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Abstract. Belief-Desire-Intention (BDI) agents have been investigated by many
researchers from both a theoretical specification perspectiveand a practical design
perspective. However, there still remains a large gap between theory and practice.
The main reason for this has been the complexity of theorem-proving or model-
checking in these expressive specification logics. Hence, the implemented BDI
systems have tended to use the three major attitudes as data structures, rather than
as modal operators. In this paper, we provide an alternative formalization of BDI
agents by providing an operational and proof-theoretic semantics of a language
AgentSpeak(L). This language can be viewed as an abstraction of one of the im-
plemented BDI systems (i.e., PRS) and allows agent programs to be written and
interpreted in a manner similar to that of horn-clause logic programs. We show
how to perform derivations in this logic using a simple example. These deriva-
tions can then be used to prove the properties satisfied by BDI agents.

1 Introduction

The specification, design, verification, and applications of a particular type of agents,
called BDI agents, have received a great deal of attention in recent years. BDI agents
are systems that are situated in a changing environment, receive continuous perceptual
input, and take actions to affect their environment, all based on their internal mental
state. Beliefs, desires, and intentions are the three primary mental attitudes and they cap-
ture the informational, motivational, and decision components of an agent, respectively.
In addition to these attitudes, other notions such as commitments, capabilities, know-
how, etc. have been investigated. Sophisticated, multi-modal, temporal, action, and dy-
namic logics have been used to formalize some of these notions [2, 6, 8, 13, 18, 20, 21].
The complexity of theorem-proving and the completeness of these logics have not been
clear [12, 23].

On the other hand, there are a number of implementations of BDI agents [1, 3, 10,
17] that are being used successfully in critical application domains. These implemen-
tations have made a number of simplifying assumptions and modelled the attitudes of
beliefs, desires, and intentions as data structures. Also, user written plans or programs
speed up the computation in these systems. The complexity of the code written for these
systems and the simplifyingassumptions made by them have meant that the implemented
systems have lacked a strong theoretical underpinning. The specification logics have



shed very little light on the practical problems. As a result the two streams of work seem
to be diverging.

Our earlier attempt to bridge this gap between theory and practice has concentrated
on providing an abstract BDI architecture [14], that serves both as an idealization of an
implemented system and also as a vehicle for investigating certain theoretical proper-
ties. Due to its abstraction this work was unable to show a one-to-one correspondence
between the model theory, proof theory, and the abstract interpreter. The holy grail of
BDI agent research is to show such a one-to-one correspondence with a reasonably use-
ful and expressive language.

This paper makes another attempt at specifying such a logical language. Unlike some
of the previous attempts, it takes as its starting point one of the implemented systems and
formalizes its operational semantics. The implemented system being considered is the
Procedural Reasoning System (PRS) [5] and its more recent incarnation, the Distributed
Multi-Agent Reasoning System (dMARS). The language AgentSpeak(L) can be viewed
as a simplified, textual language of PRS or dMARS. The language and its operational
semantics are similar to the implemented system in their essential details. The imple-
mented system has more language constructs to make the task of agent programming
easier.

AgentSpeak(L) is a programming language based on a restricted first-order language
with events and actions. The behaviour of the agent (i.e., its interaction with the envi-
ronment) is dictated by the programs written in AgentSpeak(L). The beliefs, desires, and
intentions of the agent are not explicitly represented as modal formulas. Instead, we as
designers can ascribe these notions to agents written in AgentSpeak(L). The current state
of the agent, which is a model of itself, its environment, and other agents, can be viewed
as its current belief state; states which the agent wants to bring about based on its exter-
nal or internal stimuli can be viewed as desires; and the adoption of programs to satisfy
such stimuli can be viewed as intentions. This shift in perspective of taking a simple
specification language as the execution model of an agent and then ascribing the mental
attitudes of beliefs, desires, and intentions, from an external viewpoint is likely to have
a better chance of unifying theory and practice.

In Section 2 we discuss the agent language AgentSpeak(L). The specification lan-
guage consists of a set of base beliefs (or facts in the logic programming sense) and a
set of plans. Plans are context-sensitive, event-invoked recipes that allow hierarchical
decomposition of goals as well as the execution of actions. Although syntactically plans
look similar to the definite clauses of logic programming languages, they are quite dif-
ferent in their behaviour.

Section 3 formalizes the operational semantics of AgentSpeak(L). At run-time an
agent can be viewed as consisting of a set of beliefs, a set of plans, a set of intentions,
a set of events, a set of actions, and a set of selection functions. The selection of plans,
their adoption as intentions, and the execution of these intentions are described formally
in this section. An interpreter for AgentSpeak(L) is given and a simple example is used
to illustrate some of the definitions and the operational semantics of the language.

In Section 4, we provide the proof theory of the language. The proof theory is given
as a labeled transition system. Proof rules define the transition of the agent from one con-
figuration to the next. These transitions have a direct relationship to the operational se-



mantics of the language and hence help to establish the strong correspondence between
the AgentSpeak(L) interpreter and its proof theory.

The primary contributionof this work is in opening up an alternative, restricted, first-
order characterization of BDI agents. We hope that the operational and proof-theoretic
semantics of AgentSpeak(L) will stimulate research in both the pragmatic and theoreti-
cal aspects of BDI agents.

2 Agent Programs

In this section, we introduce the language for writing agent programs. The alphabet of
the formal language consists of variables, constants, function symbols, predicate sym-
bols, action symbols, connectives, quantifiers, and punctuationsymbols. Apart from first-
order connectives, we also use ! (for achievement), ? (for test), ; (for sequencing), and 
(for implication)1. Standard first-order definitions of terms, first-order formulas, closed
formulas, and free and bound occurrences of variables are used.

Definition 1. If b is a predicate symbol, and t1,...,tn are terms then b(t1,...,tn) or b(t) is
a belief atom. If b(t) and c(s) are belief atoms, b(t) ^ c(s), and:b(t) are beliefs. A belief
atom or its negation will be referred to as a belief literal. A ground belief atom will be
called a base belief.

For example, let us consider a traffic-world simulation, where there are four adjacent
lanes and cars can appear in any lane and move in the same lane from north to south.
Waste paper can appear on any of the lanes and a robot has to pick up the waste paper
and place it in the bin. While doing this the robot must not be in the same lane as the
car, as it runs the risk of getting run over by the car. Consider that we are writing agent
programs for such a robot.

The beliefs of such an agent represent the configuration of the lanes and the locations
of the robot, cars, waste, and the bin (i.e., adjacent(X,Y), location(robot,
X),location(car, X), etc.). The base beliefs of such an agent are ground instances
of belief atoms (i.e., adjacent(a,b), location(robot, a), etc.).

A goal2 is a state of the system which the agent wants to bring about. We consider
two types of goals: an achievement goal and a test goal. An achievement goal, written as
!g(t) states that the agent wants to achieve a state where g(t) is a true belief. A test goal,
written as ?g(t) states that the agent wants to test if the formula g(t) is a true belief or not.
In our example, clearing the waste on a particular lane can be stated as an achievement
goal, i.e., !cleared(b), and seeing if the car is in a particular lane can be stated as a
test goal, i.e., ?location(car, b).

Definition 2. If g is a predicate symbol, and t1,...,tn are terms then !g(t1,...,tn) (or !g(t))
and ?g(t1,...,tn) (or ?g(t)) are goals.

1 In the agent programs we use & for ^, not for :, <- for . Also, like PROLOG, we require
that all negations be ground when evaluated. We use the convention that variables are written
in upper-case and constants in lower-case.

2 In this paper, we discuss only goals, and not desires. Goals can be viewed as adopted desires.



When an agent acquires a new goal or notices a change in its environment, it may
trigger additions or deletions to its goals or beliefs. We refer to these events as triggering
events. We consider the addition/deletion of beliefs/goals as the four triggering events.
Addition is denoted by the operator + and deletion is denoted by the operator�. In our
example, noticing the waste in a certain lane X, written as +location(waste, X)
or acquiring the goal to clear the lane X, written as +!cleared(X) are example of two
triggering events.

Definition 3. If b(t) is a belief atom, !g(t) and ?g(t) are goals, then+b(t),�b(t) +!g(t),
+?g(t), �!g(t), �?g(t) are triggering events.

The purpose of an agent is to observe the environment, and based on its observation
and its goals, execute certain actions. These actions may change the state of the environ-
ment. For example, if move is an action symbol, the robot moving from lane X to lane
Y, written as move(X,Y), is an action. This action results in an environmental state
where the robot is in lane Y and is no longer in lane X.

Definition 4. If a is an action symbol and t1,...,tn are first-order terms, then a(t1,...,tn)
or a(t) is an action.

An agent has plans which specify the means by which an agent should satisfy an end.
A plan consists of a head and a body. The head of a plan consists of a triggeringevent and
a context, separated by a “:”. The triggering event specifies why the plan was triggered,
i.e., the addition or deletion of a belief or goal. The context of a plan specifies those
beliefs that should hold in the agent’s set of base beliefs, when the plan is triggered. The
body of a plan is a sequence of goals or actions. It specifies the goals the agent should
achieve or test, and the actions the agent should execute. For example, we want to write
a plan that gets triggered when some waste appears on a particular lane. If the robot is in
the same lane as the waste, it will perform the action of picking up the waste, followed
by achieving the goal of reaching the bin location, followed by performing the primitive
action of putting it in the bin. This plan can be written as:

+location(waste,X):location(robot,X) &
location(bin,Y)
<- pick(waste);

!location(robot,Y);
drop(waste). (P1)

Consider the plan for the robot to change locations. If it has acquired the goal to move
to a location X and it is already in location X, it does not have to do anything and hence
the body is true. If the context is such that it is not at the desired location then it needs
to find an adjacent lane with no cars in it, and then move to that lane.

+!location(robot,X):location(robot,X) <- true. (P2)

+!location(robot,X):location(robot,Y) &
(not (X = Y)) &



adjacent(Y,Z) &
(not (location(car, Z)))

<- move(Y,Z);
+!location(robot,X). (P3)

More formally, we have the following definition of plans.

Definition 5. If e is a triggering event, b1,...,bm are belief literals, and h1,...,hn are goals
or actions then e:b1 ^ : : : ^ bm  h1;...;hn is a plan. The expression to the left of the
arrow is referred to as the head of the plan and the expression to the right of the arrow
is referred to as the body of the plan. The expression to the right of the colon in the head
of a plan is referred to as the context. For convenience, we shall rewrite an empty body
with the expression true.

With this we complete the specification of an agent. In summary, a designer specifies
an agent by writing a set of base beliefs and a set of plans. This is similar to a logic
programming specification of facts and rules. However, some of the major differences
between a logic program and an agent program are as follows:

– In a pure logic program there is no difference between a goal in the body of a rule
and the head of a rule. In an agent program the head consists of a triggering event,
rather than a goal. This allows for a more expressive invocation of plans by allow-
ing both data-directed (using addition/deletion of beliefs) and goal-directed (using
addition/deletion of goals) invocations.

– Rules in a pure logic program are not context-sensitive as plans.
– Rules execute successfully returning a binding for unbound variables; however, ex-

ecution of plans generates a sequence of ground actions that affect the environment.
– While a goal is being queried the execution of that query cannot be interrupted in a

logic program. However, the plans in an agent program can be interrupted.

3 Operational Semantics

Informally, an agent consists of a set of base beliefs, B, a set of plans, P, a set of events,
E, a set of actions, A, a set of intentions, I, and three selection functions,SE , SO, and SI .
When the agent notices a change in the environment or an external user has asked the
system to adopt a goal, an appropriate triggering event is generated. These events cor-
respond to external events. An agent can also generate internal events. Events, internal
or external, are asynchronously added to the set of events E. The selection function SE
selects an event to process from the set of events E. This event is removed from E and is
used to unify with the triggering events of the plans in the set P. The plans whose trigger-
ing events so unify are called relevant plans and the unifier is called the relevant unifier.
Next, the relevant unifier is applied to the context condition and a correct answer sub-
stitution is obtained for the context, such that the context is a logical consequence of the
set of base beliefs, B. Such plans are called applicable plans or options and the compo-
sition of the relevant unifier with the correct answer substitution is called the applicable
unifier.



For each event there may be many applicable plans or options. The selection func-
tion SO chooses one of these plans. Applying the applicable unifier to the chosen option
yields the intended means of responding to the triggering event. Each intention is a stack
of partially instantiated plans or intention frames. In the case of an external event the in-
tended means is used to create a new intention, which is added to the set of intentions I.
In the case of an internal event to add a goal the intended means is pushed on top of an
existing intention that triggered the internal event.

Next, the selection function SI selects an intention to execute. When the agent ex-
ecutes an intention, it executes the first goal or action of the body of the top of the in-
tention. Executing an achievement goal is equivalent to generating an internal event to
add the goal to the current intention. Executing a test goal is equivalent to finding a sub-
stitution for the goal which makes it a logical consequence of the base beliefs. If such a
substitution is found the test goal is removed from the body of the top of the intention
and the substitution is applied to the rest of the body of the top of the intention. Exe-
cuting an action results in the action being added to the set of actions, A, and it being
removed from the body of the top of the intention.

The agent now goes to the set of events, E, and the whole cycle continues until there
are no events in E or there is no runnable intention.Now we formalize the above process3.

The state of an agent at any instant of time can be formally defined as follows:

Definition 6. An agent is given by a tuple <E,B,P,I,A,SE ,SO ,SI>, where E is a set of
events, B is a set of base beliefs, P is a set of plans, I is a set of intentions, and A is a set of
actions. The selection functionSE selects an event from the set E; the selection function
SO selects an option or an applicable plan (see Definition 10) from a set of applicable
plans; and SI selects an intention from the set I.

The sets B, P, and A are as defined before and are relatively straightforward. Here
we describe the sets E and I.

Definition 7. The set I is a set of intentions. Each intention is a stack of partially instan-
tiated plans, i.e., plans where some of the variables have been instantiated. An intention
is denoted by [p1z: : :zpz], where p1 is the bottom of the stack and pz is the top of the
stack. The elements of the stack are delimited by z. For convenience, we shall refer to
the intention [+!true:true <- true] as the true intention and denote it by T.

Definition 8. The set E consists of events. Each event is a tuple <e, i>, where e is a
triggering event and i is an intention. If the intention i is the true intention, the event is
called an external event; otherwise it is an internal event.

Now we can formally define the notion of relevant and applicable plans and unifiers.
As we saw earlier, a triggering event d from the set of events, E, is to be unified with the
triggering event of all the plans in the set P. The most general unifier (mgu) that unifies
these two events is called the relevant unifier. The intention i could be wither the true
intention or an existing intention which triggered this event. More formally,

3 The reader can refer to the Appendix for some basic definitions from first-order logic and horn
clause logic.



Definition 9. Let SE (E) = � = < d; i > and let p be e : b1^ : : :^bm  h1; : : : ;hn. The
plan p is a relevant plan with respect to an event � iff there exists a most general unifier
� such that d� = e�. � is called the relevant unifier for �.

For example, assume that the triggering event of the event selected from E is

+!location(robot,b).

The two plansP2 andP3 are relevant for this event with the relevant unifier beingfX/bg.
A relevant plan is also applicable if there exists a substitutionwhich, when composed

with the relevant unifier and applied to the context, is a logical consequence of the set
of base beliefs B. In other words, the context condition of a relevant plan needs to be a
logical consequence of B, for it to be an applicable plan. More formally,

Definition 10. A plan p, denoted by e : b1 ^ : : : ^ bm  h1; : : : ;hn is an applicable
plan with respect to an event � iff there exists a relevant unifier � for � and there exists a
substitution� such that 8(b1^...^bm)�� is a logical consequence of B. The composition
�� is referred to as the applicable unifier for � and � is referred to as the correct answer
substitution.

Continuing with the same example, consider that the set of base beliefs is given by

adjacent(a,b).
adjacent(b,c).
adjacent(c,d).
location(robot,a).
location(waste,b).
location(bin,d).

The applicable unifier is fX/b, Y/a, Z/bg and only plan P3 is applicable.
Depending on the type of the event (i.e., internal or external), the intention will be

different. In the case of external events, the intended means is obtained by first selecting
an applicable plan for that event and then applying the applicable unifier to the body of
the plan. This intended means is used to create a new intention which is added to the set
of intentions I.

Definition 11. Let SO(O�) = p, where O� is the set of all applicable plans or options for
the event �=< d; i > and p is e : b1^: : :^bm  h1; : : : ;hn. The plan p is intended with
respect to an event �, where i is the true intention iff there exists an applicable unifier �
such that [+!true : true truez(e : b1 ^ : : :^ bm  h1; : : : ;hn)�] 2 I.

In our example, the only applicable plan P3 will be intended with the intention I now
being

[+!location(robot,b): location(robot,a) &
not(b = a) &
adjacent(a, b) &
not(location(car,b)) <-

move(a,b);
+!location(robot,b)].



In the case of internal events the intended means for the achievement goal is pushed
on top of the existing intention that triggered the internal event.

Definition 12. Let SO(O�) = p, where O� is the set of all applicable plans or options for
the event � = < d; [p1z: : :zf : c1^ : : :^cy  !g(t);h2; : : : ;hn] >, and p is +!g(s): b1^
: : :^ bm  k1; : : : ; kj. The plan p is intended with respect to an event � iff there exists
an applicable unifier � such that [p1z: : :zf : c1^ : : :^cy  !g(t);h2; : : : ;hnz(+!g(s) :
b1 ^ : : :^ bm)�  (k1; : : : ; kj)�; (h2; : : : ;hn)�] 2 I.

The above definition is very similar to SLD-resolution of logic programming languages.
However, the primary difference between the two is that the goal g is called indirectly
by generating an event. This gives the agent better real-time control as it can change its
focus of attention, if needed, by adopting and executing a different intention. Thus, one
can view agent programs as multi-threaded interruptible logic programming clauses.

When an intention is selected and executed, the first formula in the body of the top of
the intention can be: (a) an achievement goal; (b) a test goal; or (c) an action; or (d) true.
In the case of an achievement goal the system executes it by generating an event; in the
case of a test goal it looks for a mgu that will unify the goal with the set of base beliefs
of the agent, and if such an mgu exists it applies it to the rest of the means; in the case
of an action the system adds it to the set of actions A; and in the last case the top of the
intention and the achievement goal that was satisfied are removed and the substitution
is applied to the rest of the body of that intention.

Definition 13. Let SI(I) = i, where i is [p1z: : :zf : c1 ^ : : :^ cy  !g(t);h2; : : : ;hn].
The intention i is said to have been executed iff < +!g(t); i > 2 E.

Definition 14. Let SI(I) = i, where i is [p1z: : :zf : c1 ^ : : :^ cy  ?g(t);h2; : : : ;hn].
The intention i is said to have been executed iff there exists a substitution � such that
8g(t)� is a logical consequence of B and i is replaced by [p1z: : :z(f : c1^ : : :^ cy)�  
h2�; : : : ;hn�].

Definition 15. Let SI(I) = i, where i is [p1z: : :zf : c1 ^ : : :^ cy  a(t);h2; : : : ;hn].
The intention i is said to have been executed iff a(t)2A, and i is replaced by [p1z: : :zf :
c1 ^ : : :^ cy  h2; : : : ;hn].

Definition 16. Let SI(I) = i, where i is [p1z: : :zpz�1z!g(t) : c1 ^ : : : ^ cy  true],
where pz�1 is e : b1 ^ : : : ^ bx  !g(s);h2; : : : ;hn. The intention i is said to have
been executed iff there exists a substitution � such that g(t)� = g(s)� and i is replaced
by [p1z: : :zpz�1z(e : b1 ^ : : :^ bx)�  (h2; : : : ;hn)�].

Continuing our example, we would execute I and by Definition 15 we would add
fmove(a,b)g to A and change I to be as follows:

[+!location(robot,b): location(robot,a) &
not(b = a) &
adjacent(a, b) &
not(location(car,b)) <-

+!location(robot,b)].



In the next iteration, after the robot moves from a to b the environment will send the
agent a belief update event to change the location of the robot to b. This will result in
the belieflocation(robot,b) being added to the set B and the event +location
(robot,b) being added to the set of events, E. As there are no relevant plans for this
the system will choose the above intention to execute. Executing this will result in an
intention add event being generated and added to the set of events, E; in other words E
is f<+!location (robot,b),i>g, where i is the same intention as before. By
Definition 12 the relevant plan in this case is P1 with the relevant unifier fX/bg. This
plan is also applicable and the applicable unifier is the same. As the body of this plan
is true, the intention is satisfied and the set of events is empty. This terminates the
execution until the next event is added into the set E.

From the above definitions and description of the operational semantics of the lan-
guage AgentSpeak(L) we can write an interpreter for AgentSpeak(L). Figure 1 describes
such an interpreter. We use the function top to return the top of an intention stack; the
functionhead to return the head of an intended plan; the function body to return the body
of an intended plan. In addition, the functions first and rest are used to return the first
element of a sequence, and all but the first element of a sequence. The function push
takes an intention frame and an intention (i.e., stack of intention frames) and pushes the
intention frame on to the top of the intention. The function pop takes an intention as an
argument and returns the top of the intention.

4 Proof Theory

So far we have presented the operational semantics of AgentSpeak(L). Now we briefly
discuss its proof theory based on labeled transition systems.

Definition 17. A BDI transition system is a pair h� ;`i consisting of:

– A set � of BDI configurations; and
– A binary transition relation ` � � � � .

We define a BDI configuration as follows:

Definition 18. A BDI configuration is a tuple of hEi; Bi; Ii; Ai; ii, where Ei � E, Bi

� B, Ii � I, Ai � A, and i is the label of the transition.

Note that we have not taken the set of plans, P, in the configuration as we have assumed it
to be constant. Also, we do not explicitly keep track of goals as they appear as intentions
when adopted by the agent. Now we can write transition rules that take an agent from
one configuration to its subsequent configuration.

The following proof rule IntendEnd gives the transition for intending a plan at the
top level. It states how the agent’s set of intentions I changes in response to an external
event that has been chosen (by the SE function) to be processed.

(IntendEnd)
< f: : : ; < +!g(t); T >; : : :g; Bi; Ii; Ai; i >

< f: : :g; Bi; Ii [ f[p��]g; Ai; i+ 1 >



Algorithm Interpreter()
while E 6= ; do

� = < d; i > = SE (E);
E = E/�;
O� = fp� j � is an applicable unifier for event � and plan pg
if external-event(�) then I = I [ [SO (O�)];
else push(SO(O�)�, i), where � is an applicable unifier for �;
case first(body(top(SI (I)))) = true

x = pop(SI(I));
push(head(top(SI (I)))�  rest(body(top(SI (I))))�, SI (I)),
where � is an mgu such that x� = head(top(SI (I)))�;

case first(body(top(SI (I)))) = !g(t)
E = E [ <+!g(t),SI (I)>

case first(body(top(SI (I)))) = ?g(t)
pop(SI(I));
push(head(top(SI (I)))�  rest(body(top(SI (I))))�, SI (I)),
where � is the correct answer substitution

case first(body(top(SI (I)))) = a(t)
pop(SI(I));
push(head(top(SI (I))) rest(body(top(SI (I)))), SI (I));
A = A [ fa(t)g;

endwhile.

Fig. 1. Algorithm for the BDI Interpreter

where p = +!g(s) : b1^ : : :^bm  h1; : : : ;hn 2P , SE(E) = < +!g(t); T >, g(t)�
= g(s)� and 8 (b1^...^bm)� is a logical consequence of Bi.

The proof rule IntendMeans is similar to the previous proof rule, except that the ap-
plicable plan is pushed at the top of the intention given as the second argument of the
chosen event. More formally we have,

(IntendMeans)
< f: : : ; < +!g(t); j >; : : :g; Bi; f: : : ; [p1z : : :zpz]; : : :g; Ai; i >

< f: : :g; Bi; f: : : ; [p1z : : :zpzzp��]; : : :g; Ai; i+ 1 >

where pz = f : c1 ^ : : : ^ cy  !g(t);h2; : : : ;hn, p = +!g(s) : b1 ^ : : : ^ bm  
k1; : : : ; kx, SE (E) =< +!g(t); j >, j is [p1z: : :zpn] >, g(t)� = g(s)� and 8 (c1^...^cy)�
is a logical consequence of Bi.

Next, we have four proof rules for execution. The four proof rules are based on the
type of the goal or action that appears as the first literal of the body of the top of an
intention chosen to be executed by the function SI . We give the execution proof rule
for achieve ExecAch, the other proof rules can be written analogously.

(ExecAch)
< Ei; Bi; f: : : ; [p1z : : : zf : c1 ^ : : :^ cy  !g(t);h2; : : : ;hn]; : : :g; Ai; i >

< Ei [ f< +!g(t); j >g; Bi; f: : : ; [p1z : : :zpz]; : : :g; Ai; i+ 1 >

where SI(Ii) = j = [p1z : : : zpz] and pz = f : c1 ^ : : :^ cy  !g(t);h2; : : : ;hn].



Although we have given the proof rules only for additions of goals, similar proof
rules apply for deletion of goals, and addition and deletion of beliefs.

With these proof rules one can formally define derivations and refutations. The def-
inition of derivations is straightforward and is a sequence of transitions using the above
proof rules.

Definition 19. A BDI derivation is a finite or infinite sequence of BDI configurations,
i.e., 
0,: : :,
i,: : :.

The notion of refutation in AgentSpeak(L) is with respect to a particular intention. In
other words, the refutation for an intention starts when an intention is adopted and ends
when the intention stack is empty. Thus, using the above proof rules we can formally
prove certain behavioural properties, such as safety and liveness of agent systems, as
was done elsewhere [15]. Furthermore, there is a one-to-one correspondence between
the proof rules discussed in this section and the operational semantics discussed in the
previous section. Such a correspondence has not been possible before, because the proof
theory (usually based on multi-modal logics) has been far removed from the realities of
the operational semantics.

In addition to the internal events considered in this paper (i.e., addition of intentions),
one can extend the operational semantics and proof rules with respect to other internal
events, such as deletion of intentions, and success and failure events for actions, plans,
goals, and intentions.

The body of the plans considered in this paper includes only sequences of goals or
actions. Other dynamic logic operators, such as non-deterministic or, parallel, and it-
eration, operators can be allowed in the body of plans. In addition, assertion and dele-
tion of beliefs in plan bodies can also be included. Another useful feature of the imple-
mented system dMARS is different post-conditions for successful and failure executions
of plans. The operational semantics and proof rules can once again be modified to ac-
count for the above constructs.

5 Comparisons and Conclusion

A number of agent-oriented languages such as AGENT0 [17], PLACA (PLAnning Com-
municatingAgents) [19], AgentSpeak [22], SLP [16, 4], and CONGOLOG [9] have been
proposed in the literature.

AGENT0 and its successor PLACA can model beliefs, commitments, capabilities,
and communications between agents. These attitudes are treated as data structures of
an agent program. An interpreter that can execute such agent programs are described.
However, the authors do not provide a formal proof theory or justify how the data struc-
tures capture the model-theoretic semantics of beliefs, commitments, and capabilities.
In contrast, the work described here discusses the connections between the interpreter
and a proof theory based on labeled transition systems.

SLP or Stream Logic Programming is based on reactive, guarded, horn clauses. A
clause in SLP consists of a guard and a behaviour. The guard is further decomposed into
an head and a boolean constraint. The boolean constraint is similar to our context. The
head in SLP is an object and the body is a network of concurrent objects connected by



communication message slots. Behaviour is specified by object replacement. The execu-
tion model of SLP and AgentSpeak(L) are fundamentally different. The behaviour of an
agent to a particular external stimuli is captured in a single intention, as a stack of com-
mitted sub-behaviours. This provides a global coherence absent in SLP. For example,
consider an agent that wants to drop its intention because it no longer needs to achieve a
given top-level goal. Killing such an intention would be much easier in AgentSpeak(L)
than in SLP.

The semantics of CONGOLOG is based on situationcalculus. Although it provides a
richer set of actions than what has been discussed here, it is essentially a single intention
(or single-threaded) system, unlike AgentSpeak(L). The language AgentSpeak [22] is
an object-oriented analogue of AgentSpeak(L).

AgentSpeak(L) is a textual and simplified version of the language used to program
the Procedural Reasoning System [3] and its successor dMARS. These implementations
have been in use since the mid-1980s. Other agent-oriented systems, such as COSY [1],
INTERRAP [10], and GRATE� [7], have been built based on the BDI architecture. The
formal operational semantics given here could apply to some of these systems as well.
However, a more thoroughanalysis of these systems and their relation to AgentSpeak(L)
is beyond the scope of this paper.

Bridging the gap between theory and practice in the field of agents, and in particu-
lar the area of BDI agents, has proved elusive. In this paper, we provide an alternative
approach by providing the operational semantics of AgentSpeak(L) which abstracts an
implemented BDI system. The primary contribution of this work is in opening up an al-
ternative, restricted, first-order characterization of BDI agents and showing a one-to-one
correspondence between the operational and proof-theoretic semantics of such a char-
acterization. We are confident that this approach is likely to be more fruitful than the
previous approaches in bridging the gap between theory and practice in this area and
will stimulate research in both the pragmatic and theoretical aspects of BDI agents.
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Appendix

Definition 20. An atom of the form s = t, where s and t are terms is called an equation.

Definition 21. A substitution is a finite set fx1/t1,...,xn/tng, where x1,...,xn are distinct
variables, and t1,...,tn are terms such that xi 6= ti for any i from 1..n.

Definition 22. The application of a substitution � = fx1/t1,...,xn/tng to a variable xi,
written as xi�, yields ti iff xi/ti 2 � and xi otherwise. The application of � to a term or
formula is the term or formula obtained by simultaneously replacing every occurrence
of xi by ti for all i from 1 to n.



Definition 23. Let � = fx1/t1,...,xn/tng and � = fy1/s1,...,ym /smg. The composition ��
of � and � is the substitution obtained from the set: fx1/t1�,...,xn/tn�g [ � by remov-
ing all xi/ti� for which xi = ti� (1 � i � n)and removing those yj/tj for which yj 2
fx1,...,xng (1 � j �m) [11].

Definition 24. A substitution� is a solution or unifier of a set of equations fs1 = t1, ...,
sn = tng iff si� = ti� for all i = 1,...,n. A substitution� is more general than � iff there
is a substitution! such that �! = �. A most general unifier (mgu) of two terms (atoms)
is a maximally general unifier of the terms.
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