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Abstract. Belief-Desire-Intention (BDI) agents have been investigated by many
researchersfrom both atheoretical specification perspectiveand apractical design
perspective. However, there still remains alarge gap between theory and practice.
The main reason for this has been the complexity of theorem-proving or model-
checking in these expressive specification logics. Hence, the implemented BDI
systemshavetended to usethe three major attitudes asdata structures, rather than
as modal operators. In this paper, we provide an alternative formalization of BDI
agents by providing an operational and proof-theoretic semantics of a language
AgentSpeak(L ). This language can be viewed as an abstraction of one of the im-
plemented BDI systems (i.e., PRS) and allows agent programs to be written and
interpreted in a manner similar to that of horn-clause logic programs. We show
how to perform derivations in this logic using a simple example. These deriva-
tions can then be used to prove the properties satisfied by BDI agents.

1 Introduction

The specification, design, verification, and applications of a particular type of agents,
called BDI agents, have received a great deal of attention in recent years. BDI agents
are systems that are situated in a changing environment, receive continuous perceptual
input, and take actions to affect their environment, all based on their internal mental
state. Beliefs, desires, and intentionsare the three primary mental attitudesand they cap-
turetheinformational, motivational, and decision components of an agent, respectively.
In addition to these attitudes, other notions such as commitments, capabilities, know-
how, etc. have been investigated. Sophisticated, multi-modal, temporal, action, and dy-
namic logics have been used to formalize some of these notions [2, 6, 8, 13, 18, 20, 21].
The complexity of theorem-proving and the compl eteness of these logics have not been
clear [12, 23].

On the other hand, there are a number of implementations of BDI agents[1, 3, 10,
17] that are being used successfully in critical application domains. These implemen-
tations have made a number of simplifying assumptions and modelled the attitudes of
beliefs, desires, and intentions as data structures. Also, user written plans or programs
speed up the computationin these systems. The complexity of the code writtenfor these
systemsand the simplifyingassumptionsmade by them have meant that theimplemented
systems have lacked a strong theoretical underpinning. The specification logics have



shed very littlelight on the practical problems. Asaresult thetwo streams of work seem
to be diverging.

Our earlier attempt to bridge this gap between theory and practice has concentrated
on providing an abstract BDI architecture [14], that serves both as an idealization of an
implemented system and also as a vehicle for investigating certain theoretical proper-
ties. Due to its abstraction this work was unable to show a one-to-one correspondence
between the model theory, proof theory, and the abstract interpreter. The holy grail of
BDI agent research isto show such a one-to-one correspondence with areasonably use-
ful and expressive language.

This paper makes another attempt at specifying such alogical language. Unlikesome
of the previousattempts, it takes asits starting point one of theimplemented systemsand
formalizes its operational semantics. The implemented system being considered is the
Procedural Reasoning System (PRS) [5] and its more recent incarnation, the Distributed
Multi-Agent Reasoning System (dMARS). The language AgentSpeak(L ) can be viewed
as asimplified, textual language of PRS or dAMARS. The language and its operational
semantics are similar to the implemented system in their essential details. The imple-
mented system has more language constructs to make the task of agent programming
easier.

AgentSpeak(L) isaprogramming language based on arestricted first-order language
with events and actions. The behaviour of the agent (i.e., its interaction with the envi-
ronment) isdictated by the programswrittenin AgentSpeak(L). The beliefs, desires, and
intentions of the agent are not explicitly represented as modal formulas. Instead, we as
designers can ascribe these notionsto agentswrittenin AgentSpeak(L ). The current state
of the agent, whichisamodel of itself, its environment, and other agents, can be viewed
asitscurrent belief state; states which the agent wants to bring about based on itsexter-
nal or internal stimuli can be viewed as desires; and the adoption of programs to satisfy
such stimuli can be viewed as intentions. This shift in perspective of taking a smple
specification language as the execution model of an agent and then ascribing the mental
attitudes of beliefs, desires, and intentions, from an external viewpoint islikely to have
a better chance of unifying theory and practice.

In Section 2 we discuss the agent language AgentSpeak(L). The specification lan-
guage consists of a set of base beliefs (or facts in the logic programming sense) and a
set of plans. Plans are context-sensitive, event-invoked recipes that alow hierarchical
decomposition of goalsas well as the execution of actions. Although syntactically plans
look similar to the definite clauses of logic programming languages, they are quite dif-
ferent in their behaviour.

Section 3 formalizes the operational semantics of AgentSpeak(L). At run-time an
agent can be viewed as consisting of a set of beliefs, a set of plans, a set of intentions,
a set of events, a set of actions, and a set of selection functions. The selection of plans,
their adoption asintentions, and the execution of these intentionsare described formally
in thissection. Aninterpreter for AgentSpeak(L) is given and asimple example isused
to illustrate some of the definitionsand the operational semantics of the language.

In Section 4, we provide the proof theory of the language. The proof theory is given
as alabeled transition system. Proof rulesdefine thetransition of the agent from one con-
figuration to the next. These transitions have a direct relationship to the operational se-



mantics of the language and hence help to establish the strong correspondence between
the AgentSpeak(L) interpreter and its proof theory.

The primary contributionof thiswork isin opening up an aternative, restricted, first-
order characterization of BDI agents. We hope that the operational and proof-theoretic
semantics of AgentSpeak(L) will stimulate research in both the pragmatic and theoreti-
cal aspects of BDI agents.

2 Agent Programs

In this section, we introduce the language for writing agent programs. The alphabet of

the formal language consists of variables, constants, function symbols, predicate sym-
bols, action symbols, connectives, quantifiers, and punctuation symbols. Apart from first-
order connectives, we alsouse! (for achievement), ? (for test), ; (for sequencing), and «
(for implication)!. Standard first-order definitions of terms, first-order formulas, closed
formulas, and free and bound occurrences of variables are used.

Definition 1. If b isapredicate symbol, and ¢4 ,....,t,, aretermsthenb(ty,...,t,,) or b(t) is
abelief atom. If b(t) and ¢(s) are belief atoms, b(t) A ¢(s), and —b(t) are beliefs. A belief
atom or its negation will be referred to as a belief literal. A ground belief atom will be
called a base belief.

For example, let us consider atraffic-world simulation, where there are four adjacent
lanes and cars can appear in any lane and move in the same lane from north to south.
Waste paper can appear on any of the lanes and a robot has to pick up the waste paper
and place it in the bin. While doing this the robot must not be in the same lane as the
car, asit runsthe risk of getting run over by the car. Consider that we are writing agent
programs for such a robot.

Thebeliefs of such an agent represent the configuration of the lanes and thelocations
of the robot, cars, waste, and the bin (i.e., adjacent (X,Y), location (robot,
X),location (car, X),etc.). Thebasebeliefsof suchanagent aregroundinstances
of belief atoms (i.e.,, adjacent (a,b), location(robot, a), €tc.).

A goal? is a state of the system which the agent wants to bring about. We consider
two types of goals: an achievement goal and atest goal. An achievement goal, written as
lg9(t) states that the agent wantsto achieve a state where ¢(t) isatruebelief. A test goal,
writtenas 7 ¢(t) statesthat the agent wantstotest if theformulag(t) isatruebelief or not.
In our example, clearing the waste on a particular lane can be stated as an achievement
god,i.e, lcleared (b), and seeing if the car isin a particular lane can be stated as a
testgod, i.e., 7location (car, b).

Definition 2. If g isapredicatesymbol, andt,,...,t,, aretermsthen!g(¢,....t,) (or lg(t))
and 7g(ty,....t,) (Or 7¢(t)) are goals.

! In the agent programs we use & for A, not for -, <- for «. Also, like PROLOG, we require
that all negations be ground when evaluated. We use the convention that variables are written
in upper-case and constantsin lower-case.

2 Inthis paper, we discussonly goals, and not desires. Goal's can be viewed as adopted desires.



When an agent acquires a new goal or notices a change in its environment, it may
trigger additionsor deletionstoitsgoalsor beliefs. We refer to these eventsastriggering
events. We consider the addition/del etion of beliefs/goals as the four triggering events.
Additionis denoted by the operator + and deletion is denoted by the operator —. In our
example, noticing the waste in acertain lane X, writtenas +location (waste, X)
or acquiring the goal toclear thelane X, writtenas +!cleared (X) are example of two
triggering events.

Definition 3. If b(t) isabelief atom, !¢4(t) and 7 ¢(t) are goals, then +b(t), —b(t) +!1g(t),
+79(t), —!g(t), —7g(t) are triggering events.

The purpose of an agent isto observe the environment, and based on its observation
and itsgoal s, execute certain actions. These actions may change the state of the environ-
ment. For example, if move isan action symbol, the robot moving from lane X to lane
Y, written as move (X, Y), is an action. This action results in an environmental state
where therobot isinlane Y and is no longer in lane X.

Definition 4. If a isan action symbol and #1,....,t,, arefirst-order terms, then a(t4,...,t,)
or a(t) isan action.

An agent has planswhich specify the means by which an agent shoul d satisfy an end.
A plan consistsof ahead and abody. The head of aplan consistsof atriggeringevent and
acontext, separated by a“:”. The triggering event specifies why the plan was triggered,
i.e., the addition or deletion of a belief or goal. The context of a plan specifies those
beliefsthat should hold inthe agent’s set of base beliefs, when the planistriggered. The
body of aplan is a sequence of goals or actions. It specifies the goals the agent should
achieve or test, and the actions the agent should execute. For example, we want to write
aplanthat getstriggered when some waste appears on aparticular lane. If therobot isin
the same lane as the waste, it will perform the action of picking up the waste, followed
by achieving the goal of reaching the binlocation, followed by performing the primitive
action of puttingit inthe bin. This plan can be written as:

+location (waste,X) :location (robot,X) &
location (bin,Y)
<- pick(waste) ;
!location (robot,Y) ;
drop (waste) . (P1)

Consider the planfor therobot to changelocations. If it hasacquired the goal tomove
toalocation X and it isaready inlocation X, it does not have to do anything and hence
thebody is t rue. If the context issuch that itis not at the desired location then it needs
to find an adjacent lane with no carsin it, and then move to that lane.

+!location (robot,X) :location (robot,X) <- true. (P2)

+!location (robot,X) :location (robot,Y) &
(not (X = Y)) &



adjacent (Y, Z) &
(not (location(car, Z)))
<- move(Y,Z);
+!location (robot,X). (P3)

More formally, we have the following definition of plans.

Definition 5. If e isatriggeringevent, b1,...,b,, arebelief literals, and 44 ,...,h,, aregoas
or actionsthen e:by A ... A by, < hy;...;h, iSaplan. The expression to the left of the
arrow is referred to as the head of the plan and the expression to the right of the arrow
isreferred to as the body of the plan. The expression to the right of the colon in the head
of aplanisreferred to as the context. For convenience, we shall rewrite an empty body
with the expression true.

With thiswe compl ete the specification of an agent. In summary, adesigner specifies
an agent by writing a set of base beliefs and a set of plans. Thisis similar to a logic
programming specification of facts and rules. However, some of the major differences
between alogic program and an agent program are as follows:

— Inapurelogic program there is no difference between a goa in the body of arule
and the head of arule. In an agent program the head consists of a triggering event,
rather than agoal. This alowsfor a more expressive invocation of plans by allow-
ing both data-directed (using addition/deletion of beliefs) and goal-directed (using
addition/del etion of goals) invocations.

— Rulesin apurelogic program are not context-sensitive as plans.

— Rules execute successfully returning a binding for unbound variables, however, ex-
ecution of plans generates a sequence of ground actionsthat affect the environment.

— Whileagoal is being queried the execution of that query cannot be interruptedin a
logic program. However, the plansin an agent program can be interrupted.

3 Operational Semantics

Informally, an agent consists of a set of base beliefs, B, a set of plans, P, a set of events,
E, aset of actions, A, aset of intentions, |, and three selection functions, Sg, S, and Sz.

When the agent notices a change in the environment or an external user has asked the
system to adopt a goal, an appropriate triggering event is generated. These events cor-
respond to external events. An agent can also generate internal events. Events, internal
or external, are asynchronously added to the set of events E. The selection function Sg

selects an event to process from the set of events E. Thiseventisremoved fromE and is
used to unify with the triggering events of the plansinthe set P. The planswhose trigger-

ing events so unify are called relevant plans and the unifier is called the relevant unifier.

Next, the relevant unifier is applied to the context condition and a correct answer sub-

gtitutionisobtained for the context, such that the context isalogical consequence of the
set of base beliefs, B. Such plans are called applicable plans or options and the compo-
sition of the relevant unifier with the correct answer substitutionis called the applicable
unifier.



For each event there may be many applicable plans or options. The selection func-
tion Se chooses one of these plans. Applying the applicable unifier to the chosen option
yieldstheintended means of responding to thetriggering event. Each intentionisa stack
of partialy instantiated plans or intention frames. In the case of an external event thein-
tended meansis used to create a new intention, which is added to the set of intentions|.
In the case of an internal event to add a goal the intended means is pushed on top of an
existing intention that triggered the internal event.

Next, the selection function Sz selects an intention to execute. When the agent ex-
ecutes an intention, it executes the first goa or action of the body of the top of thein-
tention. Executing an achievement goal is equivalent to generating an internal event to
add the goal to the current intention. Executing atest goal is equivalent to finding a sub-
stitution for the goal which makes it alogical consequence of the base beliefs. If such a
substitution is found the test goal is removed from the body of the top of the intention
and the substitution is applied to the rest of the body of the top of the intention. Exe-
cuting an action results in the action being added to the set of actions, A, and it being
removed from the body of the top of the intention.

The agent now goesto the set of events, E, and thewhol e cycle continuesuntil there
arenoeventsin E or thereisno runnableintention. Now we formalize theabove process’.

The state of an agent at any instant of time can be formally defined as follows:

Definition 6. An agent isgiven by atuple <E,B,RI,A,S¢ S0 ,Sz>, where E isa set of
events, B isaset of base beliefs, Pisaset of plans, | isaset of intentions, and A isaset of
actions. The selectionfunction Sg selects an event from the set E; the selection function
So selects an option or an applicable plan (see Definition 10) from a set of applicable
plans; and S selects an intention from the set |.

The sets B, P, and A are as defined before and are relatively straightforward. Here
we describe thesetsE and I.

Definition 7. Theset | isaset of intentions. Each intentionisastack of partiallyinstan-
tiated plans, i.e., planswhere some of the variables have been instantiated. An intention
isdenoted by [p11. . .Ip.], where p; isthe bottom of the stack and p. isthe top of the
stack. The elements of the stack are delimited by . For convenience, we shall refer to
theintention [+!true:true <- true] asthetrueintentionand denoteit by T.

Definition 8. The set E consists of events. Each event isatuple <e, i>, where e isa
triggering event and ¢ is an intention. If the intention ¢ isthe true intention, the event is
called an external event; otherwiseit isan internal event.

Now we can formally define the notion of relevant and applicable plansand unifiers.
Aswe saw earlier, atriggering event d from the set of events, E, isto be unified with the
triggering event of all the plansin the set P. The most general unifier (mgu) that unifies
these two events is called the relevant unifier. The intention ¢ could be wither the true
intention or an existing intention which triggered this event. More formally,

 Thereader canrefer to the Appendix for some basic definitionsfrom first-order logic and horn
clauselogic.



Definition9. Let Sc(E)=e=< d,i >andletpbee : by A.. . Aby, < hy;...;h,. The
plan p isarelevant plan with respect to an event ¢ iff there existsamost general unifier
o such that do = eo. o iscalled the relevant unifier for e.

For example, assume that the triggering event of the event selected fromE is
+!location (robot,b) .

Thetwoplans P2 and P3 arerelevant for thisevent withtherelevant unifier being {X /b }.

A relevant planisalso applicableif there existsasubstitutionwhich, when composed
with the relevant unifier and applied to the context, is a logical conseguence of the set
of base beliefs B. In other words, the context condition of a relevant plan needs to be a
logical consequence of B, for it to be an applicable plan. More formally,

Definition10. A planp, denoted by e : by A ... A b, < hy;...; h, iSan applicable
plan with respect to an event ¢ iff there existsarelevant unifier ¢ for € and there existsa
substitution such that V(61 A...Aby, ) isalogical consequence of B. The composition
ot isreferred to as the applicable unifier for e and ¢ isreferred to as the correct answer
substitution.

Continuing with the same example, consider that the set of base beliefsis given by

adjacent
adjacent
adjacent
location
location
location

a,b).
b,c).
c,d) .
robot,a) .
waste, b) .
bin,d) .

~ o~ o~~~ —~

The applicable unifieris{X/b, Y/a, Z/b}andonly planP3 isapplicable.

Depending on the type of the event (i.e., interna or external), the intention will be
different. Inthe case of external events, the intended means is obtained by first selecting
an applicable plan for that event and then applying the applicable unifier to the body of
the plan. Thisintended meansis used to create a new intention which isadded to the set
of intentions|.

Definition11. Let S (O.) = p, where O, isthe set of all applicable plansor optionsfor
theevente=< d,i >andpise : byA.. .Ab,, < hy;...;h,. Theplanpisintendedwith
respect to an event ¢, where ¢ isthe true intention iff there exists an applicable unifier o
such that [+!¢rue : true < truef(e : by A . Aby < hy; . hy)o] €1

In our example, the only applicable plan p3 will be intended with the intention | now
being

[+!location (robot,b): location(robot,a) &
not (b = a) &
adjacent (a, b) &
not (location (car,b)) <-
move (a,b) ;
+!location(robot,b)].



Inthe case of internal eventsthe intended means for the achievement goal is pushed
on top of the existing intention that triggered the internal event.

Definition 12. Let Sp (O.) = p, where O, isthe set of all applicable plansor optionsfor
theevente =< d, [p1I.. If 11 AL Ay <g(t); ha; .. s hy] >, and pis+lg(s): b1 A
oAby < ki;.. .5 k;. Theplan p isintended with respect to an event ¢ iff there exists
an applicableunifier o suchthat [p11.. .If : et A...Aey <lg(t); ho;. .5 haf(+lg(s)
by A Aby)o — (k1. k)o; (s hy)o] €L

The above definitionisvery similar to SL D-resol ution of logic programming languages.
However, the primary difference between the two is that the goal ¢ is called indirectly
by generating an event. This givesthe agent better real-time control asit can changeits
focus of attention, if needed, by adopting and executing a different intention. Thus, one
can view agent programs as multi-threaded interruptible logic programming clauses.

When anintentionis selected and executed, thefirst formulain thebody of the top of
theintentioncan be: (a) an achievement goal; (b) atest goal; or (c) an action; or (d) true.
In the case of an achievement goal the system executes it by generating an event; in the
case of atest goal it looks for amgu that will unify the goal with the set of base beliefs
of the agent, and if such an mgu existsit appliesit to the rest of the means; in the case
of an action the system adds it to the set of actions A; and in the last case the top of the
intention and the achievement goal that was satisfied are removed and the substitution
isapplied to the rest of the body of that intention.

Definition 13. Let Sz(I) =i, wheredis[pii.. if e A Ay <lg(t); has ..o byl
The intention is said to have been executed iff < +1g(t),i > € E.

Definition 14. Let Sz(I) =i, whereiis[pii.. If :e1 AL Acy «Tg(t); ha;. .. hy).
The intention 7 is said to have been executed iff there exists a substitution 6 such that
Vg(t)6 isalogical consequence of B and i isreplaced by [pif.. I(f :e1 A . Acy)b
ha8; .. .5 h,0].

Definition 15. Let Sz(I) =4, wheredis[pii.. if tei A Ay  al(t); ha; ... Ryl
Theintentioni issaid to have been executed iff a(t) € A, andiisreplaced by [pi1.. .1f :
1A Aey < hayo kg

Definition 16. Let Sz(I) = ¢, whereiis[p1f.. ip.—1flg(t) 1 ca AL  Acy  true],
where p,_1 ise : by A ... A by «lg(s);ho;...; hy. Theintention is said to have
been executed iff there exists a substitution ¢ such that g(t)¢ = g(s)¢ and ¢ is replaced
by [p1i.. dps—1i(e :br AL Aby)0 — (has. .. hy)f].

Continuing our example, we would execute | and by Definition 15 we would add
{move (a,b) } to A and change | to be as follows:

[+!location (robot,b): location(robot,a) &
not (b = a) &
adjacent (a, b) &
not (location (car,b)) <-
+!location(robot,b)].



In the next iteration, after the robot moves from a to b the environment will send the
agent a belief update event to change the location of the robot to b. This will result in
thebelief location (robot,b) being addedtotheset B andtheevent +1ocation
(robot, b) being added to the set of events, E. Asthere are no relevant plansfor this
the system will choose the above intention to execute. Executing this will result in an
intention add event being generated and added to the set of events, E; in other words E
is{<+!location (robot,b),i>}, where i isthe same intention as before. By
Definition 12 the relevant plan in thiscase is P1 with the relevant unifier {X/b}. This
plan is also applicable and the applicable unifier is the same. As the body of this plan
is true, the intention is satisfied and the set of events is empty. This terminates the
execution until the next event is added into the set E.

From the above definitions and description of the operational semantics of the lan-
guage AgentSpeak(L) we canwriteaninterpreter for AgentSpeak(L ). Figure 1 describes
such an interpreter. We use the function top to return the top of an intention stack; the
functionhead toreturnthe head of an intended plan; thefunction body to returnthe body
of an intended plan. In addition, the functions first and rest are used to return the first
element of a sequence, and all but the first element of a sequence. The function push
takes an intention frame and an intention (i.e., stack of intention frames) and pushes the
intention frame on to the top of the intention. The function pop takes an intention as an
argument and returns the top of the intention.

4 Proof Theory

So far we have presented the operational semantics of AgentSpeak(L). Now we briefly
discussits proof theory based on labeled transition systems.

Definition 17. A BDI transition systemisapair (I'; ) consisting of:

— A set I of BDI configurations; and
— A binary transitionrelation C I x I.

We define a BDI configuration as follows:

Definition 18. A BDI configurationisatupleof (E;, B;, I;, A;, i), where E; C E, B;
CB,I;CI,A; CA,andiisthelabel of thetransition.

Notethat we have not taken the set of plans, P, inthe configuration as we have assumed it
to be constant. Also, we do not explicitly keep track of goals as they appear asintentions
when adopted by the agent. Now we can write transition rules that take an agent from
one configuration to its subseguent configuration.

The following proof rule IntendEnd gives the transition for intending a plan at the
top level. It states how the agent’s set of intentions| changes in response to an external
event that has been chosen (by the S¢ function) to be processed.

<{...,<+lg(), T > ..} BiLi,Ai,i >

IntendEnd
(ntendEnd) = oy B 1 U poll}, A+ 1>




Algorithm Interpreter()
while E#£ 0 do
e=<d,i >=8¢(E);
E =FEl;
O. ={pf | 6 isan applicableunifier for event e and plan p}
if external-event(e) then | =1 U [So(O.)];
else push(So(O¢)a, 1), where o isan applicable unifier for ¢;
case first(body(top(Sz(1)))) = true
x = pop(Sz(1));
push(head(top(Sz(1)))8 « rest(body(top(Sz(1))))9, Sz(1)),
where 6 is an mgu such that x8 = head(top(Sz(1)))d;
case first(body(top(Sz(1)))) = tg(t)
E=EU <+lg(t),Sz(1)>
case first(body(top(Sz(1)))) = ?g(t)
pop(Sz(1));
push(head(top(Sz(1)))8 « rest(body(top(Sz(1))))8, Sz(1)),
where @ is the correct answer substitution
case first(body(top(Sz(1)))) = a(t)
pop(Sz(1));
push(head(top(Sz(1))) « rest(body(top(Sz(1)))), Sz(1));
A=A U{a(t)};
endwhile.

Fig. 1. Algorithm for the BDI Interpreter

wherep=+lg(s) : by A . Abpy < hy;.. s hp € P, Se(BE) =< +lg(t), T >, o(t)o
=g(s)ecandV (biA..Aby, )0 isalogical consequence of B;.

The proof rule IntendMeansis similar to the previous proof rule, except that the ap-
plicable plan is pushed at the top of the intention given as the second argument of the
chosen event. More formally we have,

lg(t), B et dps], L A
(IntendMeans)<{ a<+g( )a.] >, }I" +{ - [pl-l- ip ] : } v >
<{...},Bi,{. .. [;mi. .ip.ipol],.. } A i+ 1>

wherep, = f et A Ay <lg(t);hos . shn, p=4lg(s) c b1 AL A by
k1. ke, Se(BE)=< +1g(t),j >, jis[pii.. .Ipn] >, 0(t)o =g(s)o and¥ (c1 A...Acy)d
isalogical consequence of B;.

Next, we have four proof rulesfor execution. The four proof rules are based on the
type of the goal or action that appears as the first literal of the body of the top of an
intention chosen to be executed by the function Sz. We give the execution proof rule
for achieve ExecAch, the other proof rules can be written anal ogously.

< Ei, B, {. . [pit. . if e A Aey <lglt) hos k], A >
< B;U{< —Hg(t),j>},Bi,{...,[pli...ipz],...},Ai,i—F1>

where Sz () =j =[pi..  ipJandp. =f er A Ay <lg(t); ha; .. o5 Ryl

(EzecAch)



Although we have given the proof rules only for additions of goals, similar proof
rules apply for deletion of goals, and addition and deletion of beliefs.

With these proof rules one can formally define derivationsand refutations. The def-
inition of derivationsis straightforward and is a sequence of transitions using the above
proof rules.

Definition 19. A BDI derivationis a finite or infinite sequence of BDI configurations,
1.6, Y0y - o Yiye - o

The notion of refutationin AgentSpeak(L) iswithrespect to aparticular intention. In
other words, the refutation for an intention starts when an intentionis adopted and ends
when the intention stack is empty. Thus, using the above proof rules we can formally
prove certain behavioural properties, such as safety and liveness of agent systems, as
was done elsewhere [15]. Furthermore, there is a one-to-one correspondence between
the proof rules discussed in this section and the operational semantics discussed in the
previous section. Such a correspondence has not been possible before, because the proof
theory (usually based on multi-modal logics) has been far removed from the realities of
the operational semantics.

Inadditiontotheinternal eventsconsidered in thispaper (i.e., addition of intentions),
one can extend the operational semantics and proof rules with respect to other internal
events, such as deletion of intentions, and success and failure events for actions, plans,
goals, and intentions.

The body of the plans considered in this paper includes only sequences of goals or
actions. Other dynamic logic operators, such as non-deterministic or, parallel, and it-
eration, operators can be allowed in the body of plans. In addition, assertion and dele-
tion of beliefsin plan bodies can aso be included. Another useful feature of the imple-
mented system dMARSisdifferent post-conditionsfor successful and failure executions
of plans. The operational semantics and proof rules can once again be modified to ac-
count for the above constructs.

5 Comparisonsand Conclusion

A number of agent-oriented languagessuchas AGENTO [17], PLACA (PLAnning Com-
municating Agents) [19], AgentSpeak [22], SLP [16, 4], and CONGOL OG [9] have been
proposed in the literature.

AGENTO and its successor PLACA can model beliefs, commitments, capabilities,
and communications between agents. These attitudes are treated as data structures of
an agent program. An interpreter that can execute such agent programs are described.
However, the authorsdo not provideaformal proof theory or justify how the data struc-
tures capture the model-theoretic semantics of beliefs, commitments, and capabilities.
In contrast, the work described here discusses the connections between the interpreter
and a proof theory based on labeled transition systems.

SLP or Stream Logic Programming is based on reactive, guarded, horn clauses. A
clausein SLP consists of aguard and abehaviour. The guard isfurther decomposed into
an head and a boolean constraint. The boolean constraint is similar to our context. The
head in SLP isan object and the body is a network of concurrent objects connected by



communication message slots. Behaviour is specified by object replacement. The execu-
tion model of SLP and AgentSpeak(L) are fundamentally different. The behaviour of an
agent to a particular external stimuli is captured in asingleintention, as a stack of com-
mitted sub-behaviours. This provides a global coherence absent in SLP. For example,
consider an agent that wants to drop itsintention because it no longer needsto achieve a
given top-level goal. Killing such an intention would be much easier in AgentSpeak(L)
thanin SLP.

The semantics of CONGOL OG isbased on situation calculus. Althoughit providesa
richer set of actions than what has been discussed here, it isessentially asingleintention
(or single-threaded) system, unlike AgentSpeak(L). The language AgentSpeak [22] is
an object-oriented analogue of AgentSpeak(L).

AgentSpeak(L) isatextual and ssimplified version of the language used to program
the Procedural Reasoning System [3] and itssuccessor dMARS. These implementations
have been in use since the mid-1980s. Other agent-oriented systems, such as COSY [1],
INTERRAP [10], and GRATE* [7], have been built based on the BDI architecture. The
formal operational semantics given here could apply to some of these systems as well.
However, amore thoroughanalysis of these systems and their relation to AgentSpeak(L)
is beyond the scope of this paper.

Bridging the gap between theory and practice in the field of agents, and in particu-
lar the area of BDI agents, has proved elusive. In this paper, we provide an aternative
approach by providing the operational semantics of AgentSpeak(L) which abstracts an
implemented BDI system. The primary contribution of thiswork isin opening up an al-
ternative, restricted, first-order characterization of BDI agentsand showing a one-to-one
correspondence between the operational and proof-theoretic semantics of such a char-
acterization. We are confident that this approach is likely to be more fruitful than the
previous approaches in bridging the gap between theory and practice in this area and
will stimulate research in both the pragmatic and theoretical aspects of BDI agents.
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Appendix

Definition 20. Anatom of theform s = ¢, where s and ¢ are termsiscalled an equation.

Definition 21. A substitutionisafiniteset {x1/t;,....x,/t, }, where zy,...,z, aredistinct
variables, and ¢1,...,t,, aretermssuch that z; # ¢, for any i from 1..n.

Definition 22. The application of a substitution ¢ = {«1/t1,...,.z,/t,, } to avariable z;,
written as 0, yieldst; iff x;/t; € 6 and x; otherwise. The application of § to aterm or
formulais the term or formula obtained by simultaneously replacing every occurrence
of z; by t; for al ¢ from 1to n.



Definition23. Let 0 = {x1/ty,...xn/tp } and o = {y1/51,....ym 5m }. The compositionfc
of 6 and & isthe substitution obtained from the set: {z ,/t;0,...,x,/t,0} U 6 by remov-
ing al x;/t;o for which z; = ;0 (1 <4 < n)and removing those y;/t; for which y; €
{21 } (L G < m) [14].

Definition 24. A substitution o isasolution or unifier of a set of equations {s; =1, ...,
sp =1, }iff s;0 =t;0 fordl i = 1,...,n. A substitution o ismore general than 6 iff there
isasubstitutionw such that cw =#. A most general unifier (mgu) of two terms (atoms)
isamaximally general unifier of the terms.
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