set S of shared attributes. Each attribute in this set appears at more than
one site.

• There are m distinct attributes in D (
⋃i=n
i=1 Ai ) combined.

• There are l possible discrete values for each attribute in set S .
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The informational entropy that is computed by the algorithm at each leaf node of the growing tree is given
by the expression:

E =
m∑
b=1

(
Nb
Nt
× (
∑
c

−Nbc
Nb

log
Nbc
Nb

)) (7)

where Nb is the total number of tuples in the database at a parent node of the tree, Nb is the number
of tuples at a child node, and Nbc is the number of tuples in Nb that belong to class c .

Complexity: To evaluate the entropy for an implicit database D once, we need to compute the
following quantities:

• one Nt count;

• l ∗Nb counts; and

• l2 * Nbc counts.

The computation of each entropy value, therefore, requires an exchange of n ∗ lk+2 messages among the
participating nodes. For a dataset at depth D in the decision tree, the number of messages exchanged would

be (md) ∗n ∗ lk+2 . If we assume that on the average, the decision tree is akin to a filled l− ary tree with p

levels, then the total number of message-exchanges needed would be:

(n ∗ lk+2)
p∑
d=0

(m− d) ∗ lp) (8)

The above expression gives an estimate of the number of messages to be exchanged for constructing
a decision tree using the decomposed version of the algorithm, but assuming that only one integer value is
exchanged per message.

However, using a more efficient implementation in which all the needed hi(Di, S) values are requested
from a node in a single message, we need only c ∗ n messages to compute a count or a sum of products,
where c is a constant and n is the number of participating nodes. In this case, an entropy computation
would require an exchange of only l ∗ n messages and computation of d ∗ l entropy values would require
d ∗ l ∗ l ∗ n messages to be exchanged. This is much more efficient than transferring a single summary per
message.

A mobile agent can perform all potential computations for a decision tree level once it visits a data
site. Therefore, a mobile agent would need to visit each site at most as many times as is the depth of the
intended decision tree. During each cycle of visits it will compute entropies for all nodes that can be split
at the current level of the tree. At the end of each cycle it will then compute the actual partitioning to be
performed and then continue with the cycle of visits for the next level of the tree. It is greatly advantageous
that a d-level decision tree can be learned by an agent from distributed data by visiting each data site only
d times.

6. Simulation Results

We have performed a number of tests to demonstrate that counts of tuples, candidate support levels,
informational entropy values and mining association rules can be computed in a distributed knowledge
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environment without moving all the databases to a single site. These tests have been carried out on a
network of workstations connected by a LAN and tested against a number of databases of different sizes.
The algorithms have been tested on both test data and real life databases; both flat files and relational
databases like MySQL were used to test the algorithms. We have implemented the algorithms using Java
and RMI(Remote Method Invocation), and used JDBC(Java Database Connectivity) to interface with the
databases. This was done to provide a standard interface and platform independence.

Presented below in the following figures are the results in the form of graphs, which provide a
comparative analysis of when the algorithms are run using the non-optimized version, i.e., sending one
summary per message, and using the optimized version, i.e., sending all the summaries for a particular site
in one message.

Figure 6 shows how the time taken to compute the total number of tuples (N − t) in an implicit
database D changes with the size of the individual database. As we can see, when we exchange one summary
per message, the time taken to compute the count varies exponentially as the size of the database increases.
However, when we use the optimized method, the time taken to compute the count reduces considerably
and depends on the number of participating nodes.

Plot of Count of  Tuples per database vs time taken to Calculate  Count
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Figure 6. Time taken to calculate Nt for different database sizes

Figure 7 shows how the number of messages exchanged between the coordinator site and the remote
sites varies with the number of tuples in the database. It can be easily seen that the number of messages
exchanged varies exponentially with the size of the database when we send one summary per message. The
result validates the expression for the total number of messages exchanged as given above. However, in the
optimized version, when we receive all the summaries in a single message, the number of messages exchanged
was a constant depending upon the total number of participating nodes.

Coming to the implementation of the Apriori Association Rules algorithm, we see that Figure 6 gives
an analysis of the time taken and the number of messages exchanged between the learner and the remote
sites for mining association rules in distributed databases.

We note that the graph of the distributed databases indicates exponential complexity. This implies
that although an algorithm can be decomposed into sub-parts and run on distributed databases, it will
typically incur an extra cost in terms of total execution time and messages exchanged.

Figure 9, shows the variation of the time taken to calculate Entropy and the number of tuples in
a database. Similar to the analysis in Figure 6, we see that the time taken to calculate Entropy varies
exponentially when only one summary is sent per message. However, the computing time reduces significantly
when using the optimized version in Figure 10.
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Plot of Count of Tuples per database vs Messages Exchanged to Calculate Count
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7. Conclusions

We have demonstrated that agents can perform the integration of arbitrarily distributed data and knowledge
for performing complex computations. Tasks such as counting tuples in imagined Joins of distributed
databases, computation of support and confidence levels for candidate item-sets, and informational entropy
values of implicit databases can be computed by appropriately coordinating agent actions. These actions are
self-determined and self-controlled by the agents in response to the varying sets of participating agents and
arbitrary overlaps in the local datasets. Also, for simple arithmetic computations, the number of messages
to be exchanged among the n participating agents does not exceed the order of n . This is very significant
because it gives us the scalability required for handling large databases. The number of tuples at individual
network nodes may keep on increasing but the number of messages that need to be exchanged among the
agents for a global computation remains constant.

We have demonstrated the adaptability of an association rule learning algorithm, and an informational
entropy-driven decision tree induction algorithm. We have shown the complexity of performing these
computations in terms of messages that need to be exchanged among the stationary agents for performing
these computations. We have also analyzed the number of visits that a mobile agent would need to make to
each site for completing the global computation.

One very significant contribution of these results is that many mining and knowledge discovery tasks
can be performed by agents on a number of databases residing at different network nodes without having to
move the databases to a single site and the communication cost among the performing agents is also very
low.
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