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Universitätsstr. 41, CH-8092 Zurich (Switzerland)

April 14, 2008

Vehicular traffic is a classical example of a multi-agent system in which au-
tonomous drivers operate in a shared environment. The article provides an overview
of the state-of-the-art in microscopic traffic modeling and the implications for sim-
ulation techniques. We focus on the short-time dynamics of car-following models
which describe continuous feedback control tasks (acceleration and braking) and
models for discrete-choice tasks as a response to the surrounding traffic. The driving
style of an agent is characterized by model parameters such as reaction time, desired
speed, desired time gap, anticipation etc. In addition, internal state variables cor-
responding to the agent’s “mind” are used to incorporate the driving experiences.
We introduce a time-dependency of some parameters to describe the frustration
of drivers being in a traffic jam for a while. Furthermore, the driver’s behavior
is externally influenced by the neighboring vehicles and also by environmental in-
put such as limited motorization and braking power, visibility conditions and road
traffic regulations. A general approach for dealing with discrete decision problems
in the context of vehicular traffic is introduced and applied to mandatory and dis-
cretionary lane changes. Furthermore, we consider the decision process whether
to brake or not when approaching a traffic light turning from green to amber.
Another aspect of vehicular traffic is related to the heterogeneity of drivers. We
discuss a hybrid system of coupled vehicle and information flow which can be used
for developing and testing applications of upcoming inter-vehicle communication
techniques.
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1 Introduction

Efficient transportation systems are essential to the functioning and prosperity of modern,
industrialized societies. Mobility is also an integral part of our quality of life, sense of
self-fulfillment and personal freedom. Our traffic demands of today are predominantly served
by individual motor vehicle travel which is the primary means of transportation. However,
the limited road capacity and ensuing traffic congestion has become a severe problem in many
countries. Nowadays, we additionally have to balance the human desire for personal mobility
with the societal concerns about its environmental impact and energy consumption. On the
one hand, traffic demand can only be affected indirectly by means of policy measures. On the
other hand, an extension of transport infrastructure is no longer an appropriate or desirable
option in densely populated areas. Moreover, construction requires high investments and
maintenance is costly in the long run. Therefore, engineers are now seeking solutions to the
questions of how the capacity of the road network could be used more efficiently and how
operations can be improved by way of intelligent transportation systems (ITS).

In the presence of increasing computing power, realistic microscopic traffic simulations are
becoming a more and more important tool for diverse purposes ranging from generating sur-
rounding traffic in a virtual reality driving simulator to large-scale network simulations for a
model-based prediction of travel times and traffic conditions [Min07]. The primary application
for traffic simulations is the evaluation of hypothetical scenarios for their impact on traffic.
Computer simulations can be valuable in making these analyses in a cost-effective way. For ex-
ample, simulations can be used to estimate the impact of future driver assistance systems and
wireless communication technologies on traffic dynamics. Another example is the prediction of
congestion levels in the future, based on demographic forecasts.

Before going into detail about possible traffic flow models, it is worth mentioning differences
between modeling the short-term traffic dynamics on a single road section and the approach
used for transportation planning describing behavioral pattern in a network on a larger time
scale. Figure 1 shows typical time scales ranging over nine orders of magnitude including
vehicle dynamics, traffic dynamics and transportation planning. While dynamic flow models
explicitly describe the physical propagation of traffic flows of a given traffic volume in a road
network, transportation planning tools deal with the calculation of the traffic demand by
considering the decisions of travelers to participate in economical, social and cultural activities.
The need for transportation arises because these activities are spatially separated. The classical
approach in trip-based transportation models is based on a four-step methodology of trip

generation, trip distribution, mode split and traffic assignment [OW01, SL97, Dag97, MM05,
HN04]. In the fourth step, the origin-destination matrix of trips with a typical minimum
disaggregation of one hour (comprising a typical peak-hour analysis) is assigned to routes
in the actual (or prospective) transportation network while taking into account the limited
capacity of the road infrastructure by means of simplified effective models. Recently, even
large-scale multi-agent transportation simulations have been performed in which each traveler
is represented individually [NER00, RCV+03, CN05]. For the purposes of demand-modeling,
mobility-simulation and infrastructure re-planning the open-source software MATSim provides
a toolbox to implement large-scale agent-based transport simulations [MAT08].
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Time Scale Subject Models Aspects

0.1 s Vehicle Dynamics Sub-microscopic Drive-train, brake, ESP
1 s

Traffic Dynamics
Car-following models
Fluid-dynamic models

Reaction time, Time gap
10 s Accelerating and braking

1min Traffic light period
10min Period of stop-and-go wave

1 h

Transport. Planning

Traffic assignment models
Traffic demand model

Peak hour
1 day Day-to-day human behavior
1 year Building measures
5 years Statistics Changes in spatial structure
50 years Prognosis Changes in Demography

Table 1: Subjects in transportation systems sorted by typical time scales involved.

1.1 Aim and Overview

The chapter will review the state-of-the-art in microscopic traffic flow modeling and the impli-
cations for simulation techniques. In Sec. 2, we will introduce the concept of a driver-vehicle

agent within in the context of common traffic modeling approaches.
In order to perform traffic simulations, we will take a “bottom-up” approach and present

concrete models for describing the behavior of an agent. In Sec. 3.1, the Intelligent Driver
Model [THH00] serves as a basic example of a car-following model representing the operational
level of driving. As a first contribution, we will give special attention to the heterogeneity in
traffic. Different drivers behave differently in the same situation (so called “inter-driver vari-
ability”) but can also change their behavior over the course of time (“intra-driver variability”).
While the first aspect can be addressed by individual parameter sets for the agents (Sec. 3.2),
the latter can be modeled by introducing a time-dependency of some parameters (e.g. to model
the frustration of drivers after being in a traffic jam for a period, Sec. 3.3).

Realistic simulations of multi-lane freeway traffic and traffic in city networks also require
discrete decisions by the agents. For example, lane-changing decisions allow faster cars to pass
slower trucks. Another decision is related to the decision process of whether to brake or not
to brake when approaching a traffic light turning from green to amber. In Sec. 4.1, we will
introduce a general framework for dealing with these discrete decision processes. The presented
“meta-model” MOBIL [KTH07] is an example of how complexity can in fact be reduced by
falling back on the agent’s model for calculating longitudinal accelerations.

After having modeled the agent’s acceleration and lane-changing behavior, we will consider
multi-agent simulations. Section 5 addresses the design of microscopic traffic simulators. In
order to be specific, we will discuss the explicit numerical integration scheme, input and output
quantities and visualization possibilities.

In Sec. 6, we will demonstrate the expressive power of the agent-based approach for han-
dling current research questions. Traffic simulations will illustrate the emergence of collective
dynamics from local interaction between agents. By way of example, we will show how the de-
sired individual behavior of agents to move forward fast can lead to contrary effects such as the
breakdown of traffic and self-organized stop-and-go waves. Another simulation will evaluate the
effect of traffic flow homogenization by means of a speed limit (Sec. 6.2). Last but not least,
we will discuss an application of inter-vehicle communication for propagating traffic-related
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information in a decentralized way. Inter-vehicle communication has recently received much
attention in the academic and engineering world as it is expected to be a challenging issue
for the next generation of vehicle-based Intelligent Transportation Systems (ITS). Finally, in
Sec. 7, we will discuss such trends in traffic modeling and simulation.

2 Agents for Traffic Simulation

Vehicular traffic is a typical example of a multi-agent system: Autonomous agents (the drivers)
operate in a shared environment provided by the road infrastructure and react to the neigh-
boring vehicles. Therefore, the activities include both human interaction (with the dominant
influence originating from the directly leading vehicle) and man-machine-interactions (driver
interaction with the vehicle and the physical road environment). The microscopic modeling or
agent-based approach describing the motion of each individual vehicle has grown in popularity
over the last decade. The following Sec. 2.1 will provide an overview of common mathemati-
cal approaches for describing traffic dynamics. In Sec. 2.2, we will introduce the concept of a
“driver-vehicle agent” within the context of microscopic traffic modeling.

2.1 Macroscopic vs. Microscopic Approaches

The mathematical description of the dynamics of traffic flow has a long history already. The
scientific activity had its beginnings in the 1930s with the pioneering studies on the fundamen-
tal relations of traffic flow, velocity and density conducted by Greenshields [Gre59]. By the
1950s, scientists had started to describing the physical propagation of traffic flows by means
of dynamic macroscopic and microscopic models. During the 1990s, the number of scientists
engaged in traffic modeling grew rapidly because of the availability of better traffic data and
higher computational power for numerical analysis.

Traffic models have been successful in reproducing the observed collective, self-organized
traffic dynamics including phenomena such as breakdowns of traffic flow, the propagation of
stop-and-go waves (with a characteristic propagation velocity), the capacity drop, and dif-
ferent spatiotemporal patterns of congested traffic due to instabilities and nonlinear interac-
tions [Hel01, Ker04, KR96a, CB99, DCB99, SH07]. For an overview of experimental studies and
the development of miscellaneous traffic models, we refer to the recently published extensive
review literature [Hel01, CSS00, Nag02, MD05, HB01, Leu88].

As mentioned, there are two major approaches to describe the spatiotemporal propagation of
traffic flows. Macroscopic traffic flow models make use of the picture of traffic flow as a physical
flow of a fluid. They describe the traffic dynamics in terms of aggregated macroscopic quantities
like the traffic density, traffic flow or the average velocity as a function of space and time
corresponding to partial differential equations (cf. Fig. 1). The underlying assumption of all
macroscopic models is the conservation of vehicles (expressed by the continuity equation) which
was initially considered by Lighthill, Whitham and Richards [LW55, Ric56]. More advanced, so-
called “second-order” models additionally treat the macroscopic velocity as a dynamic variable
in order to also consider the finite acceleration capability of vehicles [KK94, THH99].

By way of contrast, microscopic traffic models describe the motion of each individual vehicle.
They model the action such as accelerations, decelerations and lane changes of each driver as
a response to the surrounding traffic. Microscopic traffic models are especially suited to the
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Cellular automaton

Microscopic model

Macroscopic model

Figure 1: Illustration of different traffic modeling approaches: A snapshot of a road section at time

t0 is either characterized by macroscopic traffic quantities like traffic density ρ(x, t0), flow Q(x, t0) or

average velocity V (x, t0), or, microscopically, by the positions xα(t0) of single driver-vehicle agent α.

For cellular automata, the road is divided into cells which can be either occupied by a vehicle or empty.

study of heterogeneous traffic streams consisting of different and individual types of driver-
vehicle units or agents. The result is individual trajectories of all vehicles and, consequently,
any macroscopic information by appropriate aggregation. Specifically, one can distinguish the
following major subclasses of microscopic traffic models (cf. Fig. 1):

• Time-continuous models are formulated as ordinary or delay-differential equations and,
consequently, space and time are treated as continuous variables. Car-following models

are the most prominent examples of this approach [BHN+95, THH00, JWZ01, TH98].
In general, these models are deterministic but stochasticity can be added in a natural
way [TKH06b]. For example, a modified version of the Wiedemann model [Wie74] is used
in the commercial traffic simulation software PTV-VISSIMTM.

• Cellular automata (CA) use integer variables to describe the dynamic state of the system.
The time is discretized and the road is divided into cells which can be either occupied by
a vehicle or empty. Besides rules for accelerating and braking, most CA models require
additional stochasticity. The first CA for describing traffic was proposed by Nagel and
Schreckenberg [NS92]. Although CA lack the accuracy of time-continuous models, they
are able to reproduce some traffic phenomena [LBSK04, HS99, KSSS01]. Due to their
simplicity, they can be implemented very efficiently and are suited to simulating large
road networks [Min07].

• Iterated coupled maps are between CA and time-continuous models. In this class of
model, the update time is considered as an explicit model parameter rather than an
auxiliary parameter needed for numerical integration [KT08b]. Consequently, the time
is discretized while the spatial coordinate remains continuous. Popular examples are the
Gipps model [Gip81] and the Newell model [New61]. However, these models are typically
associated with car-following models as well.

At first glance, it may be surprising that simple (and deterministic) mathematical models
aimed at describing the complexity of and variations in the human behavior, individual skills
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and driving attitudes would lead to reasonable results. However, a traffic flow can (in a good
approximation) be considered as a one-dimensional system (with reduced degrees of freedom).
Furthermore, traffic models typically assume rational and safe driving behavior as a reaction
to the surrounding traffic while at the same time taking into account the fundamental laws of
kinematics.

Another aspect concerns the important issue of traffic safety. The traditional models for
describing traffic dynamics assume rational drivers that are programmed to avoid collisions.1

Therefore, traffic safety simulation belongs to the field of human centered simulation where
the perception-reaction system of drivers with all its weak points has to be described. Up to
now, a general modeling approach is still lacking.

2.2 Driver-Vehicle Agents

Let us now adopt the concept of an agent to implicate the complex human driving behavior
into a general modeling framework. We therefore introduce the term driver-vehicle agent which
refers to the idea that an atomic entity includes internal characteristics of human drivers as well
as external properties of a vehicle. Figure 2 provides an overview of relevant influences and fea-
tures affecting human driving . In this context, the relevant time scales are a first characteristic
feature: The short-term operations are constituted by control tasks such as acceleration and
braking, and typically take place in the range of a second. Specific behavioral attributes vary
between individual drivers and affect the resulting driving characteristics on an intermediate
time scale of seconds up to minutes. Finally, a strategic level of driving includes time periods
of hours, e.g. the decision to start a trip or to find a route in a network.

The driving task can be considered as a cognitive and therefore internal process of an
agent: The driver’s perception is limited to the observable external objects in the neighborhood
while his or her reaction is delayed due to a non-negligible reaction time as a consequence of
the physiological aspects of sensing, perceiving, deciding, and performing an action. On the
intermediate time scale, the agent’s actions are affected by his or her individual driving behavior
which may be characterized in terms of, e.g. preferred time gaps when following a vehicle
and smooth driving with a desired acceleration and a comfortable deceleration. Moreover,
the individual driving style may be influenced by the experience and history of driving. For
example, it is observed that people change their behavior after being stuck in traffic congestion
for a period [BP96, FSSe03]. Such features can be incorporated by internal state variables
corresponding to the agent’s “mind” or “memory”.

However, short-time driving operations are mainly direct responses to the stimulus of the
surrounding traffic. The driver’s behavior is externally influenced by environmental input such
as limited motorization and braking power of the vehicle, visibility conditions, road character-
istics such as horizontal curves, lane narrowings, ramps, gradients and road traffic regulations.
In the following sections, we will address a number of these defining characteristics of a driver-
vehicle agent.

1Of course, collisions happen in numerical simulations due to instable models and for kinematic reasons.
However, these collisions do not have explanatory or predictive power.
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Figure 2: Characteristics of a driver-vehicle agent. The operation of driving can be classified according

the involved time scales ranging from short-term actions in terms of acceleration and braking via inter-

mediate time scales describing behavioral characteristics to long-term strategic decisions. In addition,

the agent’s behavior is influenced by the physical properties of the vehicle, by interactions with other

agents and by the environment.

3 Models for the Driving Task

Microscopic traffic models describe the motion in longitudinal direction of each individual
vehicle. They model the action of a driver such as accelerations and decelerations as a response
to the surrounding traffic by means of an acceleration strategy towards a desired speed in the
free-flow regime, a braking strategy for approaching other vehicles or obstacles, and a car-driving
strategy for maintaining a safe distance when driving behind another vehicle. Microscopic traffic
models typically assume that human drivers react to the stimulus from neighboring vehicles
with the dominant influence originating from the directly leading vehicle known as “follow-
the-leader” or “car-following” approximation.

By way of example, we will consider the Intelligent Driver Model (IDM) [THH00] in Sec. 3.1.
The IDM belongs to the class of deterministic follow-the-leader models. Like other car-following
models, the IDM is formulated as an ordinary differential equation and, consequently, space and
time are treated as continuous variables. This model class is characterized by an acceleration
function v̇ := dv

dt that depends on the actual speed v(t), the gap s(t) and the velocity difference
∆v(t) to the leading vehicle (see Fig. 3). Note that the dot is the usual shorthand notation for
the time derivative of a function. The acceleration is therefore defined as the time derivative
of the velocity v̇ := dv/dt.

In Sec. 3.2, we will model inter-driver variability by defining different classes of drivers which
is an inherent feature of microscopic agent approaches. A model for intra-driver variability
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(changing behavior over the course of time) will then be discussed in Sec. 3.3.

Length lα−1

α−1Velocity v

Following vehicle Leading vehicle α α−1

Position x α xα−1

Gap s

Velocity v

α

α

Figure 3: Illustration of the input quantities of a car-following model: The bumper-to-bumper distance

s for a vehicle α with respect to the vehicle (α− 1) in front is given by sα = xα−1 −xα− lα−1, where lα
is the vehicle length and x the position on the considered road stretch. The approaching rate (relative

speed) is defined by ∆vα := va − vα−1. Notice that the vehicle indices α are ordered such that (α − 1)

denotes the preceding vehicle.

3.1 The Intelligent Driver Model

The IDM acceleration is a continuous function incorporating different driving modes for all
velocities in freeway traffic as well as city traffic. Besides the distance to the leading vehicle s
and the actual speed v, the IDM also takes into account velocity differences ∆v, which play an
essential stabilizing role in real traffic, especially when approaching traffic jams and avoiding
rear-end collisions (see Fig. 3). The IDM acceleration function is given by

dvα
dt

= f(sα, vα,∆vα) = a

[

1−
(

vα
v0

)δ

−
(

s∗(vα,∆vα)

sα

)2
]

. (1)

This expression combines the acceleration strategy v̇free(v) = a[1 − (v/v0)
δ] towards a desired

speed v0 on a free road with the parameter a for the maximum acceleration with a braking
strategy v̇brake(s, v,∆v) = −a(s∗/s)2 serving as repulsive interaction when vehicle α comes too
close to the vehicle ahead. If the distance to the leading vehicle, sα, is large, the interaction
term v̇brake is negligible and the IDM equation is reduced to the free-road acceleration v̇free(v),
which is a decreasing function of the velocity with the maximum value v̇(0) = a and the
minimum value v̇(v0) = 0 at the desired speed v0. For denser traffic, the deceleration term
becomes relevant. It depends on the ratio between the effective “desired minimum gap”

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

, (2)

and the actual gap sα. The minimum distance s0 in congested traffic is significant for low
velocities only. The main contribution in stationary traffic is the term vT which corresponds
to following the leading vehicle with a constant desired time gap T . The last term is only
active in non-stationary traffic corresponding to situations in which ∆v 6= 0 and implements
an “intelligent” driving behavior including a braking strategy that, in nearly all situations,
limits braking decelerations to the comfortable deceleration b. Note, however, that the IDM
brakes stronger than b if the gap becomes too small. This braking strategy makes the IDM
collision-free [THH00]. All IDM parameters v0, T , s0, a and b are defined by positive values.
These parameters have a reasonable interpretation, are known to be relevant, are empirically
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measurable and have realistic values [KT08a]. We will discuss parameter values in detail in
Sec. 3.2 and will use their clear meaning to characterize different driving styles, that is, inter-
driver variability.

For a simulation scenario with a speed limit (which we will study in Sec. 6.2), we consider
a refinement of the IDM for the case when the actual speed is higher than the desired speed,
v > v0. For example, an excess of v = 2v0 would lead to an unrealistic braking of −15a for
δ = 4. This situation may occur when simulating, e.g. a speed limit on a road segment that
reduces the desired speed locally. Therefore, we replace the free acceleration for the case v > v0
by

v̇free(v) = −b

[

1−
(v0
v

)δ
]

. (3)

That is, the IDM vehicle brakes with the comfortable deceleration b in the limit v ≫ v0. Further
extensions of the IDM can be found in Refs. [TKH06a, KT08b, TKH06b].

The dynamic properties of the IDM are controlled by the maximum acceleration a, the ac-
celeration exponent δ and the parameter for the comfortable braking deceleration b. Let us
now consider the following scenario: If the distance s is large (corresponding to the situation of
a nearly empty road), the interaction v̇brake is negligible and the IDM equation (1) is reduced
to the free-road acceleration v̇free(v). The driver accelerates to his or her desired speed v0 with
the maximum acceleration v̇(0) = a. The acceleration exponent δ specifies how the accelera-
tion decreases when approaching the desired speed. The limiting case δ → ∞ corresponds to
approaching v0 with a constant acceleration a while δ = 1 corresponds to an exponential relax-
ation to the desired speed with the relaxation time τ = v0/a. In the latter case, the free-traffic
acceleration is equivalent to that of the Optimal Velocity Model [BHN+95]. However, the most
realistic behavior is expected between the two limiting cases of exponential acceleration (for
δ = 1) and constant acceleration (for δ → ∞). Therefore, we set the acceleration exponent
constant to δ = 4.

In Fig. 4, acceleration periods from a standstill to the desired speed v0 = 120 km/h are
simulated for two different settings of the maximum acceleration (the other model parameters
are listed in the caption): For a = 1.4m/s2, the acceleration phase takes approximately 40 s
while an increased maximum acceleration of a = 3m/s2 reduces the acceleration period to
∼ 15 s. Notice that the acceleration parameter a of 1.4m/s2 (3m/s2) corresponds to a free-
road acceleration from v = 0 to v = 100 km/h within 23 s (10.5 s).

The equilibrium properties of the IDM are influenced by the parameters for the desired time
gap T the desired speed v0 and the minimum distance between vehicles at a standstill s0.
Equilibrium traffic is defined by vanishing speed differences and accelerations of the driver-
vehicle agents α:

∆vα = 0, (4)

dvα
dt

= 0, (5)

and
dvα−1

dt
= 0. (6)

Under these stationary traffic conditions, drivers tend to keep a velocity-dependent equilibrium
gap se(vα) to the leading vehicle. In the following, we consider a homogeneous ensemble of

Contribution to “Agents, Simulation and Applications” ed. by A. Uhrmacher and D. Weyns



Agents for Traffic Simulation (A. Kesting, M. Treiber and D. Helbing) 10

-5
-4
-3
-2
-1
 0
 1
 2
 3

 0  20  40  60  80  100  120

A
cc

el
er

at
io

n 
(m

/s
2 )

Simulation time (s)

a = 1.4 m/s2

a = 2.8 m/s2

 0

 20

 40

 60

 80

 100

 120

V
el

oc
ity

 (
km

/h
)

(a) Increasing the ’maximum acceleration’ parameter

a = 1.4 m/s2

a = 2.8 m/s2

-5
-4
-3
-2
-1
 0
 1
 2
 3

 0  20  40  60  80  100  120

A
cc

el
er

at
io

n 
(m

/s
2 )

Simulation time (s)

b = 2.0 m/s2

b = 5.0 m/s2

 0

 20

 40

 60

 80

 100

 120

V
el

oc
ity

 (
km

/h
)

(b) Increasing the ’comfortable deceleration’ parameter

b = 2.0 m/s2

b = 5.0 m/s2

Figure 4: Simulation of a single driver-vehicle agent modeled by the IDM: The diagrams show the

acceleration to the desired speed v0 = 120 km/h followed by braking as a reaction to a standing obstacle

located 3000m ahead for several combinations of the IDM acceleration parameters a [in diagram (a)]

and b [in (b)]. The remaining parameters are a = 1.4m/s2, b = 2.0m/s2, T = 1.5 s, s0 = 2m.

identical driver-vehicle agents corresponding to identical parameter settings. Then, the IDM
acceleration equation (1) with the constant setting δ = 4 simplifies to

se(v) =
s0 + vT

√

1−
(

v
v0

)4
. (7)

The equilibrium distance depends only on the minimum jam distance s0, the safety time
gap T and the desired speed v0. The diagrams (a) and (b) in Fig. 5 show the equilibrium
distance as a function of the velocity, se(v), for different v0 and T parameter settings while
keeping the minimum distance constant at s0 = 2m. In particular, the equilibrium gap of
homogeneous congested traffic (with v ≪ v0) is essentially equal to the desired gap, se(v) ≈
s∗(v, 0) = s0 + vT . It is therefore composed of the minimum bumper-to-bumper distance
s0 kept in stationary traffic at v = 0 and an additional velocity-dependent contribution vT
corresponding to a constant safety time gap T as shown in the diagrams by straight lines. For
v → 0, the equilibrium distance approaches the minimum distance s0. If the velocity is close
to the desired speed, v ≈ v0, the equilibrium distance se is clearly larger than the distance vT
according to the safety time gap parameter. For v → v0, the equilibrium distance diverges due
to the vanishing denominator in Eq. (7). That is, the free speed is reached exactly only on a
free road.

In the literature, the equilibrium state of homogeneous and stationary traffic is often for-
mulated in macroscopic quantities such as traffic flow Q, (local) average velocity V and traffic
density ρ. The translation from the microscopic net distance s into the density is given by the
micro-macro relation

s =
1

ρ
− l, (8)

where l is the vehicle length. In equilibrium traffic, ρ is therefore given by se, the mean velocity
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Figure 5: Equilibrium distance se(v) according to Eq. (7) as functions of the speed for different settings

of the desired speed v0 and the safety time gap T . The deviations from the dotted lines are discussed

in the main text. The other parameters are those listed in the caption of Fig. 4.

is simply V = ve and the traffic flow follows from the hydrodynamic relation

Q = ρV. (9)

So, the equilibrium velocity ve is needed as a function of the distance se. An analytical expres-
sion for the inverse of Eq. (7), that is the equilibrium velocity as a function of the gap, ve(s),
is only available for the acceleration exponents δ = 1, 2 or δ → ∞ [THH00]. For δ = 4, we
only have a parametric representation ρ(v) with v ∈ [0, v0] resulting from Eqs. (8) and (7).
Figures 6(a) and (b) show the equilibrium velocity-density relation Ve(ρ) for the same param-
eter settings as in Fig. 5. The assumed vehicle length l = 5m together with the minimum jam
distance s0 = 2m results in a maximum density ρmax = 1/(s0 + l) ≈ 143 vehicles/km. Using
the relation (9), we obtain the so-called fundamental diagram between the traffic flow and the
vehicle density, Q(ρ) = V ρ(v) which is displayed in Fig. 6(c) and (d). Notice that Q is typically
given in units of vehicles per hour and the density ρ in units of vehicles per km.

According to Eqs. (7) and (8), the fundamental relations of homogeneous traffic depend
on the desired speed v0 (low density), the safety time gap T (high density) and the jam
distance s0 (jammed traffic). In the low-density limit ρ ≪ 1/(v0T ), the equilibrium flow can
be approximated by Q ≈ v0ρ. In the high density regime, one has a linear decrease of the flow,

Q(ρ) ≈ 1− ρ(l + s0)

T
, (10)

which can be used to determine the effective length l+s0 and T . Notice that the vehicle length
is not a model parameter but only a scaling quantity that determines the (static) maximum
density ρmax together with the IDM parameter s0.

3.2 Inter-Driver Variability

An important aspect of vehicular traffic is the heterogeneity of agents, a term which includes
characteristics of the drivers as well as features of the vehicle. The multi-agent simulation
approach is appropriate for representing this heterogeneity on a microscopic level. In order to
address inter-driver variability (different drivers behave differently in identical traffic situa-
tions) and vehicle properties (such as length, width, weight and motorization) we propose to

Contribution to “Agents, Simulation and Applications” ed. by A. Uhrmacher and D. Weyns



Agents for Traffic Simulation (A. Kesting, M. Treiber and D. Helbing) 12

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140

E
qu

ili
br

iu
m

 v
el

oc
ity

 v
e 

(k
m

/h
)

Density ρ (vehicles/km)

(a)

v0=120 km/h, T=1.0 s
v0=120 km/h, T=1.5 s
v0=120 km/h, T=2.0 s

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120  140

E
qu

ili
br

iu
m

 v
el

oc
ity

 v
e 

(k
m

/h
)

Density ρ (vehicles/km)

(b)

v0=80 km/h, T=1.0 s
v0=80 km/h, T=1.5 s
v0=80 km/h, T=2.0 s

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140

F
lo

w
 Q

 (
ve

hi
cl

es
/h

)

Density ρ (vehicles/km)

(c)

(1-ρ(l+s0))/T

v0T

v0=120 km/h, T=1.0 s  
v0=120 km/h, T=1.5 s  
v0=120 km/h, T=2.0 s  

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140

F
lo

w
 Q

 (
ve

hi
cl

es
/h

)

Density ρ (vehicles/km)

(d)

(1-ρ(l+s0))/T

v0T

v0=80 km/h, T=1.0 s  
v0=80 km/h, T=1.5 s  
v0=80 km/h, T=2.0 s  

Figure 6: Equilibrium velocity-density relations of the IDM (top) and corresponding flow-density rela-

tions, so-called fundamental diagrams (bottom). The equilibrium properties depend on the minimum

distance s0 (here set to 2m), the desired speed v0 (here displayed for 120 and 80 km/h) and the time

gap T (here 1.0, 1.5 and 2.0 s). The safety time gap is the most important parameter determining the

maximum flow (stationary freeway capacity).

group driver-vehicle agents into classes defining their specific driving styles and vehicle prop-
erties. For this purpose, it is advantageous that the parameters of the Intelligent Driver Model
do have an intuitive meaning and are directly related to driving behavior. In the following, we
discuss the parameter settings for three classes of passenger car drivers representing “normal”,
“timid” and “aggressive” driving styles. In addition, we model a typical truck driver. The
corresponding parameter values are listed in Table 2.

• The desired speed v0 is the maximum speed a driver-vehicle agent aims to reach under
unobstructed driving conditions. A natural value and upper limit for this parameter
would be the typical (highest) speed on the considered road element. The normal driver
chooses for instance 120 km/h on a freeway while a timid driver prefers a lower value
and a more aggressive driver likes to go faster. The desired speed could be limited by
legislation. In city traffic, the speed is typically limited to 50 km/h (cf. the simulation
scenario in Sec. 4.2). In this case, a timid driver likes to drive a bit below this limit while
an aggressive driver can easily be modeled by an individual “disobedience factor”. Notice
that strict speed limits apply to trucks on the whole road network in most countries.

• The desired time gap T refers to the preferred distance vT while driving at speed v, cf.
Eq. (2), and mainly determines the maximum capacity (cf. Fig. 6). A typical value in
dense traffic is about 1.4 s while German road authorities recommend 1.8 s. A common ob-
servation on European freeways is that very small time gaps are kept [TKH06b, KSSS02].
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IDM Parameter Normal Timid Aggressive Truck

Desired speed v0 in km/h 120 100 140 85
Desired time gap T in s 1.5 1.8 1.0 2.0
Jam distance s0 in m 2.0 4.0 1.0 4.0
Maximum acceleration a in m/s2 1.4 1.0 2.0 0.7
Desired deceleration b in m/s2 2.0 1.0 3.0 2.0

Table 2: Model parameters of the Intelligent Driver Model for three classes of passenger car drivers and

a typical truck driver.

• The parameter s0 describes the minimum bumper-to-bumper distance at a standstill, cf.
Eq. (2). Typical gaps in a queue of vehicles standing at traffic lights are in the range
between 1m and 5m. While a normal driver typically keeps a minimum gap of 2m, a
cautious driver prefers larger gaps and an aggressive driver likes tailgating. It is natural
to assume that truck drivers prefer slightly larger gap than the normal car driver due
to larger vehicle dimensions. Notice that the vehicle length is not a model parameter.
However, it determines the maximum density together with the minimum distance s0
according to Eq. (8). Typical vehicle lengths are for instance 5m for cars and 12m for
trucks.

• The desired acceleration a describes the acceleration behavior of the driver. Notice that
the acceleration depends on the actual vehicle speed as shown, for example, in Fig. 4.
Since the acceleration behavior is based on a physical movement, the value of a has to
respect the limits of motorization. Consequently, a truck has to be modeled by a lower
desired acceleration a than a passenger car. An aggressive driver prefers to accelerate fast
(e.g. 3m/s2) while a timid driver prefers a lower value (e.g. 1m/s2). The acceleration
exponent δ = 4 is kept constant for all driver classes, cf. Eq. (1).

• The comfortable braking deceleration b determines the approaching process toward slower
leaders or stationary objects such as traffic lights (see Sec. 4.2). As the IDM tries to
limit the braking deceleration to b, a low value (b = 1m/s2) represents a driver who
breaks accurately in an anticipative way corresponding to a smooth driving style. By
way of contrast, a higher value (b = 3m/s2) describes an aggressive driver who prefers
to approach the leader with a large velocity difference.

Taking these average parameters for each driver class as a starting point, it is straightforward
to distribute individual agent parameters randomly within given limits, e.g. according to a
uniform distribution with a variation of 20%.

3.3 Intra-Driver Variability

Besides reacting to the immediate traffic environment, human drivers adapt their driving style
on longer time scales to the traffic situation. Thus, the actual driving style depends on the
traffic conditions of the last few minutes which we call memory effect [TH03]. For example,
it is observed that most drivers increase their preferred temporal headway after being stuck
in congested traffic for some time [BP96, FSSe03]. Furthermore, when larger gaps appear or
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when reaching the downstream front of the congested zone, human drivers accelerate less and
possibly decrease their desired speed as compared to a free-traffic situation.

In contrast to inter-driver variability considered in Sec. 3.2, the memory effect is an example
of intra-driver variability meaning that a driver behaves differently in similar traffic situations
depending on his or her individual driving history and experience. Again, the multi-agent
approach can easily cope with this extension of driving behavior as soon as one has a specific
model to implement. By way of example, we present a model that introduces a time-dependency
of some parameters of the Intelligent Driver Model to describe the frustration of drivers being
in a traffic jam for a period [TH03].

We assume that adaptations of the driving style are controlled by a single internal dynamical
variable λ(t) that represents the “subjective level of service” ranging from 0 (in a standstill)
to 1 (on a free road). The subjective level of service λ(t) relaxes to the instantaneous level of
service λ0(v) depending on the agent’s speed v(t) with a relaxation time τ according to

dλ

dt
=

λ0(v)− λ

τ
. (11)

This means that for each driver, the subjective level of service is given by the exponential
moving average of the instantaneous level of service experienced in the past:

λ(t) =

∫ t

0
λ0(v(t

′)) e−(t−t′)/τdt′. (12)

We have assumed the instantaneous level of service λ0(v) to be a function of the actual velocity
v(t). Obviously, λ0(v) should be a monotonically increasing function with λ0(0) = 0 and
λ0(v0) = 1 when driving with the desired speed v0. The most simple “level-of-service function”
satisfying these conditions is the linear relation

λ0(v) =
v

v0
. (13)

Notice that this equation reflects the level of service or efficiency of movement from the agent’s
point of view, with λ0 = 1 meaning zero hindrance and λ0 = 0 meaning maximum hindrance.
If one models inter-driver variability (Sec. 3.2) where different drivers have different desired
velocities, there is no objective level of service, but rather only an individual and an average
one.

Having defined how the traffic environment influences the degree of adaptation λ(t) of each
agent, we now specify how this internal variable influences driving behavior. A behavioral
variable that is both measurable and strongly influences the traffic dynamics is the desired
time gap T of the IDM. It is observed that, in congested traffic, the whole distribution of time
gaps is shifted to the right when compared with the data of free traffic [TH03, TKH06b]. We
model this increase by varying the corresponding IDM parameter in the range between T0 (free
traffic) and Tjam = βTT0 (traffic jam) according to

T (λ) = λT0 + (1− λ)Tjam = T0 [βT + λ(1− βT )] . (14)

Herein, the adaptation factor βT is a model parameter. A value for the frustration effect is
βT = Tjam/T0 = 1.8 which is consistent with empirical observations. A typical relaxation
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time for the driver’s adaptation is τ = 5min. Notice that other parameters of the driving
style are probably influenced as well, such as the acceleration a, the comfortable deceleration
b or the desired velocity v0. This could be implemented by analogous equations for these
parameters. Furthermore, other adaption processes as well as the presented frustration effect
are also relevant [TKH06b].

4 Modeling Discrete Decisions

On the road network, drivers encounter many situations where a decision between two or
more alternatives is required. This relates not only to lane-changing decisions but also to
considerations as to whether or not it is safe to enter the priority road at an unsignalized
junction, to cross such a junction or to start an overtaking maneuver on a rural road. Another
question concerns whether or not to stop at an amber-phase traffic light. All of the above
problems belong to the class of discrete-choice problems that, since the pioneering work of
McFadden [HM84], has been extensively investigated in an economic context as well as in the
context of transportation planning. In spite of the relevance to everyday driving situations,
there are fewer investigations attempting to incorporate the aforementioned discrete-choice
tasks into microscopic models of traffic flow, and most of them are restricted to modeling lane
changes [Gip86]. Only very recently acceleration and discrete-choice tasks have been treated
more systematically [TKBA07, KTH07].

The modeling of lane changes is typically considered as a multi-step process. On a strategic

level, the driver knows about his or her route on the network which influences the lane choice,
e.g. with regard to lane blockages, on-ramps, off-ramps or other mandatory merges [TCBA05].
In the tactical stage, an intended lane change is prepared and initiated by advance accelerations
or decelerations of the driver, and possibly by cooperation of drivers in the target lane [Hid05].
Finally, in the operational stage, one determines if an immediate lane change is both safe and
desired [Gip86]. While mandatory changes are performed for strategic reasons, the driver’s
motivation for discretionary lane changes is a perceived improvement of the driving conditions
in the target lane compared with the current situation.

In the following, we will present a recently formulated general framework for modeling
traffic-related discrete-choice situations in terms of the acceleration function of a longitudinal
model [KTH07]. For the purpose of illustration, we will apply the concept to model mandatory
and discretionary lane changes (Sec. 4.1). Furthermore, we will consider the decision process
whether or not to brake when approaching a traffic light turning from green to amber (Sec. 4.2).

4.1 Modeling Lane Changes

Complementary to the longitudinal movement, lane-changing is a required ingredient for sim-
ulations of multi-lane traffic. The realistic description of multi-agent systems is only possible
within a multi-lane modeling framework allowing faster driver-vehicle agents to improve their
driving conditions by passing slower vehicles.

When considering a lane change, a driver typically makes a trade-off between the expected
own advantage and the disadvantage imposed on other drivers. For a driver considering a lane
change, the subjective utility of a change increases with the gap to the new leader in the
target lane. However, if the speed of this leader is lower, it may be favorable to stay in the
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present lane despite the smaller gap. A criterion for the utility including both situations is the
difference between the accelerations after and before the lane change. This is the core idea of
the lane-changing algorithm MOBIL [KTH07] that is based on the expected (dis)advantage
in the new lane in terms of the difference in the acceleration which is calculated with an
underlying microscopic longitudinal traffic model, e.g. the Intelligent Driver Model (Sec. 3.1).

For the lane-changing decision, we first consider a safety constraint. In order to avoid acci-
dents by the follower in the prospective target lane, the safety criterion

v̇follow ≥ −bsafe (15)

guarantees that the deceleration of the successor v̇follow in the target lane does not exceed a
safe limit bsafe ≃ 4m/s2 after the lane change. In other words, the safety criterion essentially
restricts the deceleration of the lag vehicle on the target lane to values below bsafe. Although
formulated as a simple inequality, this condition contains all the information provided by the
longitudinal model via the acceleration v̇follow. In particular, if the longitudinal model has a
built-in sensitivity with respect to velocity differences (such as the IDM) this dependence is
transfered to the lane-changing decisions. In this way, larger gaps between the following vehicle
in the target lane and the own position are required to satisfy the safety constraint if the speed
of the following vehicle is higher than the own speed. In contrast, lower values for the gap are
allowed if the back vehicle is slower. Moreover, by formulating the criterion in terms of safe
braking decelerations of the longitudinal model, crashes due to lane changes are automatically

excluded as long as the longitudinal model itself guarantees crash-free dynamics.
For discretionary lane changes, an additional incentive criterion favors lane changes when-

ever the acceleration in one of the target lanes is higher. The incentive criterion for a lane
change is also formulated in terms of accelerations. A lane change is executed if the sum of
the own acceleration and those of the affected neighboring vehicle-driver agent is higher in the
prospective situation than in the current local traffic state (and if the safety criterion (15) is
satisfied of course). The innovation of the MOBIL framework [KTH07] is that the immediately
affected neighbors are considered by the “politeness factor” p. For an egoistic driver corre-
sponding to p = 0, this incentive criterion simplifies to v̇new > v̇old. However, for p = 1, lane
changes are only carried out if this increases the combined accelerations of the lane-changing
driver and all affected neighbors. This strategy can be paraphrased by the acronym “Minimiz-

ing Overall Braking Induced by Lane Changes” (MOBIL). We observed realistic lane-changing
behavior for politeness parameters in the range 0.2 < p < 1 [KTH07]. Additional restrictions
can easily be included. For example, the “keep-right” directive of most European countries is
implemented by adding a bias to the incentive criterion. A “keep-lane” behavior is modeled by
an additional constant threshold when considering a lane change.

4.2 Approaching a Traffic Light

When approaching a traffic light that switches from green to amber, a decision has to be made
whether to stop just at the traffic light or to pass the amber-phase light with unchanged speed.
For an empirical study on the stopping/running decision at the onset of an amber phase we refer
to Ref. [RESS07]. If the first option is selected, the traffic light will be modeled by a standing
“virtual” vehicle at the position of the light. Otherwise, the traffic light will be ignored. The
criterion is satisfied for the “stop at the light” option if the own braking deceleration at the
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Figure 7: Approaching a traffic switching from green to amber. The two options of the decision situation

are to stop in front of the light or to pass the amber-phase traffic light with unchanged speed.

time of the decision does not exceed the safe deceleration bsafe. The situation is illustrated in
Fig. 7. Denoting the distance to the traffic light by sc and the velocity at decision time by vc
and assuming a longitudinal model of the form (1), the safety criterion (15) can be written as

v̇(sc, vc, vc) ≥ −bsafe. (16)

Notice that the approaching rate and the velocity are equal (∆vc = vc ) in this case. The
incentive criterion is governed by the bias towards the stopping decision because legislation
requires that one stop at an amber-phase traffic light if it is safe to do so. As a consequence,
the incentive criterion is always fulfilled, and Eq. (16) is the only decision criterion in this
situation.

Similarly to the lane-changing rules, the “stopping criterion” (16) will inherit all the sophis-
tication of the underlying car-following model. In particular, when using realistic longitudinal
models, one obtains a realistic stopping criterion with only one additional parameter bsafe.
Conversely, unrealistic microscopic models such as the Optimal Velocity Model [BHN+95] or
the Nagel-Schreckenberg cellular automaton [NS92] will lead to unrealistic stopping-decisions.
In the case of the Optimal Velocity Model, it is not even guaranteed that drivers deciding to
stop will be able to stop at the lights.

For the purpose of illustration, we apply the concept to the following situation in city traffic:
A car is driving at speed vc = 50km/h towards an amber traffic light located at a distance
sc = 50m. Applying the IDM parameters of a “normal” driver listed in Table 2 in combination
with an adapted desired speed of v0 = 50km/h, the acceleration function (1) results in an
initial braking of v̇(0) ≈ 3.6m/s2 at t = 0 s. For a safe deceleration equal to the desired
deceleration of the IDM, that is bsafe = b = 2.0m/s2, the MOBIL decision says “drive on”. If,
however, a safe braking deceleration of bsafe = 4m/s2 is assumed, the driver agent would decide
to brake resulting in the approaching maneuver shown in Fig. 8. The initial braking stronger
than −2m/s2 makes the situation manageable for the agent. After 2 s, the situation is “under
control” and the vehicle brakes approximately with the comfortable deceleration b = 2m/s2. In
order to reach a standstill in a smooth way, the deceleration is reduced to limit the jerk which
defines the change in the acceleration. In addition, Fig. 8 shows the behavior of the second
vehicle following the leader. The acceleration time series shows the important feature of the
IDM in limiting braking decelerations to the comfortable limit b as long as safety is warranted.
From these results it is obvious that the setting bsafe = b is a natural assumption to model the
decision process realistically. Notice, however, that a human reaction time of about 1 s [Gre00]
has to be taken into account as well.
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Figure 8: Maneuver of approaching a traffic light initially 50m with a speed of 50 km/h according to the

Intelligent Driver Model. The braking deceleration is limited to the comfortable braking deceleration

(IDM parameter b) whenever possible. The stronger braking of the first car is needed to keep the

situation under control. The parameters for the simulation are listed in Table 2.

5 Microscopic Traffic Simulation Software

So far, we have discussed models describing the longitudinal movement and discrete decisions
of individual driver-vehicle agents. Let us now address the issue of a simulation framework that
integrates these components into a microscopic multi-lane traffic simulator. Typical relations
among functions in a microscopic traffic simulator are shown in Fig. 9. On the level of input
data, simulation settings can be provided by input files, e.g. encoded in XML, by command line
or via a graphical user interface (GUI). The main simulation loop is organized by a Simulation

Controller which keeps track of the program operations and user actions. This central control
unit calls the update methods of the road-section objects. We will elaborate on these compo-
nents in Sec. 5.1. Since the calculation of the vehicle accelerations is the very core of a traffic
simulation, we will pinpoint the issue in Sec. 5.2. Simulation results can be written to data
files and, in addition, visualized by 2D and 3D computer graphics on the screen (see Sec. 5.3).
Furthermore, we will extend the simulator in order to simulate inter-vehicle communication
(see Sec. 6.3 below).

There are a number of interactive simulators available publicly. The website [Tre07] deploys
the Intelligent Driver Model [THH00] introduced in Sec. 3.1 for cars and trucks together with
the lane-changing algorithm MOBIL [KTH07]. This demonstrator simulates typical bottleneck
scenarios such as on-ramps, lane-closings, uphill grades and or traffic lights. Another open
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Figure 9: Illustration of possible relations among functions in a traffic simulation framework. The input

data defining a simulation setting can be provided by data files, the command line or a graphical user

interface (GUI). The main simulation loop is organized by a “Simulation Controller” which controls

the update of the road network, the graphical representation (“SimViewer”) and the output functions

corresponding to measurements of several microscopic and macroscopic quantities.

source simulator for whole traffic networks is SUMO [SoUM]. The software uses the Krauss
model [KWG97]. Recently, FreeSim has been made available to the public [Mil07]. Further-
more, commercial traffic simulation software tools (for instance VISSIMTM, AIMSUNTM or
PARAMICSTM) offer a variety of additional modules such as emission or pedestrian models
and interfaces, e.g. for controlling simulation runs by remote and for implementing additional
features. These commercial products incorporate sophisticated virtual environment 3D engines.
Note, however, that the underlying models are generally not well documented.

5.1 Simulator Design

Next to the functional view shown in Fig. 9, a hierarchical view can be used to represent the
dependencies and inherited properties which makes use of the object-oriented programming
paradigm by representing and abstracting functional units as classes. The best example is the
representation of a driver-vehicle agent as an abstract class with several possible designs for
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human drivers, vehicles equipped with adaptive cruise control [KTSH07, KTSH08] or even
driverless ones as recently demonstrated in reality [(DA07]. However, each agent has a number
of defining properties such as length, width, weight, form and color. Furthermore, each agent
requires a model for the lengthwise movement which is in turn an abstract class with the
presented IDM as a specific implementation. Further components are required in order to
model other aspects of driver behavior such as lane changes, memory, etc. Since each agent is
represented by an individual object, it is straightforward to assign individual parameter values
to account for driver diversity (Sec. 3.2).

The road network can be represented by connected road sections such as main roads, on-
ramps and off-ramps. A road section is defined by its properties like length, number of lanes,
etc. In addition, an element may contain attributes representing the concrete infrastructure
relevant to the driver-vehicle agents such as lane closures, lane narrowings, speed limits, uphill
gradients and/or traffic lights. Notice that the set of attributes which is relevant for the behavior
and decision-making has to be available to the agent.

The most detailed view on the innermost update loop of a road section is given in terms of
the following pseudo code:

updateRoadSection(){

updateNeigborhood(); // organizing set of vehicles in multiple lanes

updateInfrastruture(); // active road attributes (e.g. traffic lights)

updateAgentsRoadConditions(); // attributes affect agents

calculateAccelerations(); //evaluate longitudinal models of agents

laneChanges(); // decision making and performing lane changes

updatePositionsAndSpeeds(); // integration within discrete update

updateBoundaries(); // inflow and outflow

updateOutput(); // log observable quantities and update detectors

}

5.2 Numerical Integration

The explicit integration in the updatePositionsAndSpeeds function of all driver-vehicle agents
α is the very core of a traffic simulator. In general, the longitudinal movement of the vehicles
is described by car-following models which take into account the direct leader and result in
expressions for the acceleration function of the form

dvα
dt

= f (sα, vα,∆vα) , (17)

that is the acceleration depends only on the own speed vα, the gap sα, and the velocity difference
(approaching rate) ∆vα = vα − vα−1 to the leading vehicle (α− 1). Note that we discussed the
Intelligent Driver Model (IDM) as an example for a car-following model in Sec. 3.1. Together
with the gap sα(t) = xα−1(t)− xα(t)− lα−1 and the general equation of motion,

dxα
dt

= vα, (18)

Eq. (17) represents a (locally) coupled system of ordinary differential equations (ODEs) for
the positions xα and velocities vα of all vehicles α.
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As the considered acceleration functions f are in general nonlinear, we have to solve the
set of ODEs by means of numerical integration. In the context of car-following models, it is
natural to use an explicit scheme assuming constant accelerations within each update time
interval ∆t. This leads to the explicit numerical update rules

vα(t+∆t) = vα(t) + v̇α(t)∆t,

xα(t+∆t) = xα(t) + vα(t)∆t+
1

2
v̇α(t)(∆t)2,

(19)

where v̇α(t) is an abbreviation for the acceleration function f (sα(t), vα(t),∆vα(t)). For ∆t →
0 s, this scheme locally converges to the exact solution of (17) with consistency order 1 for the
velocities (“Euler update”, cf. [PTVF92]) and consistency order 2 for the positions (“modified
Euler update”) with respect to the L2-norm.2 Because of the intuitive meaning of this update
procedure in the context of traffic, the update rule (19) or similar rules are sometimes considered
to be part of the model itself rather than as a numerical approximation [KT08b]. A typical
update time interval ∆t for the IDM is between 0.1 s and 0.2 s. Nevertheless, the IDM is
approximately numerically stable up to an update interval of ∆t ≈ T/2, that is half of the
desired time gap parameter T .

5.3 Visualization

Besides the implementation of the simulation controller with the focus on quantitative models,
the visualization of vehicle movements is also an important aspect of simulation software. In
the case of vehicular traffic it is straightforward to envision the vehicle trajectories over the
course of time whether in 2D or 3D. The latter representation is of course more demanding.
Figure 10 illustrated an example of a “bird’s eye view” of a two-lane freeway with an on-ramp,
while Fig. 11 illustrates a “cockpit perspective” of a driving vehicle on the road. Note that the
3D engine was programmed from scratch as an exercise by the authors. However, higher level
tools and open source 3D engines for OpenGL are available. For more details on this subject
we refer to the chapter “Crowd Behavior Modeling: From Cellular Automata to Multi-Agent
Systems” by Bandini, Manzoni and Vizzari.

The animated visualization demonstrates both the individual interactions and the resulting
collective dynamics. In particular, the graphical visualization turns out to be an important
tool when developing and testing lane-changing models and other decisions based on complex
interactions with neighboring vehicles for their plausibility. In fact, the driving experiences of
programmers offer the best measure of realism and also provide stimulus for further model
improvements.

Last but not least, scientists and experts have to keep in mind that computer animations
have become an important tool for a fast and intuitive knowledge transfer of traffic phenomena
to students, decision-makers and the public. In particular, visualization in real time allows for

2A time-continuous traffic model is mathematically consistent if a unique local solution exists and if a numerical
update scheme exists whose solution locally converges to this solution when the update time interval goes
to zero. It has the consistency order q if ||ǫ|| = O(∆tq) for ∆t → 0 s where ǫ denotes the deviation of the
numerical solution for xα or vα with respect to the exact solution, and || · || is some functional norm such as
the L2-Norm.
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Figure 10: Example of 2D visualization of a two-lane freeway with an on-ramp from the website [Tre07].

The screenshot shows the breakdown of traffic flow at the on-ramp serving as a bottleneck. A stop-

and-go wave (cluster of vehicles) is propagating against the driving direction. The source code of the

simulator is publicly available as an open source.

direct user interaction influencing the simulation run, e.g. by changing the simulation con-
ditions (in terms of inflows and driver population) and parameter settings of the underlying
models. In this way, the complexity of simulation techniques (which are based on assumptions,
mathematical models, many parameters and implementational details) can become more ac-
cessible.

Finally, we remark that animation is a playground for the programmers. For instance, the
full cup of coffee in Fig. 11 represents not just a comforting habit of the agent but is also a vivid
way to illustrate the simulated longitudinal acceleration as well as transverse accelerations due
to lane-changing. Moreover, the coffee level is a measure of the riding comfort because it is also
sensitive to the derivative of the acceleration which is perceived as a jerk by the driver. The
hydrodynamic equations of the coffee surface in the cup with a diameter 2r are astonishingly
realistically approximated by a harmonious pendulum with two degrees of freedom φx and φy

denoting the angles of the surface normal:

φ̈x +
2π

τ
φ̇x + ω2

0φx +
ẍ

r
= 0,

φ̈y +
2π

τ
φ̇y + ω2

0φy +
ÿ

r
= 0.

(20)

The second time derivates ẍ and ÿ denote the vehicle accelerations in longitudinal and transver-
sal direction. The angular frequency is ω0 =

√

g/r where g is the gravitational constant. During
a coffee break, the damping time τ of Java coffee was empirically determined as τ = 12 s by
the authors.

6 From Individual to Collective Properties

After having constructed the driver-vehicle agents, let us now adopt them in a multi-agent
simulation in which they interact with each other. The process of simulating agents in parallel is

Contribution to “Agents, Simulation and Applications” ed. by A. Uhrmacher and D. Weyns



Agents for Traffic Simulation (A. Kesting, M. Treiber and D. Helbing) 23

Figure 11: Example of a 3D animation from the driver perspective. Notice that the “Coffeemeter”

visualizes the acceleration and the jerk (the changes of all acceleration with time) which are difficult to

visualize by other means. It therefore serves as a measure of the driving comfort.

one of emergence from the microscopic level of pairwise interactions to the higher, macroscopic
level in order to reproduce and predict real phenomena.

In this section, we will present three simulation applications. In Sec. 6.1, we will demonstrate
the emergence of a collective pattern from individual interactions between driver-vehicle agents
by simulating the breakdown of traffic flow and the development of a stop-and-go wave. The
simulation will show the expressive power of the Intelligent Driver Model in reproducing the
characteristic backwards propagation speed which is a well-known constant of traffic world
wide. In Sec. 6.2, we will apply the traffic simulation framework to analyze the impact of a
speed limit as an example of a traffic control task . By way of this example, we will demonstrate
the predictive power of microscopic traffic flow simulations.

Last but not least, we apply the simulation framework to study a coupled system consisting
of communicating driver-vehicle agents using short-range wireless networking technology in
Sec. 6.3. Since the multi-agent approach is a flexible general-purpose tool, one can addition-
ally equip an agent with short-range communication devices that can self-organize with other
devices in range into ad-hoc networks. Such inter-vehicle communication has recently gained
much attention in the academic and engineering world. It is expected to provide great en-
hancement to the safety and efficiency of modern individual transportation systems. By means
of simulation, we will demonstrate the dissemination of information about the local traffic
situation over long distances even for small equipment rates in the vehicle fleet.

6.1 Emergence of Stop-and-Go Waves

Let us first study the emergence of a collective traffic phenomenon in a simple ring road
scenario as depicted in Fig. 12(a). Note that this scenario can be used interactively on the
website [Tre07]. Such a closed system is defined by an initial value problem. The control pa-
rameter is the homogeneous traffic density which essentially determines the long-term behavior
of the system. In the simulation, the initial traffic density is too high to be able to retain free
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Figure 12: (a) Emergence of a stop-and-go wave in a simulation and (b) stop-and-go traffic on the

German freeway A9 South in the north Munich region. Notice that the spatiotemporal traffic dynamics

in diagram (b) have been reconstructed from loop detector data using an interpolation method [TH02].

The characteristic propagation speed of stop-and-go waves of about 15 km/h against the driving direc-

tion is a self-organized “constant” of traffic flow which is reproduced by the Intelligent Driver Model

used in the simulation (a).

flow conditions.
In the course of time, a vehicle eventually changes lanes resulting in a smaller gap for the

following vehicle, which, in turn, has to brake in order to re-establish a safe distance to the new
leader. After the initial braking, the next follower again needs some time to respond to this new
situation by decelerating. The perturbation therefore increases while propagating in upstream
direction, that is against the driving direction of the vehicle flow (see Fig. 12(a)). This response
mechanism acts like a “vicious circle”: Each following driver has to reduce his or her speed
a bit more to regain the necessary safety distance. Eventually, vehicles further upstream in
the platoon brake to a standstill. Moreover, the time to re-accelerate to the restored speed of
the leading vehicle takes even more time due to limited acceleration capabilities. Finally, we
observe the emergence of a stop-and-go wave.

Stop-and-go waves are also observed in real traffic as shown in Fig. 12(b) for the German
freeway A9 South in the north Munich region. Single stop-and-go waves propagate over more
than 10 km leading to their description as “phantom traffic jams”. Their propagation speed is
arguably constant. From the time-space diagram in Fig. 12(b), the propagation speed of the
downstream front of the stop-and-go wave can be determined as approximately 15.5 km/h. In
each country, typical values for this “traffic constant” are in the range 15± 5 km/h, depending
on the accepted safe time clearance and average vehicle length [KR96b]. Consequently, realistic
traffic models should reproduce this self-organized property of traffic flow.

6.2 Impact of a Speed Limit

Microscopic traffic models are especially suited to the study of heterogeneous traffic streams
consisting of different and individual types of driver-vehicle agents.
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Figure 13: Realistic simulation of an empirical traffic breakdown caused by an uphill gradient located

around x = 40km by using velocity and flow data from loop detectors as upstream boundary conditions

(a) without speed limit and (b) with a speed limit of 80 km/h. Diagram (c) shows the travel times

corresponding to the scenarios (a) and (b). Notice that the microscopic modeling approach allows for

an estimation of the current travel time by simply summing up the travel times derived from the speeds

of each driver-vehicle agent simultaneously. In accordance with Treiber and Helbing [TH01].

In the following scenario, we will study the effect of a speed limit for a section of the German
freeway A8 East containing an uphill section around x = 40km [TH01]. We considered the
situation during the evening rush hour on November 2, 1998. In the evening rush hour at about
17 h, traffic broke down at the uphill section. In the simulation shown in Fig. 13(a), we used
lane-averaged one-minute data of velocity and flow measured by loop detectors as upstream
boundary conditions reproducing the empirical traffic breakdown. In contrast to the ring road
scenario in Sec. 6.1, the inflow at the upstream boundary is the natural control parameter for
the open system.

We have assumed two vehicle classes: 50% of the drivers had a desired speed of v0 =
120 km/h, while the other half had v0 = 160 km/h outside of the uphill region. A speed limit
reduces the desired velocities to 80 km/h. Within the uphill region, both driver-vehicle classes
are forced to drive at a maximum of 60 km/h (for example, due to overtaking trucks that are
not considered explicitly here).

Figure 13 shows spatiotemporal plots of the locally averaged traffic density for scenarios
with and without the speed limit. The simulations show the following:

• During the rush hour (17 h ≤ t ≤ 19 h), the overall effect of the speed limit is positive.
The increased travel times in regions without congestion are overcompensated by the
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saved time due to the avoided breakdown.

• For lighter traffic (t < 17 h or t > 19 : 30 h), however, the effect of the speed limit
is clearly negative. Note that this problem can be circumvented by traffic-dependent,
variable speed limits.

Although the speed limit reduces the velocity, it can improve the quality of traffic flow while
uphill regions obviously results in a deterioration. To understand this counter-intuitive result,
we point out that the desired speed v0 corresponds to the lowest value of (i) the maximum
velocity allowed by the motorization, (ii) the imposed speed limits (possibly with a “disobe-
dience factor”), and (iii) the velocity actually “desired” by the driver. Therefore, speed limits
act selectively on the faster vehicles, while uphill gradients reduce the speed especially of the
slower vehicles. As a consequence, speed limits reduce velocity differences, thereby stabilizing
traffic, while uphill gradients increase them. For traffic consisting of identical driver-vehicle
combinations (one driver-vehicle class), these differences are neglected and both speed limits
and uphill gradients have in fact the same (negative) effect. Since global speed limits always
raise the travel time in off-peak hours when free traffic is unconditionally stable (cf. Fig. 13(c)),
traffic-dependent speed limits are an optimal solution. Note that the impact of a speed limit
on the homogenization of traffic flow can be studied interactively on the website [Tre07] for a
lane-closing scenario instead of an uphill bottleneck.

6.3 Store-and-Forward Strategy for Inter-Vehicle Communication

Recently, there has been growing interest in wireless communication between vehicles and
potential applications. In particular, inter-vehicle communication (IVC) is widely regarded as
a promising concept for the dissemination of information on the local traffic situation and short-
term travel time estimates for advanced traveler information systems [JR06, YR05, SKTH06,
STKH07, WER05]. In contrast to conventional communication channels which operate with
a centralized broadcasting concept via radio or mobile phone services, IVC is designed as
a local service based on the Dedicated Short Range Communication standard enabling data
transmission at a frequency of 5.8GHz. These devices broadcast messages which are received by
all other equipped vehicles within a limited broadcasting range. As IVC message dissemination
is not controlled by a central station, no further communication infrastructure is needed. For
example, wireless local-area networks (IEEE 802.11 a/b/g) have already shown their suitability
for IVC with typical broadcasting ranges of 200-500m [SBSC02, OK04].

In the context of freeway traffic, information on the local traffic situation has to be propa-
gated in an upstream direction. In general, there are two transport strategies: Either a message
“hops” from an equipped car to a subsequent equipped car within the same driving direction
(“longitudinal hopping”) or the message is transmitted to an IVC-equipped vehicle in the other
driving direction which transports the message upstream and delivers it back by broadcasting
it to cars in the original driving direction (“transversal hopping”, “cross-transference” or store-
and-forward). The latter strategy is illustrated in Fig. 14. Although the longitudinal hopping
process allows for a quasi-instantaneous information propagation, the connectivity due to the
limited broadcasting range is too weak in the presence of low equipment rates [SKTH06]. A
concept using IVC for traffic-state detection must therefore tackle the problem that both the
required transport distances into upstream direction and the distances between two equipped
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Figure 14: Illustration of the store-and-forward strategy using the opposite driving direction for prop-

agating messages via short-range inter-vehicle communication in upstream direction. First, a message

is generated on the occasion of a local change in speed. The broadcasted message will be picked up

by an equipped vehicle in the opposite driving direction (first hop). After a certain traveling distance,

the vehicle starts broadcasting the message which can be received by vehicles in the original driving

direction (second hop).

vehicles are typically larger than the broadcasting range. The transversal hopping mechanism
overcomes this problem by using vehicles in the opposite driving direction as relay stations.
Despite the time delay in receiving messages, the messages propagate faster than typical shock
waves (which are limited to a speed of -15 km/h, cf. Sec. 6.1).

The microscopic simulation approach is well suited to coupling traffic and information flows:
The movement of vehicles represents a dynamic network of nodes which determines the spread
of information on the network. For the purpose of demonstration, let us now simulate the chain
of message propagation by means of IVC in an integrated simulation:

1. The generation of traffic-related messages by individual vehicles,

2. the transmission of up-to-date information in upstream direction using store-and-forward
strategy via the opposite driving direction and

3. the receipt of the messages for predicting the future traffic situation further downstream.

The object-oriented design of the traffic simulation software (cf. Sec. 5) can be extended in
a straightforward way: First, the simulation of the store-and-forward strategy requires two
independent freeways in opposite directions. Second, each equipped driver-vehicle agent au-
tonomously detects jam fronts (by means of velocity gradients) and generates traffic-related
messages based on locally available time series data. To this end, the design of a vehicle has been
extended by a detection unit which generates traffic-relevant messages and a communication

unit for broadcasting and receiving messages. Finally, the exchange of messages has been real-
ized by a message pool which organizes the book-keeping of message broadcast and reception
between equipped cars within a limited broadcasting range (corresponding to the outdated
ether concept). As the routing in this system is obviously given by the two traffic streams in
opposite directions, no further rules are necessary for modeling the message exchange process.

We consider a scenario with an assumed fraction of only 3% communicating vehicles. The
resulting trajectories of equipped vehicles in both driving directions together with the gen-
eration of messages and their reception by a considered vehicle are illustrated in Fig. 15. In
this scenario, a temporary road blockage has triggered a stop-and-go wave reflected by hori-
zontal trajectory curves in one driving direction while the traffic flow in the opposite driving
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Figure 15: Space-time diagram of the simulated traffic scenario. The trajectories of the IVC-equipped

vehicles (3%) are displayed by solid or dotted lines depending on the driving direction. The vehicles in the

opposite driving direction serve as transmitter cars for the store-and-forward strategy. For the purpose

of illustration, we have set the maximum broadcasting range to 10m. When cars pass the upstream or

downstream jam front of the moving jam, they broadcast messages (marked by numbers) containing the

detected position and time. They are later received by the considered vehicle further upstream (thick

solid line). Note that the crossing trajectories of equipped vehicles (e.g. in the upper-left corner of the

diagram) reflect passing maneuvers due to different desired velocities.

direction was free. When cars encountered the propagating stop-and-go wave, they started to
broadcast messages about the detected position and time of the upstream jam front and the
following downstream jam front. The event-driven messages were received and carried forward
by vehicles in the other driving direction via the store-and-forward mechanism.

As shown in Fig. 15, the considered vehicle already received the first message about the up-
coming traffic congestion 2 km before reaching the traffic jam. Further received messages from
other equipped vehicles could be used to confirm and update the upcoming traffic situation
further downstream. Thus, based on a suitable prediction algorithm, each equipped vehicle
could autonomously forecast the moving jam fronts by extrapolating the spatiotemporal infor-
mation of the messages. In the considered simulation scenario, the upstream jam fronts were
already accurately predicted with errors of ±50m 1 km ahead of the jam, while the errors for
the predicted downstream jam amounted to ±100m. Obviously, the quality of the jam-front
anticipation improves with the number and the timeliness of the incoming messages. More
details about the used prediction algorithm can be found in Ref. [STKH07].
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7 Conclusions and Future Work

Agent-based traffic simulations provide a flexible and customizable framework for tackling a
variety of current research topics. Simulation of control systems as a part of traffic operations
is an important topic in transport telematics. Due to the interrelation of the control systems
with traffic, both the control systems and the driver reactions must be described in a combined
simulation framework. Examples are variable message signs and speed limits, on-ramp meter-
ing, lane-changing legislation and dynamic route guidance systems. An interesting research
challenge is adaptive self-organized traffic control in urban road networks [LDH07].

Furthermore, traffic simulations are used to assess the impacts of upcoming driver assistance
systems such as adaptive cruise control systems on traffic dynamics. The microscopic modeling
approach is most appropriate because it allows for a natural representation of heterogeneous
driver-vehicle agents and for a detailed specification of the considered models, parameters
and vehicle proportions [VSK+01, VSMK02, KTSH07, HM02, Min99, Dav04, TvA01]. The
challenging question is whether it is possible to design vehicle-based control strategies aimed
at improving the capacity and stability of traffic flow [KTSH08].

With rapid advances in wireless communication technologies, the transmission of information
within the transportation network is a challenging issue for the next generation of Intelligent
Transportation Systems (ITS). Agent-based systems form the basis for a simulation of hybrid
systems coupling vehicle and information flow. The decentralized propagation of information
about the upcoming traffic situation has been discussed as an application for inter-vehicle
communication. Many other applications are conceivable based on the integration of vehicles
and infrastructures implying vehicle-to-infrastructure communication technologies. However,
realistic and predictive simulations are essential for developing and testing applications of
upcoming communication technologies and applications.
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[KK94] B.S. Kerner and P. Konhäuser. Structure and parameters of clusters in traffic flow.
Physical Review E, 50:54–83, 1994.

[KR96a] B.S. Kerner and H. Rehborn. Experimental features and characteristics of traffic
jams. Physical Review E, 53:R1297–R1300, 1996.

[KR96b] B.S. Kerner and H. Rehborn. Experimental properties of complexity in traffic flow.
Physical Review E, 53:R4275–R4278, 1996.

[KSSS01] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Human be-
haviour as origin of traffic phases. Physical Review E, 65:015101, 2001.

[KSSS02] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Single-vehicle
data of highway traffic: Microscopic description of traffic phases. Physical Review

E, 65:056133, 2002.

[KT08a] A. Kesting and M. Treiber. Calibrating car-following models using trajectory data:
Methodological study. Transportation Research Record, 2008. in print, preprint
http://arxiv.org/pdf/0803.4063v1.

[KT08b] A. Kesting and M. Treiber. How reaction time, update time and adaptation time
influence the stability of traffic flow. Computer-Aided Civil and Infrastructure

Engineering, 23:125–137, 2008.

[KTH07] A. Kesting, M. Treiber, and D. Helbing. General Lane-Changing Model MOBIL
for Car-Following Models. Transportation Research Record, 1999:86–94, 2007.

[KTSH07] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing. Extending adaptive cruise
control to adaptive driving strategies. Transportation Research Record, 2000:16–24,
2007.

[KTSH08] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing. Adaptive cruise control
design for active congestion avoidance. Transportation Research Part C: Emerging

Technologies, in print, 2008. doi:10.1016/j.trc.2007.12.004.

[KWG97] S. Krauß, P. Wagner, and C. Gawron. Metastable states in a microscopic model of
traffic flow. Physical Review E, 55(5):5597–5602, May 1997.

Contribution to “Agents, Simulation and Applications” ed. by A. Uhrmacher and D. Weyns

http://arxiv.org/pdf/0803.4063v1


Agents for Traffic Simulation (A. Kesting, M. Treiber and D. Helbing) 32

[LBSK04] H.K. Lee, R. Barlovic, M. Schreckenberg, and D. Kim. Mechanical restriction versus
human overreaction triggering congested traffic states. Physical Review Letters,
92:238702, 2004.

[LDH07] S. Lämmer, R. Donner, and D. Helbing. Anticipative control of switched queue-
ing systems. The European Physical Journal B - Condensed Matter and Complex

Systems, 2007. in print.

[Leu88] W. Leutzbach. Introduction to the Theory of Traffic Flow. Springer, Berlin, 1988.

[LW55] M.J. Lighthill and G.B. Whitham. On kinematic waves: II. A theory of traffic on
long crowded roads. Proc. Roy. Soc. of London A, 229:317–345, 1955.

[MAT08] MATSim. http://www.matsim.org/. – Accessed March 2008, 2008. Large-scale
agent-based transport simulations toolbox.

[MD05] S. Maerivoet and B. DeMoor. Cellular automata models of road traffic. Physics

Reports, 419:1–64, 2005.

[Mil07] J. Miller. http://www.freewaysimulator.com/. – Accessed December 2007, 2007.

[Min99] M.M. Minderhoud. Supported Driving: Impacts on Motorway Traffic Flow. Delft
University Press, Delft, 1999.

[Min07] Ministry of Transport, Energy and Spatial Planning of Nordrhein-Westfalen. Traf-
fic state prediction for the freeway network, 2007. http://autobahn.nrw.de –
Accessed May 2007.

[MM05] S. Maerivoet and B. De Moor. Transportation planning and traffic flow models,
2005. preprint physics/0507127.

[Nag02] T. Nagatani. The physics of traffic jams. Reports of Progress in Physics, 65:1331–
1386, 2002.

[NER00] K. Nagel, J. Esser, and M. Rickert. Large-scale traffic simulations for transportation
planning. Annual Reviews of Computational Physics VII, 7:151–202, 2000.

[New61] G.F. Newell. Nonlinear effects in the dynamics of car following. Operations Re-

search, 9:209, 1961.

[NS92] K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic.
J. Phys. I France, 2:2221–2229, 1992.

[OK04] J. Ott and D. Kutscher. Drive-thru internet: IEEE 802.11b for ”automobile” users.
In Proceedings of Infocom 2004, Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, pages 362–373, 2004.
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