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Abstract Learning how to argue is a key ability for a negotiator agent.

In this paper, we propose an approach that allows agents to learn how

to build arguments by observing how other agents argue in a negotiation

context. Particularly, our approach enables the agent to infer the rules

for argument generation that other agents apply to build their arguments.

To carry out this goal, the agent stores the arguments uttered by other

agents and the facts of the negotiation context where each argument is

uttered. Then, an algorithm for fuzzy generalized association rules is ap-

plied to discover the desired rules. This kind of algorithm allows us (a) to

obtain general rules that can be applied to di�erent negotiation contexts;

and (b) to deal with the uncertainty about the knowledge of what facts

of the context are taken into account by the agents. The experimental

results showed that it is possible to infer argument generation rules from

a reduced number of observed arguments.
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In multi-agent environments, autonomous agents need to interact to

achieve their goals because reciprocal dependencies exist among them. In this

context, negotiation is a fundamental tool to reach agreements among agents

with con�icting goals. The essence of a negotiation process is the exchange of

proposals. Agents make and respond to proposals in order to converge towards

a mutually acceptable agreement. However, not all approaches are restricted

to that exchange. Several approaches to automated negotiation have been de-

veloped. One of them is the argumentation-based approach [15, 26, 24, 22, 5, 9].

In argumentation-based approaches, agents are allowed to exchange some addi-

tional information as arguments, besides the information uttered on the proposal

[24]. Thus, in the negotiation context, an argument is seen as a piece of informa-

tion that supports a proposal and allows an agent either (a) to justify its position

in the negotiation, or (b) to in�uence other agents' position in the negotiation

[12].

When a con�ict arises during the negotiation, an agent must observe

the negotiation context and determine what arguments can be uttered in order

to reach an agreement. At this point, argument generation can be carried out

in several ways. One of them involves using explicit rules [15, 24]. A rule for

argument generation establishes a set of conditions that the negotiation context

must ful�l to generate a given argument. For instance, if we want to generate a

reward, we need to know what the target of the argument would like to receive

in exchange for its proposal acceptance. In formal terms, to generate a reward,

an agent ai, which needs to persuade an opponent aj , has to observe in the

negotiation context a goal gj1 that must be achieved by aj and an action tA

that produces the ful�lment of such goal gj1. Thus, if the agent �nds these

facts in the negotiation context, it can generate a reward by saying: �if you (aj)

accept my proposal, I promise you to perform action tA�.

In most argumentation-based negotiation frameworks, the rules for argu-

ment generation are de�ned in design time. However, no techniques are de�ned

to learn from other agents how the agent must build arguments. In fact, people

learn to build arguments from experience. That is, based on the arguments

that a person receives from others and the context in which these arguments are

uttered, he/she is able to infer how the arguments are built and what context

facts are included in the conditions needed to generate those arguments.

In this paper, we propose an approach that allows an agent to learn how

to build arguments by observing how other agents argue in a negotiation context.
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Speci�cally, our approach focuses on how to learn rules to generate rhetorical

arguments. To infer these rules, we utilise an algorithm for mining fuzzy gen-

eralized association rules [11]. Performing this algorithm, we obtain rules that

associate a set of conditions (antecedents) with an argument (consequent), such

is the format of the argument generation rules that we intend to �nd.

Mining association rules allows us to obtain rules from a set of transac-

tions stored in a database. As introduced by Agrawal et al. [2], given a set of

transactions, where each transaction is a set of items, an association rule is an

expression X � Y, where X (antecedent) and Y (consequent) are also sets of

items. That is, the transactions in the database which contain the items of X

will also contain the items of Y. So, if an agent observes and stores in a database

the arguments generated by another agent and the context facts that can be part

of the conditions to generate these arguments, the agent will be able to infer the

rules for argument generation that the other agent applies.

However, the question arises: is it su�cient to utilise a traditional (crisp)

algorithm for mining association rules (e.g. Apriori algorithm [2]) to infer argu-

ment generation rules? We have concluded that it is not. There are two factors

that determine this answer: generality and uncertainty.

First, we want the agent to apply the learned rules for argument gener-

ation in di�erent negotiation contexts, that is, we need to obtain general rules.

Nevertheless, arguments and facts observed by the agent are expressed in con-

stant terms, because they were uttered in a particular negotiation context. So, if

we utilise a traditional algorithm for mining association rules, the learned rules

will also be expressed in constant terms. For this reason, we opt for an algorithm

for mining generalized association rules. These algorithms use the existent hier-

archical taxonomy of the data to generate di�erent association rules at di�erent

levels in the taxonomy [28]. Our aim is to build a hierarchical taxonomy of

conditions and arguments in which the leaves are the facts of the negotiation

context (conditions) and arguments observed by the agent, and the upper levels

are the same propositions but expressed in variable terms with di�erent degrees

of generality. Then, the generalised association rules algorithm will especially

be able to generate rules at upper levels in the taxonomy of conditions and

arguments. Therefore, the rules will be variable.

The second problematic factor is uncertainty. An agent observing other

agents during the negotiation can only be certain of the arguments uttered,

but cannot be sure of the conditions that these agents check to generate such
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arguments. The reason behind this fact is that usually it is not necessary to

include all the information used to generate an argument in its premises and

that agents maintain their information private. Despite this uncertainty, the

agent can access to information in the negotiation context that could be part

of the conditions to generate an argument. For instance, following the previous

example, the contextual information around the reward could be: agent aj has

goals gj1, gj2 and gj3; agent ak has the goal gk1; agent ai knows that perform-

ing action tA enables it to ful�l goal gj1, that performing action tB enables it

to attain goal gj2, and that performing action tA enables it to ful�l goal gk1.

These facts are present in the negotiation context, but not all this information is

necessary to generate the reward. For this reason, the agent has to di�erentiate

relevant from irrelevant information. Thus, taking into account the information

that can be extracted from the argument (e.g. aj is the target, action tA is

the �reward�), we can determine if a piece of information is semantically related

to the argument. For example, by observing the previous reward, we can see

that the fact that agent ai knows that performing action tA enables it to ful�l

goal gj1 is more related to the argument than the fact that agent ai knows that

performing action tA enables it to ful�l goal gk1, since action tA is the action

promised and goal gj1 is a goal of agent aj (target of the argument); in contrast,

goal gk1 is a goal of another agent not mentioned in the argument.

Therefore, we propose the use of a fuzzy approach for generalised asso-

ciation rules mining to handle this uncertainty. Mining fuzzy association rules

is the discovery of association rules using fuzzy set concepts [17]. The fuzzy set

theory [31] has been used more and more frequently in intelligent systems be-

cause of its simplicity and similarity to human reasoning [13]. Fuzzy sets are sets

whose elements have degrees of membership. In the context of our work, we see

the facts observed in the negotiation context when an argument is generated as

a fuzzy set, where each fact has a degree of membership as regards the semantic

relation between the fact and the argument. Thus, these sets of observed facts

and arguments constitute fuzzy transactions [8]. Consequently, uncertainty is

taken into account during the mining process.

The experimental results showed a high precision of the proposed ap-

proach. To determine the e�ciency of our approach, we carried out three ex-

periments. First, we compared the rules learned by using our approach with

the original rules used by the observed agents. Second, we compared the rules

learned by using our fuzzy approach with the rules learned by using a crisp
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one, in order to assess the contribution of fuzziness to this problem. Finally, we

compared the set of arguments that can be generated by using the original rules

with the set of arguments that can be generated by using the rules learned by

the fuzzy approach as well as by the crisp one.

The article is organised as follows. Section 2 introduces basic concepts

about argumentation based negotiation. In Section 3, we present the approach

for learning argument generation rules by observing how other agents argue. In

Section 4, the results extracted from the experiments are presented. Section 5

places this work in the context of previous ones. Finally, in Section 6, we state

our conclusions and suggest future work.

�2 Argumentation-based negotiation
In accordance with the work of Rahwan et al. [23], there are two ma-

jor strands in the literature on argumentation-based negotiation: (a) attempts

to adapt dialectical logics for defeasible argumentation by embedding negoti-

ation concepts within them [21, 4]; and (b) attempts to extend bargaining-based

frameworks by allowing agents to exchange rhetorical arguments, such as prom-

ises and threats [15, 24]. Our work belongs to the second strand.

There are several types of rhetorical arguments that an agent can ex-

change during the negotiation. Such types have been commonly studied in the

�eld of persuasion in human negotiation [14, 20]. Based on these studies, the

current literature identi�es at least six types of arguments that an agent can

use during the negotiation [15, 24, 3]. These types are: rewards, used to prom-

ise a future reward; threats, used to warn about negative consequences in case

the counterpart does not accept a proposal; and appeals, used to justify a pro-

posal. Particularly, these appeals can be: appeal to a past reward, to remind

an opponent about a past reward; counterexample, to convey the persuadee a

contradiction between what it says and past actions; appeals to prevailing prac-

tice, to persuade the opponent that a proposal will further its goals since it has

furthered others' goals in the past; and appeal to self-interest, to convince a per-

suadee that accepting a proposal will enable achievement of a goal. In general

terms, a rhetorical argument is composed of four elements: a sender, a receiver,

a conclusion that normally represents the proposal that the argument supports,

and a set of premises that support the conclusion [26].

In an argumentation-based negotiation approach, agents can exchange

arguments in order to justify their proposals, to persuade their opponent, and
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to reach an expected agreement. In addition to evaluating and generating pro-

posals, agents with the ability for argumentation must be able to (a) evaluate

incoming arguments and update its mental state as a result; (b) generate can-

didate outgoing arguments; and (c) select an argument from the set of candidate

arguments [6]. As mentioned above, we will focus on argument generation.

Argument generation is related to the generation of candidate arguments

to present to a counterpart. To this end, rules for argument creation are de�ned

(e.g. [15, 24]). Such rules specify conditions for argument generation. Thus, if

the condition is satis�ed in the negotiation context, the argument may be gen-

erated and it becomes a candidate argument. Normally, these rules are de�ned

explicitly. However, we claim that it is possible to learn them by observing how

other agents argue in a negotiation context.

Since several frameworks for argumentation-based negotiation that use

rules for argument generation have been de�ned, the aim of our proposal is to

de�ne a general approach to infer such rules that can be used by any framework.

However, each framework maintains a speci�c formal model. For instance, Kraus

et al. [15] developed a formal logic that forms a basis for the development of

a formal axiomatization system for argumentation. They proposed a logical

model of the mental state of an agent based on a representation of its beliefs,

desires, intentions, and goals by using a modal BDI logic [25]. In contrast,

Ramchurn et al. [24] de�ned a simple logical language to de�ne agents' mental

states, actions and illocutionary acts (e.g. rhetorical arguments) based on the

framework proposed by Sierra et al. [26]. In this context, we specify an approach

which is neutral with respect to the argumentation-based negotiation framework.

For this reason, we de�ne a simple negotiation language that is neutral with

respect to the underlying semantic of the argumentation model. The following

sections describe the language of negotiation used during the experiments and

the standard argument generation rules de�ned by Kraus et al. [15] that we use

as example.

2.1 Negotiation language

The negotiation language L used by the agents to exchange proposal and

arguments during the negotiation is composed of the following predicates∗1:

� goal(G): G is a goal.

� hasgoal(A, goal(G)): A pursues goal G. Agent A has G in its goals.

∗1 Predicates are expressed using Prolog syntax.
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� believe(A, B): A believes B. Agent A has B in its beliefs.

� prefer(A, goal(G1), goal(G2)): A prefers to ful�l G1 over G2.

� accept(P): acceptation of proposal P.

� reject(P): rejection of proposal P.

� imply(Q, R): Q implies R (It represents the classical inference).

� pastpromise(A1, A2, do(A1, Action)): A1 promised to do Action to A2,

but has not ful�lled it yet.

� do(A, Action): A executes Action. Action can be instantiated with ac-

cept(P) or reject(P).

� wasgoal(A, goal(G)): A pursued goal G in the past.

� did(A, Action): A performed Action in the past.

� appeal(A1, A2, do(A2, Action), [Just]): A1 uses an appeal to persuade

A2. The goal of the argument is to support a proposal do(A2, Action) by

using a set of justi�cations Just.

� reward(A1, A2, do(A2, Action1), [do(A1, Action2)]): A1 uses a promise

of a future reward to persuade A2. A1 promises to execute Action2 if A2

executes Action1.

� threat(A1, A2, do(A2, Action1), [do(A1, Action2)]): A1 uses a threat

to persuade A2. A1 warn about negative consequences (the execution of

Action2) in case the counterpart does not accept to execute Action1.

Moreover, other propositions strongly related to the domain exist, especially

those related to goals, proposals and actions the agent can execute. For instance,

in the domain of meeting scheduling, the extra propositions are:

� discusstopic(T): T is a topic that can be discussed in the meeting.

� inplace(P): the meeting can take place in P.

� date(D): the meeting can be on date D.

� time(S): the meeting can be at time S.

In this way, hasgoal(a1, goal(discusstopic(topic1))) represents the a1's goal of

discussing topic1 in a meeting. It is worth noticing that some notions related with

the argument evaluation and argument selection processes are out of the scope of

this language. This is because we want to keep the focus on the predicates used

by the argument generation process. For example, the trust in the opponent is

a key concept used by the argument selection process [19]: if the trust in the

opponent is high then the agent will prefer to utter weak arguments (appeals

instead of threats) as long as arguments of these types had been previously

generated. Moreover, the trust values are updated by the evaluation process
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when a promise is ful�lled or a request is accepted, among other situations. In

such cases, new predicates that represent this information can be incorporated

to L without a�ecting our approach.

2.2 Argument generation rules

As mentioned above, it is possible to obtain di�erent kinds of appeal by

modifying how they are justi�ed. The rules are:

� Appeal to past promise:

� Conditions: pastpromise(Y, X, do(Y, Action))

� Argument: appeal(X, Y, do(Y, Action), [pastpromise(Y, X, do(Y, Ac-

tion))])

� Appeal to self interest:

� Conditions: hasgoal(Y, goal(Goal)), believe(X, imply(do(Y, Action),

Goal))

� Argument: appeal(X, Y, do(Y, Action), [imply(do(Y, Action), Goal),

hasgoal(Y, goal(Goal))])

� Appeal to prevailing practice:

� Conditions: hasgoal(Y, goal(Goal)), believe(Y, imply(do(Y, Action),

not(Goal))), wasgoal(Z, goal(Goal)), did(Z, Action)

� Argument: appeal(X, Y, do(Y, Action), [wasgoal(Z, goal(Goal)), did(Z,

Action)])

� Counterexample:

� Conditions: hasgoal(Y, goal(Goal)), believe(Y, imply(do(Y, Action),

not(Goal))), believe(Y, imply(do(Y, ActionB), not(Goal))), wasgoal(Y,

goal(Goal)), did(Y, ActionB)

� Argument: appeal(X, Y, do(Y, Action), [did(Y, ActionB), imply(do(Y,

ActionB), not(Goal))])

In addition, we de�ne two rules to generate rewards and threats.

� Reward (observing the goals of the sender agent):

� Conditions: hasgoal(Y, goal(Goal)), believe(Y, imply(do(X, ActionR),

Goal)), hasgoal(X, goal(Goal2)), believe(X, imply(do(Y, ActionP),

Goal2))

� Argument: reward(X, Y, do(Y, ActionP), [do(X, ActionR)])

� Threat:

� Conditions: hasgoal(Y, goal(GoalA)), hasgoal(Y, goal(GoalB)),
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prefer(Y, goal(GoalA), goal(GoalB)), believe(X, imply(do(X, ActionT),

not(GoalA))), believe(X, imply(do(Y, ActionP), not(GoalB)))

� Argument: threat(X, Y, do(Y, ActionP), [do(X, ActionT)])

In order to clarify our proposal, we have only de�ned actions for the main ar-

guments. Nevertheless, other rules may be de�ned by changing the conditions.

For example, we can de�ne an additional appeal to self interest by changing the

agent that has the belief, or an additional counterexample by changing the goals.

� Additional appeal to self interest:

� Conditions: hasgoal(Y, goal(Goal)), believe(Y, imply(do(Y, Action),

Goal))

� Argument: appeal(X, Y, do(Y, Action), [imply(do(Y, Action), Goal),

hasgoal(Y, goal(Goal))])

� Additional counterexample:

� Conditions: hasgoal(Y, goal(not(Goal))), believe(Y, imply(do(Y, Ac-

tion), Goal)), believe(Y, imply(do(Y, ActionB), Goal)), wasgoal(Y,

goal(not(Goal))), did(Y, ActionB)

� Argument: appeal(X, Y, do(Y, Action), [did(Y, ActionB), imply(do(Y,

ActionB), Goal)])

�3 Learning argument generation rules
As mentioned above, we propose to use an algorithm for mining fuzzy

generalized association rules to learn argument generation rules. This kind of

algorithms allows us (a) to obtain rules with di�erent degrees of generality that

can be applied by the agent in any negotiation context; and (b) to take into

account the uncertainty about the fact that should be part of the conditions of

such rules.

We decide to use an algorithm for mining fuzzy generalized association

rules rather than other soft-computing approaches (for example, probabilistic

graphical models) for two reasons. First, as we stated above, this approach

allows us to deal with the problems of generality and uncertainty. Second,

the association rule format matches perfectly with the format required by an

argumentation-based negotiation framework using rules for argument genera-

tion. In contrast, probabilistic graphical models can also deal with uncertainty,

but cannot deal with generality, at least in an intuitive way. In addition, if we

use a probabilistic graphical model, we should de�ne a middleware to translate

the information of the model into rules for argument generation.
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In this section, we will �rst present a brief description of the algorithm

for mining fuzzy generalized association rules, and then we will detail how to

learn argument generation rules from a set of observed arguments.

3.1 Mining fuzzy generalized association rules

Mining fuzzy association rules is the discovery of association rules by

using the concept of fuzzy set [17]. The fuzzy set theory [31] has been more and

more used in intelligent systems because of its simplicity and similarity to human

reasoning [13]. Fuzzy sets are sets whose elements have degrees of membership.

In the context of our work, we assume that the set of observed facts is a fuzzy

set, where each fact has a membership value that takes into account a presumed

semantic relationship between the observed fact and the argument. Thus, the

set of observed facts and the argument constitute a fuzzy transaction [8]. We will

brie�y describe the basic concepts about mining fuzzy generalized association

rules below.

[ 1 ] Mining traditional (crisp) association rules

As introduced in [2], let D = {t1, ..., tn} be a transactional database

and ti represent the i
th transaction in D. Moreover, I = {i1, ..., im} represents

all attributes or items appearing in D and ij represents the jth item. Then,

each transaction ti is a set of items belonging to I, and an association rule is an

expression X → Y , where X and Y are also sets of items (itemset). That is,

the transactions in the database which contain the items of X will also contain

the items of Y. That is assured by computing the support and the con�dence

of the rule. Support and con�dence are the main measures in association rule

mining algorithm. The support of a rule X → Y is the ratio (in percent) of the

transactions (T ) that contain X ∪ Y to the total number of transactions in the

database (|D|):

Support(X → Y ) =
|{T ∈ D |X ∪ Y ⊆ T}|

|D |

The con�dence is the ratio (in percent) of the number of records that

contain X ∪ Y to the number of records that contain X.

Confidence(X → Y ) =
|{T ∈ D |X ∪ Y ⊆ T}|
|{T ∈ D |X ⊆ T}|
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[ 2 ] Mining generalized association rules

As we need argument generation rules with a variable format, it is not

enough to use a traditional algorithm to mining association rules, since the

arguments and the facts observed are expressed in constant terms [18].

In order to deal with this problem, we employ an algorithm of generalised

association rules. These algorithms use the existence of a hierarchical taxonomy

of the data to generate di�erent association rules at di�erent levels in the tax-

onomy [28]. A generalised association rule X → Y is de�ned identically to that

of regular association rules, except that no item in Y can be an ancestor of any

in X. An ancestor of an item is one above in the taxonomy. Consequently, we

build a hierarchical taxonomy of conditions and arguments, in which its leaves

are the possible conditions and arguments observed by the agent, and the up-

per levels are the same propositions but more general and expressed in variable

terms. Then, the algorithm for mining generalised association rules will espe-

cially be able to generate rules at upper levels in the taxonomy of conditions

and arguments. Therefore, the rules will be variable.

To obtain generalised association rules, we must generate association

rules for all the levels in the taxonomy. A simple approach to do this would be

to take each transaction and expand each item to include all items above in the

hierarchy [28]. That is, to add all the ancestors of each item in a transaction

ti to ti. As expected, when rules are generated from items at a higher level in

the taxonomy, both the support and the con�dence increase. This is desirable

since the algorithm for mining association rules seeks rules with values of sup-

port and con�dence higher than the minimum ones. For further details about

implementation and comparison of performance of generalised association rules

algorithm, we recommend to see [28, 16].

[ 3 ] Mining fuzzy generalized association rules

The concept of mining fuzzy association rules originates with the need

to reduce the e�ect of sharp boundary when we have to deal with quantitat-

ive attributes divided into discrete intervals [17]. In the traditional approach,

a quantitative attribute is divided in intervals. The discrete interval method

[27] divides the attribute domain into discrete intervals. So, each element will

contribute weight to its own interval. Thus, we can use the weights to estimate

the importance of an interval. However, we may miss some interesting intervals

with the exclusion of some potential elements near the sharp boundaries. To
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tackle this problem, the discrete intervals are replaced with fuzzy sets. In the

fuzzy set theory, an element can belong to a set with a membership value in [0,

1]. This value is assigned by a membership function associated with each fuzzy

set. For each attribute x and its domain Dx the mapping of the membership

function is mfx(x) : Dx → [0, 1].

Given a transactional database D = {t1, ..., tn} and a set of attributes

or items I = {i1, ..., im} present in the transactions stored in D, each item ij

will associate with several fuzzy sets Fij = {fi1j , ..., filj}. Then, an algorithm for

mining fuzzy association rules will be able to �nd rules of the following format:

〈X,A〉 → 〈Y,B〉, where X = {x1, x2, ..., xp} and Y = {y1, y2, ..., yq} are subsets
of I, and A = {fx1 , fx2 , ..., fxp} and B = {fy1 , fy2 , ..., fyq} contain the fuzzy

sets associated with the corresponding attributes in X and Y [17].

In our work, we assume a more general de�nition of fuzzy transactions

and fuzzy association rules that was presented by Delgado et al. [8]. A fuzzy

transaction is a nonempty fuzzy subset t ⊆ I. For every ij ⊆ I, mti(ij) de�nes

the membership degree of ij in a fuzzy transaction tj , and mti(I0) is the degree

of inclusion of an itemset I0 ⊆ I in a fuzzy transaction tj , de�ned as mti(I0) =

min

ij ∈ I0
mti(ij). Then, let I be a set of items, D a set fuzzy transactions, A,C ⊆ I

with A,C 6= ∅, and A ∩ C = ∅, a fuzzy association rule A → B holds in T i�

mti(A) ≤ mti(C) ∀ti ∈ D. This de�nition preserves the meaning of association

rules, due to the fact that if we assumed A ⊆ ti in some sense, we must assume

C ⊆ ti given that mti(A) ≤ mti(C) [8].

There are several algorithms to mining fuzzy association rules [17, 7];

however, we utilize the algorithm presented by Hong et al. [11], because this

algorithm integrates mining fuzzy and generalized association rules.

3.2 Mining argument generation rules: a fuzzy approach

Since agents interact in a multiagent system, they can observe the argu-

ments that other agents generate during a negotiation. Additionally, the agents

can also observe the negotiation context in which each argument is generated

and store the facts that made up the context in that moment. Following this

idea, the observations made by an agent will be stored in a knowledge base

O = {o1, o2, ..., on}, where oi represents the ith observation in O . Each observa-

tion oi is a tuple with the format: (Hi, ai), where Hi = {hi1, hi2. . . , his} is the set
of facts in the context where the argument ai was generated and hij represents
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the jth fact of the ith observation in O. Moreover, the argument ai is de�ned

as ai = (aei, ari, conci, premi), where aei is the agent that uttered the argu-

ment; ari is the agent that received it; conci is the conclusion of the argument;

and premi is its list of premises. Given these observations, we want to �nd

the relations between the facts observed and the arguments uttered, since these

relationships are the argument generation rules we want to learn. The steps to

ful�l this goal are:

1. De�nition of fuzzy transactions from the observations.

2. Taxonomy building.

3. Execution of the algorithm for mining fuzzy generalised association

rules.

4. Post-processing of rules.

We detail these steps below.

[ 1 ] De�ning fuzzy transactions from observations

Based on the observations stored in O, we should de�ne the fuzzy trans-

actions for mining association rules. As introduced above, the observations are

tuples with the format (H, a). The argument a was generated by applying the

rule C → a, where C is the set of conditions that should be ful�lled by the

facts of the context. Therefore, it is correct to think that the set of conditions

C is a subset of H. While the agent cannot be certain about the elements that

compound the set C, it can de�ne a function ma(hj) : H → [0, 1] which determ-

ines the grade of semantic relation mahj between the argument a and each fact

hj εH. Therefore, we can de�ne C as a fuzzy set where mahjdetermines the

grade of membership of each fact hj into the set C. That is, each observed fact

is included in a fuzzy transaction to a certain degree [8], given by the semantic

of the relation between the observed fact and the argument.

Thus, for each observation oi = ({hi1, ..., h
i
s}, a

i) ε O , we de�ne a fuzzy

transaction ti = (hi1, ..., h
i
s, a

i) with mi
a(h

i
j) : H

i → [0, 1] as the membership

function that associates each item to the fuzzy transaction.

In order to de�ne mi
a, for each observation oi, we extract a set of

facts AF i = {af i : af i = conci ∨ af iε premi} from the argument ai =

(aei, ari, conci, premi). That is, AF i= {af i1, af
i
2, ..., af

i
l } is composed of

the conclusion and premises of ai, and af iq represents the q
th fact extracted from

ai. Then, the membership function mi
a is de�ned as follows:
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mi
a

(
hij
)
=

µi
j µi

j ≤ 1

1 µi
j > 1

where µi
j =

l∑
q=1

relatedTo(aei, ari, af iq, h
i
j) is the sum of the grades

of relation between af iq and hij , by taking also into account the sender and

receiver of the argument (aei and ari respectively). Internally, the function

relatedTo(ae, ar, f, h) can be de�ned in di�erent ways. In this work, we have

chosen a trivial approach. We de�ne a set of rules that determine the semantic

relation between the information that can be extracted from the arguments

(premises and conclusions) and each fact of the context (taking into account the

de�nition of the predicates in L). This relation is determined by taking into ac-

count the semantics of the facts. For example, given an argument reward(a1, a2,

do(a2, accept( discusstopic(topic1))), [do( a1, accept( discusstopic( topic2)))]),

we can extract the conclusion do(a2, accept( discusstopic( topic1))) and the

premise do(a1, accept( discusstopic( topic2))). By observing these propositions

we can strongly suppose that the fact believe(a2, do(a2, accept( discusstopic(

topic1))), discusstopic( topic1)) can be related to the conclusion and that the

fact believe(a1, do(a1, accept(discusstopic(topic2))), discusstopic(topic2)) can

be related to the premise. Consequently, given the fact believe(a1, do(a1, ac-

cept(discusstopic(topic2))), discusstopic(topic2)), we can also suppose that a

fact hasgoal(a2, goal(discusstopic( topic2)) can be part of the conditions of the

argument generation rule. Likewise, from hasgoal(a2, goal(discusstopic(topic2)),

we can assume that a fact prefer(a2, goal( discusstopic(topic2)), goal( dis-

cusstopic(topic4))) can also be related to the rule to generate the reward. In

contrast, in other situations, we can be certain that a fact is part of the con-

ditions. For instance, given an appeal to past promises, one of its premises

(see Section 2.2) is a fact pastpromise(Ai, Aj, P), which must be unequivocally

present in the negotiation context.

In Appendix A, we show how the function relatedTo(ae, ar, f, h) can

be de�ned.

[ 2 ] Taxonomy building

As mentioned above, we need to build a taxonomy with the items

of the transactions. To build the taxonomy, we start putting the condi-

tions and arguments of the observations in the leaves just as they were
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stored by the agent (i.e. reward(a1, a2, do(a2, accept(discusstopic(topic1))),

[do(a1, accept(discusstopic(topic2)))]) and believe(a2, do(a2, accept( dis-

cusstopic(topic1))), discusstopic(topic1))), one condition or argument for each

leaf. That is, for each item (condition or argument) of each transaction, we build

a branch in the taxonomy by starting at this item (leaf) and ending at the root

of the taxonomy.

To build this branch, we take an item and generate all the ancestors

that represent the same condition or argument but replacing each terminal term

(proposition of L that does not have another generalisable proposition as para-

meter) by the respective most general one. To determine this, we maintain a

data structure (hash table) HT with propositions and their most general form.

For example, for the proposition hasgoal the most general form stored in HT

will be hasgoal(Agent, goal(Goal)); for agent a1, Agent ; for goal, goal(Goal); for

discusstopic, discusstopic(Topic), among others.

Thus, given the condition hasgoal(a1, goal(discusstopic(topic1))), we

add a leaf with it and create the following ancestors, taking into account that

their terminal terms are a1 and discusstopic(topic1):

� anc1 : hasgoal(Agent, goal( discusstopic(topic1))) by replacing the pro-

position a1 with Agent, where Agent is the most general form of a1.

� anc2 : hasgoal(a1, goal( discusstopic(Topic))) by replacing the pro-

position discusstopic( topic1) with discusstopic( Topic), where dis-

cusstopic(Topic) is the most general form of discusstopic(topic1).

Next, we successively perform the same action, with each ancestor, and create

a new node in the taxonomy that represents the item, whose parents are the

previously generated ancestors. Following the example, the new ancestor of anc1

is hasgoal(Agent, goal(discusstopic(Topic))) (the same for anc2 ); and �nally, we

replace goal(discusstopic(Topic)) with goal(Goal) and obtain the most general

expression of the initial condition. When the most general expression is found,

a new node is created in the taxonomy whose parent is the root. Figure 1 shows

an example of this part of the taxonomy.
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Figure 1 Part of the taxonomy of conditions and arguments.

[ 3 ] Execution of the algorithm for mining fuzzy generalised associ-

ation rules

Having just built the taxonomy, for each transaction tiεD, we replace

each item iij ε ti with its nearest ancestor that has no constants. Thus, we elim-

inate all possible constant rules, since we are interested in �nding rules that

can be completely instantiated in di�erent negotiation contexts. For example,

the item hasgoal(a1, goal(discusstopic(topic3))) will be replaced with the an-

cestor hasgoal(Agent, goal(discusstopic(Topic))). In addition, the variable terms

are numerated to keep the reference among the di�erent items of the transac-

tion. Therefore, the �nal version of the previous item will be: hasgoal(Agent0,

goal(discusstopic(Topic0))). Consequently, every time we �nd a1 or topic3 in

an item of the same transaction, it will be replaced with Agent0 and Topic0

respectively.

After this pre-processing, we run the algorithm for mining fuzzy gen-

eralized association rules described by [11]. Notice that other algorithms for

mining fuzzy generalized association rules can be used, since our approach is

independent of the algorithm, provided the algorithm observes the de�nitions

presented above. Regarding to the de�nition of the minimum support and min-

imum con�dence values, useful information can be found in [11]. There, Hong et

al. showed the relationship between number of rules mined, minimum support

value, minimum con�dence value and execution time.

[ 4 ] Post-processing fuzzy generalised association rules
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The post-processing of fuzzy generalised association rules can be di-

vided in three parts. First, we �lter out the rules whose format is not adjusted

to C → a. That is, once all the rules have been obtained, we just keep those

whose antecedent is only composed of conditions and whose consequent is a single

argument. The remainder are �ltered out. Since the algorithms for mining as-

sociation rules process all the items of a transaction alike, there is no semantic

di�erence between conditions and arguments. In this way, it is possible to �nd

rules like conditionx → conditiony or argumentw → conditionz, which ful�l

the minimum levels of support and con�dence, but are irrelevant to build argu-

ments. For instance, an irrelevant rule could be hasgoal(Agent1, goal(Goal1)),

hasgoal(Agent1, goal(Goal2)) → prefer(Agent1, goal(Goal1), goal(Goal2)). This

rule is inappropriate because its three items are conditions. It is worth noti-

cing that some aspects of this post-processing stage can be integrated into the

algorithm for mining fuzzy generalised association rules. For instance, during

the frequent itemset search, we can eliminate those itemsets that do not include

arguments. This integration does not change the rules learned, but improves the

performance of the algorithm.

Second, we determine how representative the rules are with respect to

the argument generated by the agents and gathered in observations O. To per-

form this task, we de�ne a su�ciency metric of an association rule. This metric

represents the relation between the conditions of the transactions (observations)

that support the rule and the conditions of this rule. It is calculated as the ratio

between the number of conditions of a rule over the average of conditions of the

transactions that support it. It is de�ned as:

Sufficiency(r) =
totalConditions(r)

averageConditionsOfTransactionsSupporting(r)

For example, if we have the transactions t1 = (c1, c3, c5, a1), t2 =

(c1, c2, c4, a1), t3 = (c1, c4, a1), and t4 = (c1, c5, a2); and we de�ne a minimum

support of 0.5 and a minimum con�dence of 0.75, we will obtain, after the �rst

post-processing step, the rules r1 : c1 → a1, r2 : c4 → a1 and r3 : c1, c4 → a1.

The support and con�dence of the three rules exceed the minimum support and

con�dence values. However, we can see that rules r1 and r2 are not su�ciently

representative with regard to transactions t1, t2 and t3, because it is improb-

able that a single condition be su�cient to generate the argument a1, since the

conditions are not isolated in the transactions. The su�ciency metric aims to

�lter these rules by setting a threshold that determines how su�cient the con-
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ditions (antecedent) of a rule must be to generate the consequent argument,

independently of the values of support and con�dence.

Rules Support Con�dence Su�ciency

r1 : c1 → a1 0.75 0.75 0.375

r2 : c4 → a1 0.5 1 0.4

r3 : c1, c4 → a1 0.5 1 0.8
Table 1 Metrical comparison of rules.

Table 1 details the values of the three metrics. We can observe that

rules r1 and r2 have a su�ciency value comparatively low with regard to rule r3.

Therefore, a threshold of 75% only allows rule r3 to be valid. At the moment of

selecting an argument, the agent can also use the value of this metric, favouring

the selection of arguments generated by rules with higher value of su�ciency.

Finally, since the algorithm for mining generalised association rules can

�nd rules at di�erent level in the taxonomy, it is possible to �nd rules that are

ancestors of other rules. In these cases, we keep the most general rules since it

will be possible to apply these rules in a wide spectrum of negotiation contexts.

For example, given the rules r4 : d1, d2 → a2 and r5 : d1, d
′
2 → a2, we keep r5

assuming that d′2 is an ancestor of d2.

�4 Experimental results
The domain we chose to test our proposal was a multi-agent application

for meeting scheduling. In this application, the agents must arrange meetings

by discussing date, time, place, topics for discussion, and participants by taking

into account the preferences and goals of the users that they represent. Since

users have di�erent goals, the agents must exchange arguments in order to reach

agreements.

The aim of the experiments was to determine the argument generation

rules that the agents use during the negotiation by using the proposed approach.

To determine the e�ciency of our approach, we carried out three experiments.

First, we compared the rules learned by using our approach with the original

rules used by the observed agents. Second, we compared the rules learned by

using our fuzzy approach with the rules learned by using a crisp one, in order

to assess the contribution of fuzziness to this problem. Finally, we compared

the set of arguments that can be generated by using the original rules with the

set of arguments that can be generated by using the rules learned by the fuzzy
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approach as well as by the crisp one. In addition, we carried out a scalability

analysis to assess the performance of the approach in di�erent scenarios.

4.1 Experiment scenario

The experiments were carried out with four agents, where each agent

represents a user. For each agent, we randomly generated a set of goals, prefer-

ences among goals, beliefs and historic facts (past promises, information about

other meetings, goals achieved). Taking into account goals and beliefs, agents

had to generate arguments to persuade other agents by applying the set of ar-

gument generation rules de�ned in Section 2.2 (we call original rules to this

set of rules). After each negotiation, the arguments and context facts (goals,

preferences, beliefs and historic facts) were stored in O for processing. The

negotiation context was composed of 439 facts: 47 goals; 21 preference among

goals; 286 beliefs; 37 past goals; 36 past actions; and 12 past promises.

The minimum support and minimum con�dence values were de�ned in

2.0 (notice that in the algorithm proposed by [11] the support is not between

0 and 1 as in the traditional algorithms) and 0.9 respectively. We selected a

low minimum support value to ensure that all the interesting rules were gen-

erated. In contrast, we selected a high minimum con�dence value to ensure

a strong relation between antecedent and consequent. Moreover, we de�ned a

minimum su�ciency value of 0.7. These values were assigned after analysing the

information and experiments provided in [11].

4.2 Results obtained

In total, 69 arguments and their contexts were registered in O. Table

2 shows the number of arguments observed for each argument type (column

Arguments). For each observation, we built a fuzzy transaction. Then, from the

set of fuzzy transactions, we built the taxonomy following the steps described

in Section 3.1.2. Afterwards, we mined fuzzy generalized association rules using

the algorithm de�ned by [11]. Table 2 shows the total number of rules obtained

for each argument type∗2 (column Rules); the number of rules that follow the

format C → a (column Format); the number of rules with the minimum value

of su�ciency (column Su�ciency); and the number of �nal rules learned by

the approach after selecting the most general ones (column Generality). As we

∗2 Notice that each type corresponds to an argument generation rule, as de�ned in Section

2.2.
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can see, we obtained, at �rst, 7010 fuzzy association rules from 69 observations.

Finally, 14 rules were kept after post-processing stage. It is worth pointing

out that each observation was composed of 440 facts (439 context facts and an

argument).

Argument type Arguments Rules Format Su�ciency Generality

Reward 16 1351 483 176 2

Threat 4 95 33 1 1

Prevailing practice 8 47 18 1 1

Self interest 20 32 13 8 3

Past promise 12 5 1 1 1

Counterexample 9 5480 1380 195 6

Total 69 7010 1928 382 14

Table 2 Arguments observed and rules obtained by using the proposed approach.

As mentioned above, we analysed the results from di�erent perspectives

in order to assess the precision and contribution of the proposed approach.

[ 1 ] Analysis of the learned rules

To analyse the results, we �rst compared the learned rules with the

original ones. This comparison was carried out by collating the number and

format of the conditions and the format of the consequent argument. After this

comparison, we classi�ed each learned rule into four categories: Correct, when

the learned rule was exactly the same rule applied by the agents; Partial, when

the learned rule had less conditions that the original one; Larger, when the rule

had additional conditions to the conditions of the original one; andWrong, when

the learned rule was unrelated to the original one.
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Argument type Correct Partial Larger Wrong Total

Reward 1 - - 1 2

Threat 1 - - - 1

Prevailing practice 1 - - - 1

Self interest 2 - 1 - 3

Past promise 1 - - - 1

Counterexample 2 3 1 - 6

Total 8 3 2 1 14

Percentage 57.2% 21.4% 14.3% 7.1%

Table 3 Results of the comparison between the original rules and the rules learned using the

proposed approach.

Table 3 shows the results of the comparison between the learned rules

and the original ones. As shown, 8 rules were correct (57.2%), 3 rules represented

partial rules (21.4%), 2 rules were larger than the original ones (14.3%), and

1 rule was wrong (7.1%). Moreover, notice that all the 8 original rules were

discovered by the proposed approach.

To illustrate these results, some rules are presented and analysed below:

� Rule #1:

� Conditions: hasgoal(AGENT1, goal(GOAL1)), hasgoal(AGENT1,

goal(GOAL0)), prefer(AGENT1, goal(GOAL1), goal(GOAL0)), be-

lieve(AGENT1, imply(do(AGENT1, ACTION0), not(GOAL0))), be-

lieve(AGENT1, imply(do(AGENT0, ACTION1), not(GOAL1)))

� Argument: threat(AGENT0, AGENT1, do(AGENT1, ACTION0),

[do(AGENT0, ACTION1)])

� Rule #2:

� Conditions: hasgoal(AGENT0, goal(GOAL0)), believe(AGENT1,

imply(do(AGENT1, ACTION0), GOAL0)), believe(AGENT1, im-

ply(do(AGENT0, ACTION0), GOAL0)), believe(AGENT0, im-

ply(do(AGENT1, ACTION0), GOAL0))

� Argument: reward(AGENT0, AGENT1, do(AGENT1, ACTION0),

[do(AGENT0, ACTION1)])

� Rule #3:

� Conditions: wasgoal(AGENT1, goal(GOAL0)), hasgoal(AGENT1,

goal(GOAL0)), hasgoal(AGENT0, goal(not(GOAL0))), did(AGENT1,

ACTION0), believe(AGENT1, imply(do(AGENT1, ACTION1),
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not(GOAL0)))

� Argument: appeal(AGENT0, AGENT1, do(AGENT1, ACTION1),

[did(AGENT1, ACTION0), imply(ACTION0, not(GOAL0))])

� Rule #4:

� Conditions: hasgoal(AGENT0, goal(GOAL0)), believe(AGENT1,

imply(do(AGENT0, ACTION0), GOAL0)), believe(AGENT0, im-

ply(do(AGENT0, ACTION0), GOAL0))

� Argument: appeal(AGENT1, AGENT0, do( AGENT0, ACTION0),

[imply(do(AGENT0, ACTION0), GOAL0), hasgoal(AGENT0,

GOAL0)])

Rule #1 �ts exactly the threat generation rule de�ned in Section 2.2,

thus, it is correct. Rule #2 is a wrong rule to generate rewards, because takes

into account only one goal in its conditions. Rule #3 is a rule for counterexample

generation. This rule has just a belief included in its conditions, but the original

one has two, thus, it is a partial rule. Finally, rule #4 has the conditions of the

original rule and an additional condition, which is not semantically wrong, but

restrictive. It is interesting to note that partial and wrong rules could generate

wrong arguments, but larger ones would not, especially if the correct rule was

also found.

[ 2 ] Analysis of the arguments generated by the learned rules

In order to assess the contribution of fuzziness to the problem of learn-

ing argument generation rules, we also applied a crisp approach to learn these

rules. This experiment was carried out over the same knowledge base O used in

the �rst experiment. In contrast to the fuzzy approach, the crisp transactions

were traditional sets where we included all the facts related to the observed ar-

gument. Formally, we de�ned a crisp transaction cti = (hi1, ..., h
i
s, a

i), where

mi
a(h

i
j) > 0. That is, a fact was included in a crisp transaction if the result of the

membership function (relateTo function) was higher than 0. We used the mem-

bership function in both transaction de�nitions (fuzzy and crisp) to maintain

equivalence in the results.

Table 4 shows the total number of rules obtained for each argument type

applying the crisp approach. After �ltering, the crisp approach learned 149 rules

against 14 rules learned by the fuzzy approach. Then, we compared the crisp

rules and the original rules. Table 5 shows the result of this comparison.
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Argument type Arguments Rules Format Su�ciency Generality

Reward 16 15013 3358 2470 97

Threat 4 510 126 29 29

Prevailing practice 8 94 30 6 4

Self interest 20 40 15 10 6

Past promise 12 25 13 13 2

Counterexample 9 5480 1380 195 11

Total 69 21162 4922 2723 149

Table 4 Arguments observed and rules obtained by using a crisp approach.

Argument type Correct Partial Larger Wrong Total

Reward 1 23 22 51 97

Threat 1 14 6 8 29

Prevailing practice 1 1 1 1 4

Self interest 2 - 4 - 6

Past promise 1 - 1 - 2

Counterexample 1 4 1 5 11

Total 7 42 35 65 149

Percentage 4.7% 28.2% 23.5% 43.6%
Table 5 Results of the comparison between the original rules and the rules learned using the

crisp approach.

Comparing the results showed in Table 3 and Table 5, we can see that

the total number of correct rules was similar in both approaches. However, the

rate of correct rules in the crisp approach (4.7%) was considerably smaller than

the rate of correct rules in the fuzzy approach (57.2%). This is because the crisp

approach learns a great number of partial (28.2%), larger (23.5%) and wrong

rules (43.6%).

To determine and compare the precision of the fuzzy and the crisp ap-

proaches, we compared the set of arguments that can be generated by the original

rules and the arguments that can be generated by the rules learned using the

fuzzy and the crisp approaches. To carry out this comparison, we simulated 1000

negotiation contexts. Each negotiation context was composed of goals, prefer-

ences among goals, beliefs and historic facts generated at random by taking into

account the language L de�ned in Section 2.1. The average number of facts for

each negotiation context was 182.72 (20.97 goals, 1.99 preferences, 99.48 beliefs,
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20.41 past goals, 21.27 past actions, and 11.57 past promises).

In each negotiation context, arguments were generated by using the three

sets of rules. Table 6 shows the results of this comparison. This table shows

the number of arguments generated by: the set of original rules (row Arguments

- Original), the set of rules learned by the fuzzy approach (row Arguments -

Fuzzy), and the set of rules learned by the crisp approach (row Arguments -

Crisp). We call learned arguments to the arguments generated by the learned

rules. We compared both sets of learned arguments from two points of compar-

ison. First, we analysed if the learned arguments were correct by checking if

they were also included into the set of original arguments (row Correct). Thus,

if a learned argument was not included into the set of original arguments, we

assumed that it was wrong (row Wrong). Finally, we analysed if the original

arguments were also generated by the set of learned rules. Thus, we distin-

guished between the original arguments that were generated and the original

arguments that were not generated into the set of learned arguments (row Gen-

erated and Not generated). Table 6 shows the total number of arguments (row

#) and the percentage of arguments in relation to the originals ones (row % )

for each approach (Fuzzy or Crisp) and each comparison (Correct-Wrong and

Generated-Not generated).

As shown in Table 6, 100% of the arguments generated by the rules

learned by the fuzzy approach were correct, and the 100% of the original argu-

ments were also generated by these rules. In contrast, the crisp approach showed

a low precision. Although the 96.5% of the arguments generated with the ori-

ginal rules were also generated using the rules learned by the crisp approach, the

percentage of wrong arguments was high (55.06%). This is because the num-

ber of partial, large and wrong rules learned by the crisp approach exceeds the

number of correct ones.

These results indicate that the argument generation rules learned using

the proposed approach have a high precision, despite the occurrence of partial

and wrong rules. Moreover, the di�erence of precision between the fuzzy and

the crisp approaches demonstrate the necessity of dealing with the uncertainty

by using a fuzzy approach.

In summary, we claim that the results are promising since a high pre-

cision was obtained from a reduce number of arguments observed in a large

negotiation context. Moreover, we think that partial and larger rules, which

can produce a precision decrease, can be dismissed by the agent by checking the
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Arguments

R T PP SI PsP C Total

Arguments

Original 77260 41307 52518 20269 11576 49816 252746

Fuzzy 77260 41307 52518 20269 11576 49816 252746

Crisp 247175 108153 52518 82322 11576 40980 542724

Correct

Fuzzy # 77260 41307 52518 20269 11576 49816 252746

% 100% 100% 100% 100% 100% 100% 100%

Crisp # 77260 41307 52518 20269 11576 40980 243910

% 31.26% 38.19% 100% 24.62% 100% 100% 44.94%

Wrong

Fuzzy # 0 0 0 0 0 0 0

% 0% 0% 0% 0% 0% 0% 0%

Crisp # 169915 66846 0 62053 0 0 298814

% 68.74% 61.81% 0% 75.38% 0% 0% 55.06%

Generated

Fuzzy # 77260 41307 52518 20269 11576 49816 252746

% 100% 100% 100% 100% 100% 100% 100%

Crisp # 77260 41307 52518 20269 11576 40980 243910

% 100% 100% 100% 100% 100% 82.26% 96.5%

Not

generated

Fuzzy # 0 0 0 0 0 0 0

% 0% 0% 0% 0% 0% 0% 0%

Crisp # 0 0 0 0 0 8836 8836

% 0% 0% 0% 0% 0% 17.74% 3.5%

R: Reward. T: Threat. PP: Prevaling Practice. SI: Self Interest. PsP: Past Promise.

C: Counterexample. #: Number of arguments. %: Percentage of arguments.

Table 6 Results of comparing arguments generated by using both the original and learned

rules.
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success of the arguments uttered.

[ 3 ] Scalability analysis

To �nalize the experiments, we carried out a scalability analysis to eval-

uate the performance of the algorithm for mining fuzzy generalized association

rules in the scope of this work. These experiments were implemented in Java

on a personal computer with an Intel(R) Core(TM) i5 processor and 4 Gb of

RAM. Experiments were made to show the relationship between number of ar-

guments observed (number of transactions), number of facts in the context and

the execution-time. We randomly generated negotiation context with di�erent

numbers of facts (from 100 to 1000 facts). From each negotiation context, dif-

ferent numbers of arguments were generated and stored in O (from 10 to 100

arguments). Then, the proposed approach was run to learn argument generation

rules. This process was carried out 10 times for each combination of number of

facts in the negotiation context and number of arguments observed. Finally, the

average execution-time was computed.

Figure 2 shows the results. These results show that the execution-time

tends to increase along with increase of number of facts in the context and

number of argument observed. However, the increasing of the execution-time

seems more sensible to the increasing of the number of argument observed than

to the increasing of the number of facts in the context. This is reasonable

using the fuzzy approach since the number of facts in the context does not

in�uence directly the number of items in the transactions. On the other hand, it

is well-known that the execution-time increases when the number of transactions

also increases Agrawal and Srikant [1]. Moreover, this fact does not a�ect our

approach since a good precision is obtained from a reduced number of observed

arguments, as we showed in Section 4.2.1.

�5 Related work
We can distinguish some works related to argumentation and mining

association rules. Governatori and Stranieri [10] applied an algorithm for mining

association rules to facilitate the discovery of defeasible rules that represent the

ratio decidendi underpinning legal decision making. Afterwards, these defeasible

rules are used to build formal arguments, not rhetoric ones. Moreover, the rules

obtained are only useful in the context in which they were discovered. Similarly,

in [30] and [29] arguments are pooled from the agent's experience by means
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Figure 2 The relationships between number of arguments observed, number of facts in the

context and the execution-time.

of association rule mining techniques. In that work, the authors present an

argumentation protocol, PADUA (Protocol for Argumentation Dialogue Using

Association Rules), designed to enable participants to debate on the basis of their

experience. In PADUA, an association rule merely means that the antecedent is

a set of reasons for believing the consequent, and it aids the agent, when arguing,

in deciding what kind of dialogue move to play during an argumentative dialogue.

In a previous work, an approach to build user argumentative models

was presented [18]. A user argumentative model captures the argumentative

styles of the user and is depicted by the argument generation rules that the

user utilises during the argumentation. In contrast to the current proposal, that

approach applies an algorithm for mining generalized association rules to discover

these rules and assumes that the observed conditions that the user observes to

generate their arguments can be directly accessed. This assumption eliminates

the uncertainty about what facts should be part of the conditions of such rules.

Consequently, a fuzzy approach is not necessary.

�6 Conclusions and future work
In this work, we have presented an approach which allows agents to learn

argument generation rules by observing how other agents argue in a negotiation

context. Our approach applies an algorithm for mining fuzzy generalized asso-

ciation rules to accomplish this goal. Appling this algorithm, we can discover
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rules with the format C → a from a set of observations, where C represents

the set of conditions needed to generate an rhetorical argument a. Moreover,

we can obtain rules with di�erent grades of generality, which can be used in

di�erent negotiation contexts. Furthermore, the use of fuzzy sets allows us to

handle the uncertainty involved in the knowledge about what information on

the negotiation context is taken into account by the observed agents to generate

their arguments.

The experimental results show that it is possible to learn the argument

generation rules used by other agents from a small number of arguments ob-

served. As shown above, the rules obtained were correct in a 57.2%, partial

in a 21.4%, restricted in a 14.3% and wrong in a 7.1%. Moreover, it is worth

noticing that all the rules applied to build the training arguments were learned

correctly by our approach. Finally, our approach obtained a high precision by

comparing the set of arguments that could be generated by the original rules

with the set of arguments that could be generated by the rules learned by our

approach. Furthermore, we con�rmed the contribution of fuzziness to the prob-

lem of learning argument generation rules, by comparing the precision of a fuzzy

and a crisp approach. The fuzzy approach obtained a precision of 100% whereas

the precision of the crisp approach was 44.94%.

The main future research direction is to analyse other de�nitions of the

membership function that relates the facts of the negotiation context with a

given argument. In particular, we will explore the use of ontologies to determine

the semantic context in which the argument was generated. Another future

work aims to incorporate argument selection learning to this approach, that is,

to allow the agent to learn from other agents how to select an argument from the

set of candidate arguments generated previously. In this way, we will integrate

this approach with a reinforcement learning approach to improve the argument

selection e�ectiveness [19].
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�1 Appendix A: De�nition of function relatedTo

As we stated in Section 3.1.1, the function relatedTo(ae, ar, f, h) is

de�ned by a set of rules that determine the relation between the information that

can be extracted from the arguments (premises and conclusions) and each fact of

the negotiation context. We de�ne these rules by analysing the semantic relations

among the predicates de�ned by the negotiation language L. These semantic

relations arise directly from the given de�nitions of these predicates. From L,

we recognize four grades of relation: complete (1), high (0.8), intermediate(0.6)

and low (0.5).

The rules were de�ned using Prolog, where the parameter Value is the

returned value and represents the grades of semantic relation between f and h.

We list the rules (and their explanations) used during the experiments below.

� If the fact extracted from the argument (f ) is the same to the fact observed

in the negotiation context, we can be certain that the fact is part of the

conditions. Therefore, the grade of relation is complete and Value is 1.

� relatedTo(_, _, Fact, Fact, Value):- Fact, Value = 1.

� A special case of the previous rule is the relation between the predicate

imply and a belief. If a predicate imply is included in a belief, the grade

of relation between both facts is also complete.

� relatedTo(A, _, imply(ActionB, Goal), believe(A, imply(ActionB,

Goal)), Value) :- believe(A, imply(ActionB, Goal)), Value = 1.

� As de�ned in L, the conclusion of an argument (appeals, rewards and

threats) and the premise of rewards and threats are predicates of the

format: do(A, Action). Thus, since an agent action is especially related

to belief and goals [25], we can de�ne some rules by relating these facts.

Linking agent actions and beliefs, we distinguish two points of relation:

(a) the agent action is included into the belief through the predicate imply

and (b) the agent that performs the action is the same agent that has the

belief. Then, if (a) and (b) are true, the grade of relation is high.

� relatedTo(_, A, do(A, Action), believe(A, imply(do(A, Action),

Some)), Value) :- believe(A, imply(do(A, Action), Some)), Value =

0.8.

� However, if the (a) is true, (b) is not, but these agents are the sender or

the receiver agent, we assign an intermediate grade of relation.

� relatedTo(Ae, Ar, do(Ae, Action), believe(Ar, imply(do(Ae, Action),
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Some)), Value) :- believe(Ar, imply(do(Ae, Action), Some)), Value =

0.6.

� relatedTo(Ae, Ar, do(Ar, Action), believe(Ar, imply(do(Ae, Action),

Some)), Value) :- believe(Ar, imply(do(Ae, Action), Some)), Value =

0.6.

� relatedTo(Ae, Ar, do(Ae, Action), believe(Ae, imply(do(Ar, Action),

Some)), Value) :- believe(Ae, imply(do(Ar, Action), Some)), Value =

0.6.

� relatedTo(Ae, Ar, do(Ar, Action), believe(Ae, imply(do(Ar, Action),

Some)), Value) :- believe(Ae, imply(do(Ar, Action), Some)), Value =

0.6.

� To link agent actions and goals, we need to know whether a goal is

achieved or frustrated when the action is performed. In other words,

we need to �nd in the negotiation context an intermediate belief that

links the action and the goal. In this case, the relation between an action

and a goal is high when the goal is achieved after performing the action.

� relatedTo(_, _, do(A, Action), hasgoal(A, goal(Goal)), Value) :- be-

lieve(A, imply(do(A, Action), Goal)), hasgoal(A, goal(Goal)), Value =

0.8.

� relatedTo(Ae, Ar, do(Ae, Action), hasgoal(Ar, goal(Goal)), Value)

:- believe(Ae, imply(do(Ae, Action), Goal)), hasgoal(Ar, goal(Goal)),

Value = 0.8.

� relatedTo(Ae, Ar, do(Ar, Action), hasgoal(Ae, goal(Goal)), Value)

:- believe(Ae, imply(do(Ar, Action), Goal)), hasgoal(Ae, goal(Goal)),

Value = 0.8.

� relatedTo(Ae, Ar, do(Ae, Action), hasgoal(Ar, goal(Goal)), Value)

:- believe(Ar, imply(do(Ae, Action), Goal)), hasgoal(Ar, goal(Goal)),

Value = 0.8.

� relatedTo(Ae, Ar, do(Ar, Action), hasgoal(Ae, goal(Goal)), Value)

:- believe(Ar, imply(do(Ar, Action), Goal)), hasgoal(Ae, goal(Goal)),

Value = 0.8.

� On the other hand, the relation between actions and goals is also high

when a goal is frustrated after performing an action.

� relatedTo(_, _, do(A, Action), hasgoal(A, goal(Goal2)), Value) :- be-

lieve(A, imply(do(A, Action), Goal1)), hasgoal(A, goal(Goal2)), oppos-
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iteTo(Goal1, Goal2)∗3, Value = 0.8.

� relatedTo(Ae, Ar, do(Ae, Action), hasgoal(Ar, goal(Goal2)), Value) :-

believe(Ae, imply(do(Ae, Action), Goal1)), hasgoal(Ar, goal(Goal2)),

oppositeTo(Goal1, Goal2), Value = 0.8.

� relatedTo(Ae, Ar, do(Ar, Action), hasgoal(Ae, goal(Goal2)), Value) :-

believe(Ae, imply(do(Ar, Action), Goal1)), hasgoal(Ae, goal(Goal2)),

oppositeTo(Goal1, Goal2), Value = 0.8.

� relatedTo(Ae, Ar, do(Ae, Action), hasgoal(Ar, goal(Goal2)), Value) :-

believe(Ar, imply(do(Ae, Action), Goal1)), hasgoal(Ar, goal(Goal2)),

oppositeTo(Goal1, Goal2), Value = 0.8.

� relatedTo(Ae, Ar, do(Ar, Action), hasgoal(Ae, goal(Goal2)), Value) :-

believe(Ar, imply(do(Ar, Action), Goal1)), hasgoal(Ae, goal(Goal2)),

oppositeTo(Goal1, Goal2), Value = 0.8.

� Another intuitive relation is the link among goals and preferences. In

this case, given a goal and a preference, if the preference contains the

goal, we assign a low grade of relation. However, since all the grades of

relations between two facts are added in the membership function (see

Section 3.1.1), the �nal grade of relation will be complete if the other goal

of the preference is also a goal of the same agent.

� relatedTo(_, _, hasgoal(A, goal(Goal)), prefer(A, goal(Goal),

goal(GoalB)), Value) :- prefer(A, goal(Goal), goal(GoalB)), Value =

0.5.

� relatedTo(_, _, hasgoal(A, goal(Goal)), prefer(A, goal(GoalB),

goal(Goal)), Value) :- prefer(A, goal(GoalB), goal(Goal)), Value = 0.5.

� relatedTo(_, _, hasgoal(A, goal(Goal)), prefer(A, goal(Goal),

goal(GoalB)), Value) :- hasgoal(A, GoalB), prefer(A, goal(Goal),

goal(GoalB)), Value = 0.5.

� relatedTo(_, _, hasgoal(A, goal(Goal)), prefer(A, goal(GoalB),

goal(Goal)), Value) :- hasgoal(A, GoalB), prefer(A, goal(GoalB),

goal(Goal)), Value = 0.5.

� Since agent actions are related to beliefs, past actions are also related to

current beliefs. In this case, we assign an intermediate grade of relation

because of the temporal di�erence among both types of facts.

� relatedTo(_, _, did(A, Action), believe(A, imply(do(A, Action), Some-

thing)), Value) :- believe(A, imply(do(A, Action), Something)), Value

∗3 Goal1 is opposite to Goal2 if Goal2 is equivalent to not(Goal1)
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= 0.6.

� Following the same idea, past actions are related to past goals. In this

case, the relation is high as well as the relation between present actions

and present goals (including the same or opposite goals), because there

is no temporal di�erence between both facts.

� relatedTo(_, _, did(A, Action), wasgoal(A, goal(Goal)), Value) :-

did(A, Action), believe(A, imply(do(A, Action), Goal)), wasgoal(A,

goal(Goal)), Value = 0.8.

� relatedTo(_, _, did(A, Action), wasgoal(A, goal(Goal2)), Value) :-

did(A, Action), believe(A, imply(do(A, Action), Goal)), wasgoal(A,

goal(Goal2)), oppositeTo(Goal, Goal2), Value = 0.8.

� Finally, past and present goals are also linked. We assign a intermediate

grade of relation because of the temporal di�erence.

� relatedTo(_, _, hasgoal(A, goal(Goal)), wasgoal(A, goal(Goal)),

Value) :- wasgoal(A, goal(Goal)), Value = 0.6.


