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Abstract: Clustering is a critical part of many tasks and, in most applications, the number of clusters
in the data are unknown and must be estimated. This paper presents an Extreme Value Theory-based
approach to threshold selection for clustering, proving that the “correct” linkage distances must
follow a Weibull distribution for smooth feature spaces. Deep networks and their associated deep
features have transformed many aspects of learning, and this paper shows they are consistent with our
extreme-linkage theory and provide Unreasonable Clusterability. We show how our novel threshold
selection can be applied to both classic agglomerative clustering and the more recent FINCH (First
Integer Neighbor Clustering Hierarchy) algorithm. Our evaluation utilizes over a dozen different
large-scale vision datasets/subsets, including multiple face-clustering datasets and ImageNet for both
in-domain and, more importantly, out-of-domain object clustering. Across multiple deep features
clustering tasks with very different characteristics, our novel automated threshold selection performs
well, often outperforming state-of-the-art clustering techniques even when they select parameters on
the test set.

Keywords: clustering; machine learning; unsupervised learning; deep learning; extreme value theory

1. Introduction

Clustering in computer vision has had impacts in a broad range of areas such as
face processing, motion analysis, domain transfer, and learning representation [1–11].
Such computer vision applications utilize clustering as a non-interactive module in larger
vision systems. Unfortunately, all existing clustering algorithms require users to specify
parameters, e.g., the desired number of clusters or a distance threshold [12], which requires
some kind of interaction with the system.

The holy grail for clustering is an accurate, fully-automatic, and parameter-free al-
gorithm, which has been elusive since researchers started looking for it in the 1930s [13].
In recent work [4], the First Integer Neighbor Clustering Hierarchy (FINCH) clustering
algorithm FINCH was developed. FINCH uses rounds of a simple nearest-neighbor pro-
cess that at least reduces the problem to selecting an appropriate partition from a set of
computed ones, and the authors declared this algorithm to be “parameter-free”.

We switched to FINCH in various projects. The results of FINCH made us ask: Is
there a theoretical reason to believe that one or more thresholds exist to determine when clusters
should merge? In general, this seems to be an ill-posed question since thresholds depend
on the actual clustering task at hand and sometimes need to be optimized to achieve that
task. However, as we show in this paper, under some general conditions, the answer
is: Yes, such a threshold exists. The first important novelty of this paper is a proof that the
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distribution of proper cluster linkages follows a Weibull extreme value distribution. Using that
theory, we present an initial process for a data-driven automatic selection of maximum
inter-cluster spacing in agglomerative clustering. Given that a threshold exists, we expect
future research to provide even better approximations.

We contend that clustering is inherently ill-defined without meaningful features and
similarity or distance measures between them. When dealing with a problem that utilizes
clustering, the number of potential clusters is exponential, and the clusters may only have
meaning when a measure of similarity of the features is given. For example, given many
face images, it needs to be defined if clustering should be based on subject identities,
personal attributes (gender, hair color), style of the photos, or location. For the same images,
what kinds of clusters we expect depends on the features and not the input images.

We conjecture that prior work has not produced successful fully-automatic clustering
algorithms because similarity, or distance, measures for hand-made features are rarely
uniform or consistent. Over the past decade, representation and transfer learning, metric
learning, and deep features have shown powerful aspects that address vision problems
with a significantly better recognition ability and an almost unreasonable ability to define
similarity measures that are perceptually meaningful [14]. In our Unreasonable Cluster-
ability of Deep Features Conjecture in Section 3, we hypothesize that consistent clustering
of deep features is unreasonably easy because they are obtained from training, which
defines semantics and produces relatively uniform spaces where location and distance
have semantic meaning. In this paper, we show that deep features serendipitously have
the behavior of producing a representation that supports fully-automatic cluster threshold
selection as the approximate uniformity of the space turns out to be one of the general
conditions critical to our extreme-linkage theorem.

To show the effectiveness of the Extreme Value Theory-based threshold selection, we
evaluate multiple real clustering problems, using both classical Agglomerative Hierarchical
Clustering (AHC), and we use our method to select among FINCH partitions. When
our Provable Extreme-value Agglomerative Clustering-threshold Estimation (PEACE)
is applied to a classical Agglomerative Clustering of Hierarchies, we call the resulting
algorithm PEACH. When it is applied to FINCH, we call the result Partition Estimation
Technique for FINCH (PET-FINCH).

Evaluation of clustering requires carefully designed experiments to ensure we measure
what matters. Many classic clustering papers test on toy datasets with hand-defined
features, which generally fail to have the necessary properties to apply our extreme-linkage
and unreasonable clusterability theorems. Such toy datasets also fail to match real problems.
Since clustering is widely used in vision applications, we prefer to evaluate actual vision
problems. This paper is not focused on new clustering techniques, rather, we are focused
on obtaining better results when a deep-feature system needs clustering, i.e., we make
state-of-the-art systems that use clustering even better. To show this, we cover a wide range
of problems where, originally, clustering techniques with hand-tuned parameters were
applied, showing that our methods improve results.

One vision problem that formally defines seven different practical clustering protocols
of varying sizes is the IARPA (Intelligence Advanced Research Projects Activity) Janus
benchmark [15]. We use these as part of our evaluation. Another common use for clustering
of unknown classes occurs in life-long, continual, and open-world learning. To address
that application, we define a new clustering evaluation protocol that seeks to model a
more realistic classification and clustering scenario where the data to be clustered include a
mixture of in-distribution and out-of-distribution samples. This better aligns with many
real problems since users do not know which, or how many, clusters will occur. We analyze
and report on each of in-, out-, and mixed-distributions to showcase the difference. Another
related common vision problem using clustering is transfer clustering [5], and we use
the provided default evaluation protocols here as well. Finally, to show that the PEACH
approach does not depend on pre-defined deep features, we evaluate PEACH in deep
clustering for unsupervised feature learning and deep features classification where such
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problems do not have a predetermined number of clusters. While prior work [10,11]
used hand-tuned clustering parameters, we show that, using our Extreme Value Theory-
based threshold selections, we can drop PEACH into these systems and significantly
improve performance.

Our contributions include:

1. We prove that, with modest assumptions, ideal and actual nearest-neighbor linkages
follow Extreme Value Theory (EVT) and are governed by a Weibull distribution for
most datasets.

2. We show that the modest assumptions are generally satisfied by features extracted
from deep learning systems.

3. We provide algorithms to efficiently approximate linkage thresholds that are ro-
bust to moderate levels of outliers and combine them with agglomerative clus-
tering to introduce a Provable Extreme-value Agglomerative Clustering-threshold
Estimation (PEACE).

4. We combine EVT-based threshold selection with the state-of-the-art algorithm FINCH
to build PET-FINCH. Over multiple experiments, we show that PET-FINCH generally
selects the best partition.

5. Using pre-computed deep features, we show that PEACH provides a statistically
significant improvement over the original clustering approach on large face datasets:
IARAPA Janus Benchmark B (IJB-B) and Labeled Faces in the Wild (LFW).

6. We introduce a real-world clustering protocol on the ImageNet dataset that is use-
ful for applications of data labeling and incremental learning, and we provide a
baseline clustering.

7. We demonstrate how to incorporate PEACH on transfer clustering to provide the new
state of the art on those problems.

8. We show that PEACH outperforms the state of the art for Top-1 accuracy of deep
clustering on handwritten digits (MNIST).

2. Related Work

This paper is not about a new clustering algorithm but rather about an automated
parameter selection for existing algorithms. Thus, most papers are only weakly related
and not discussed in detail, and we only review those used in the experiments. Tables in
the experiments also include a comparison with a wider range of algorithms that do not
perform as well.

Clustering analysis research dates back to the 1930s [13]. In addition, hundreds of
survey papers exist on general clustering. However, to date, no general algorithm has
been fully automated [4], while FINCH is at least able to provide good default parame-
ters. Another automatically liked clustering approach named Swarm intelligence [16] still
requires parameters and the abundance values of a dataset. Some researchers developed
autonomous parameter selection for image segmentation techniques, and argue that they
can be viewed as a type of clustering [17–21]. Image segmentation is a very special problem
with added constraints, and the approaches have failed to generalize to general clustering
problems even in other vision applications.

Clustering algorithms are generally divided into centroid-based, density-based,
spectral-based, and connectivity-based algorithms. The widely used K-Means [22] is
an iterative centroid-based algorithm. DBSCAN [23] is a common clustering algorithm
using point densities. MeanShift [24] is another example of density-based algorithms.
Spectral Clustering [25] is a clustering algorithm that uses the eigenvalues (spectrum) of the
similarity matrix for the given samples. Various algorithms have explored combinations
of these approaches, such as BI-Clustering [26], Affinity Propagation [27], Ball Cluster
Learning (BCL) [3], BIRCH [28] OPTICS [29], and Power Iteration Clustering (PIC) [30].
Most of these are not included in our experiments, as on our data, they are significantly
worse than those presented.
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Another widely applied clustering technique is agglomerative clustering [31], a
connectivity-based hierarchical clustering approach that forms the basis of various other
approaches. Agglomerative Hierarchical Clustering (AHC) [31] builds a hierarchical tree
using a bottom-up strategy, successively merging nearest clusters, updating distance, and
continuing until all clusters have been merged. The AHC tree can even be cut to obtain
any number of clusters. Several different definitions of nearest clusters may be employed;
for example, SciPy [32] implements single linkage, complete linkage, average linkage,
and centroid linkage. Recent work defines new objectives and near-optimal complexity
algorithms [33,34].

Currently, no effective, general-purpose, parameter-free, and fully autonomous clus-
tering algorithm exists, although some techniques do take important steps in that direction.
The density-based OPTICS [29] and the related HDBSCAN [35], variants of DBSCAN [23],
find the core samples of high density and expand clusters from them to build a cluster
hierarchy for variable neighborhood radii. They still require critical parameters, but vari-
ous implementations provide non-data-driven defaults for such parameters used in our
experimental comparisons.

Swarm [36] is a single-linkage clustering method with semi-automatic parameter
selection that has some some superficial similarities with other clustering methods. Swarm’s
novelty is its iterative growth process and the use of sequence abundance amplicons to
delineate clusters. Swarm presents an internal structure where the most abundant amplicon
usually occupies a central position and is surrounded by less abundant amplicons. The
way Swarm explores the amplicon-space naturally produces a graph representation of the
clusters, in the form of a star-shaped minimum spanning tree. Swarm properly delineates
large clusters (representing a high recall), and can distinguish clusters with as little as two
differences between their centers (high precision). Swarm-inspired clustering can be used
in many clustering techniques such as K-Means and AHC [16], and the authors observe
that the use of the K-Means and the Fuzzy C-Means [37] in clustering problems are of
great importance in the application of the swarm intelligence algorithms. They are largely
used for comparing the performance of Swarm-based approaches and creating hybrid
proposals. However, Swarm cannot work without abundance values of the dataset, where
the user needs to provide both a local parameter and abundance values before using the
algorithm—it is not fully-automated.

FINCH [4] is an agglomerative clustering method that only uses the first neighbor of
each sample to discover large chains and groups of data. While FINCH may be a parameter-
free clustering algorithm, it is not autonomous as it outputs several possible partitions of
the data. The user must still select the appropriate partition. The experiments in [4] show
the best partition using ground-truth information, which yields an over-optimistic view on
the performance of the algorithm in fully-automated systems and the idea of automatic
parameter selection.

Evaluation Metrics

While generally, clustering has no explicit way to be evaluated, some evaluation
protocols provide the ground truth for the clusters, e.g., when clusters should be formed for
separate classes in a classification task. Here, we report the metrics that are often applied in
these cases:

Normalized Mutual Information (NMI) Ref. [38] makes it possible to compare the
performance of two algorithms that produce different numbers of clusters. Particularly, we
compare the obtained clusters C with ground-truth classes G. The NMI provides values
between 0 (no overlap between clusters) and 1 (perfect clustering).
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Let C be the clustering result for samples X, with Ci representing a specific cluster and
G be the ground-truth set, with Gj representing all samples belonging to class j. Then, the
NMI is computed as [39]:

NMI(C, G)=

∑
Ci∈C

∑
Gj∈G

|Ci ∩ Gj| log
|Ci∩Gj | |X|
|Ci | |Gj |√

∑
Ci∈C
|Ci| log |Ci |

|X|+ ∑
Gj∈G

|Gj| log
|Gj |
|X|

(1)

Adjusted Rand Index (ARI) [40–42] is a variant of the Rand Index (RI) that is corrected
for chance. Such a correction establishes a baseline by using the expected similarity of all
pairwise comparisons between clustering results specified by a random model [43]. To
understand ARI, assume G is the ground-truth and C the clustering result. Then, a, b, and c
are defined as:

(a) the number of pairs of samples that are in the same set in G and in the same set in C.
(b) the number of pairs of samples that are in different sets in G and in different sets in C.
(c) the total number of possible pairs in the dataset (without ordering).

The unadjusted RI can be described as:

RI =
a + b

c
. (2)

To guarantee that random label assignments obtain a value close to zero, the expected
RI of random clustering results is discounted by defining the ARI:

ARI =
RI − E[RI]

max(RI)− E[RI]
(3)

One severe drawback of ARI is that it is strongly impacted by outliers; thus, it may not
have a good reflection on the quality of the clusters. In some cases, ARI scores are increased
with a decreasing number of detected clusters. Nevertheless, we provide ARI measures so
other researchers can compare with our results in the future.

B-Cubed (B3) F-measure Fb [44] is the harmonic mean of B3 precision Pb and B3 recall
Rb, and it can be used to evaluate clustering algorithms that yield a different number of
clusters. B3 precision Pb calculates the fraction of points in the same cluster that belongs
to the same class. B3 recall Rb calculates the fraction of points in the same class that is
assigned to the same cluster. To compute Pb, Rb, and Fb, a correctness indicator B(xi, xj)
is defined as 1 when a pair of samples of the same class are in the same cluster, or when
a pair of samples of different classes are in different clusters and 0 otherwise. Using this
indicator, precision, recall, and F-measure are evaluated as:

Pb =
1
|X| ∑

xi∈X
∑

xj∈C(xi)

B(xi, xj)

|C(xi)|
Rb =

1
|X| ∑

xi∈X
∑

xj∈G(xi)

B(xi, xj)

|G(xi)|
Fb =

2PbRb
Pb + Rb

(4)

where C(xi) is the cluster that contains sample xi and G(xi) is the set of all samples that
belong to the same class as xi.

3. Threshold Estimation Using Extreme Value Theory

The idea that a single threshold can be determined for agglomerative clustering may
be rather unexpected and unreasonable. However, there are many properties of deep
networks that were initially unexpected and unreasonable to expect [14,45–47]. There is
much we do not understand about deep networks and deep features; in this paper, we
will add their unreasonable ability to support good clustering threshold determinations to
that list.
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In a deep feature space, the feature mapping was trained to reduce a loss that results
in points with similar semantics, as implicitly defined by the loss function, and which will
be mapped closer together. It also produces a continuous space with a data-dependent
but normalized dimensional value. If we consider non-degenerate points, i.e., a point that
should be clustered with at least one other point, then its nearest neighbors are, with high
probability, points with which it should cluster. This observation explains part of the power
of FINCH [4], which clusters the first nearest neighbors.

In our analysis, we use approximate (first) nearest neighbors a subset of points that
should cluster. The set of approximate nearest neighbors form a distribution from which
we will estimate our threshold for the clustering algorithm such as AHC. We note that,
since the approach can use Approximate Nearest-Neighbors (ANN), our complexity can
be sub-quadratic since first ANN pairs can be found in O(N log N) time [48], while true
nearest neighbors take O(N2).

Let us formalize our model and then state our core theorems. Let sn,m ∈ RS, 1 ≤ m ≤
M, 1 ≤ n ≤ Nm; be a set of Nm points drawn from M classes, which represent the ideal
cluster label for each input. Let mapping function f : RS 7→ RD be a continuous well-
behaved feature extraction function. Let pi = f (sn,m) be a mapped sample (Since we do not
use the label m during clustering, we here remove class information from the sample index.).
Let P be the set of all mapped points pi. Allowing for but not assuming clustering in rounds
(as in FINCH), we let let C

(r)

j ∈ C
(r)

be a cluster formed from at least one point in round r,

with C(r) being the set of all clusters after round r. Let dij = d(pi, pj) be the dissimilarity or

distance between points pi and pj. Let g
(r)

ij = d(C
(r)

i , C
(r)

j ) be the dissimilarity or distance

gap between clusters C
(r)

i and C
(r)

j at round r, e.g., distance between their centroids or other
cluster distances (linkages) as nearest distances, maximum distances, and average distances.
Let the set `

(r)

i be the set of link distances of points added in round r. Let η
(r)

i be the set of
ground-truth correct link distances of connections that ideally should have been added
between ANNs in round r; note this is known only to an oracle.

In agglomerative clustering, we initially consider each point pi a cluster of size one,
and then we merge pi and pj into a cluster if their gap distance dij is sufficiently small. In

later rounds, these clusters get further merged if their link distance g(r)ij ≤ τ.

Theorem 1 (Extreme-Linkage Theorem). The distribution of the sets of both the ideal link
distances η

(r)

i and the observed link distance `
(r)

i are governed by the Fisher–Tippet (Extreme Value)
theory, and because they are sets of minima and are bounded from below, the limiting distribution is
a Weibull.

Proof. We consider `
(r)

i , and the proof for η
(r)

i is similar. We start by noting that, at each level,
we choose the (approximate) smallest link distances out of the much larger set of pairwise
distances. Thus, each gij ∈ `

(r)

i can be viewed as a minimum over a set of distances that are
associated with some sampling of the distance between the initial set of points if r = 1 and
from clusters from the prior level if r ≥ 2. If we view the merging of the clusters in level r
in decreasing order of pair distance gij, then each new linkage distance can be seen as a
new minimum over an increasing set of items. We can view the set over which we consider
the actual minimum as excluding a few items as ignored by the ANN algorithm. Since the
Fisher–Tippet Theorem [49] applies to maxima, we perform a change of variables to use the
negative of each distance and then consider the distribution of a maximum set of values
ζi = −`

(r)

i . Let φ be the associated distribution of the maximum of ζi in the Fisher–Tippet
Theorem (see supplemental material based on [50–52]) and, combined with the knowledge
that distances are bounded (−`(r)i ≤ 0), yields that φ converges to a reversed Weibull, as
it is the only one of the EVT distributions that are bounded. Changing the variable back
yields that the distribution of link distances follows a Weibull distribution.
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Given the Extreme-Linkage Theorem to estimate a threshold, we use a three-parameter
Weibull distribution:

W(x; µ, σ, ξ) =

 ξ
σ

(
x−µ

σ

)ξ−1
e−(

x−µ
σ )ξ

x < µ− σ
ξ

0 otherwise
(5)

where µ ∈ R, σ ∈ R+, and ξ ∈ R− are locations, scale, and shape parameters [53].
This theorem applies to any clustering algorithm using approximate nearest-neighbor

merging, e.g., it applies to both FINCH [4] and any AHC algorithm. This theorem allows us
to “reject” any potential linkage that is unlikely. Given the distributional parameters µ, σ, ξ,
to compute the merge distance threshold τw that yields a given probability 0 < p < 1 such
that probability P(dij < τw) ≥ p, we use the inverse CDF to derive:

τw = µ + σ · (− ln(1− p))
1
ξ (6)

Since the Extreme-Linkage Theorem shows that both the true linkages and the com-
puted linkages follow Weibull distributions, we contend that selecting τw to reject improper
linkages comes down to fitting the distribution to the set of minima, i.e., the ANN distances.
Given the desired level of confidence, such as 99%, a pair merges when consistent with
that distribution, we select τw as in (6), i.e., τw is considered the maximum ANN distance
which should merge. Considering correct links, the associated, linked points would still
be ANN for some set of points within that cluster. Thus, all valid links should be ANNs
and a single τw computed from an initial set of ANNs is sufficient since ANN of points
within a cluster is still subject to that distribution. In Figures 1 and 2, and figures in the
Supplemental Material, we fit and compute τw to show that the performance is stable for
moderate variations in τw.

Figure 1. EVT-based Clustering Threshold Selection. We prove that nearest-neighbor distances and
valid cluster link distances will follow an EVT distribution, and show how that leads to a good
threshold selection for clustering. Yellow shows the data frequency histrogram, blue the probability
density function, and green the cumulative density fit of a Weibull distribution to the approximate
nearest-neighbor distance for IJB-B (protocol 512, see Section 5). While noisy, it is a good fit and
supports choosing the threshold τr/τw at for the Cumulative Distribution Function (CDF) of the
Weibull for 99% probability.
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(a) IJB-B (b) LFW

Figure 2. Weibull Modeling. The distribution of ANN distances is proven Weibull. (a) shows the
histogram of distances from IJB-B dataset, the resulting Weibull fit, its CDF, and the resulting τw.
(b) shows the plot for LFW data, which is impacted from outliers and mode shift is used as one
heuristic for outlier detection. Note that there are ANN distances above τw, which would be rejected
as outliers and not merged.

With τw being defined, we can now state our main conjecture:

Conjecture 1 (Unreasonable Clusterability of Deep Features). Let mapping function f ′ :
RS 7→ RD′ be a function from a deep learning classifier trained to separate its training data
tn,m ∈ T that yields a D′-dimensional representation of an input sample. This sample then goes
through either a linear or a nearest-neighbor-like classifier.

Let f (x) = W> f ′(x) be a transformation, e.g., PCA, of the features into D-dimensional deep
features associated with the input sample with the set of all such points being P . Let τw be set by (6)
from the Weibull fit to the α(pi)∀pi ∈ P . If each ideal cluster has sufficiently many points, then
using this τw as the threshold will, with high probability, produce good automatic clustering with
semantics given by the function f ′ that underlies the deep feature space. The probability of good
clustering improves with increased similarity of the training and clustering domains.

For clusters that match the network training classes, this conjecture follows from the
assumption for a good classifier. However, clustering only data from training classes is
pointless since we already have a classifier for that. For generalization to sufficiently close
domains, the intuition of the conjecture follows from our Extreme-Linkage Theorem com-
bined with the many known results on how well deep features support domain adaption
and transfer learning, including unsupervised and universal adaption [54–59]. Proving the
conjecture in these cases would require detailed formalization of the exact problem and
what it means to be a sufficiently close domain, which is beyond this paper’s scope.

Theory Limitations

We note the proof of the Extreme-Linkage Theorem depends on the Fisher–Tippet The-
orem, which is an asymptotic theorem that requires some general smoothness assumptions
for convergence—it does not apply in spaces where values occur only on a set of measure
zero. The assumptions of the conjecture are sufficient to provide that smoothness, but if a
high-dimensional feature space is highly non-uniform, the semantics will be dominated by
the dominate directions—hence we often add PCA to normalize. We also note there is a
second EVT theorem, with slightly different assumptions that leads to Generalized-Pareto-
Distributions, e.g., see [60]; which EVT model is better for cluster threshold selection is left
for future work.
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Deep learning methods effectively develop feature spaces where distances have se-
mantic meaning that reflect the distribution of labels used in training. Generic nearest
neighbors in high dimensions are often problematic [61], but deep networks use a fully
connected layer to reduce dimensionality with their linear or NN classification stage and
create meaning in their feature space. Since clustering does not have supervised data to
learn to reduce dimensions, in our work, we often use a PCA projection of features to
reduce dimensionality as in [10].

In any fitting, there is a question of the impact of outliers. If outliers dominate the tail
of the distance distribution, the resulting fit of τw will result in merging many points that
should be outliers. With few outliers, the Weibull fit may end up with a τw that rejects the
outliers. While the theorem and conjecture have assumptions that exclude singletons, in
practice, it is hard to know when that assumption will hold. Therefore, in the next section,
we develop some approaches to manage outliers and discuss parameter selection.

4. Approach
4.1. PEACE Parameter Selection

Our Provable Extreme-value Agglomerative Clustering-threshold Estimation (PEACE)
uses threshold τw computed by fitting a Weibull. We note, however, that the fitting and
threshold selection still requires a choice of parameters: amount of data to trim, tail-size, and
confidence threshold. Thus, unlike FINCH, our approach is not parameter-free. However,
we believe our parameters, which are about generic data quality, are more intuitive and
better subject to defaults than choosing the actual number of clusters (K in K-Means),
choosing between a partition of clusters (FINCH), or estimating maximum point separation
within a cluster (ε in DBSCAN). Our free parameters for Weibull fitting are about the quality
of the data. For example, in most of the experiments herein, we use (6) with a tail-size of 1%
of the data, which reduces the impact of stray outliers even without trimming the tail. For
confidence to select that actual threshold given the fit, we use p = 0.99. If one has a rough
estimate of the frequency of outliers, i.e., points that should not cluster, of say q > 1%,
then one can trim q% of the data and use the remaining default parameters for the Weibull
fitting. This type of approach is sufficient for many applications, and for most problems
where one expects to cluster nearly all the data, our defaults (drop 1%, tail 1%, confidence
99%) will work. In general, slight overestimation of outliers is not a problem as results are
stable for variations in τw; see plots in Supplemental Material.

However, we observed that some datasets have way more than 1% outliers, and
searching for the amount to trim would require some feedback on outliers or fit quality.
We tried basic goodness-of-fit measures, such as sample-based Kolmogorov–Smirnov (KS).
Unfortunately, those measures were still too weak—with 1000 generated samples from
the Weibull fit, none of the distributions in experiments failed a KS test even with the
many outliers in Labeled Faces in the Wild (LFW), where we have >50% outliers. Thus, for
problems where one is uncertain about the potential for outliers, we developed a heuristic
approach to normalize for outliers without a prior guess on the fraction of outliers.

Recognizing that outliers also impact the raw distribution of all pair distances, we set
up an equivalent relation to estimating a robust version of our threshold. If we let d(S) be
a set of pairwise distances, our equivalent relation for robust threshold estimate τr divided
by our raw Weibull estimate τw should equal the ratio of the median (a robust operator on
all points) divided by the outlier-sensitive maximum distance on all points:

τr

τw
=

median{d(S)}
max{d(S)} (7)

Solving that relation for τr gives our normalization factor. We can apply this with EVT
estimates of the ANN. We normalize by ω as follows:
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ω =
median{d(S)}

max{d(S)} ; τr = ω · τw; (8)

where τw employs (6) with 99% of the data and p = 0.999 then is scaled yield robust τr.
While approximate nearest neighbors can be computed quickly, if S includes all points,
the normalizations would require all pairs, which would require complexity O(N2). The
normalization, however, does not really need all pairs, and S as a random sample of a few
thousand points produces a good normalization, keeping total complexity to O(N log N).
While this is just a heuristic, our experiments find it works well, often even better than
our theoretically justified approach with default parameters. Figure 3 shows PEACH with
its automatically selected τr is better than K-Means & Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) [28] even when those algorithms optimize over the
test set; and is close to the optimal value produced when searching for AHC parameters
over the test set. We also show the state-of-the-art FINCH algorithm, which produces
eight clusters (not all visible), and with EVT theory, PET-FINCH automatically chooses a
good partition.
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Figure 3. EVT-based Threshold Works Well. We show multiple clustering algorithms’ NMI performance
on the IJB-B 512 face dataset.

4.2. Overall System Operation

The overall system operation shown in Figure 4. The processing starts with training
data with labels (that we will only use for evaluation), then we extract deep features from
a deep learning system. We compute the nearest neighbors of extracted deep features.
The nearest neighbors are used to generate initial pairs for PEACH, and we compute the
pairwise distance d(S). Now, we can use Weibull fitting to compute our Weibull estimated
threshold τw as given in (6). In order to obtain out robust threshold τr, we estimate the
median and maximum distance d(S) of all pairs of data points.

By using τ ∈ {τw, τr}, we decide if any set of clusters should merge. At the beginning
of merging, as typical Agglomerative clustering, PEACH treats every sample as a single
cluster, then we generate initial clusters from these single clusters. All paired clusters with
link distance below the threshold τ merge. Next, we find the nearest cluster to each cluster
and generate a merging list for this level. Unpaired clusters just pass upward unmerged
until they are the closest neighbor of some cluster. We repeat finding all nearest neighbors,
building a merge list, and merging until the list of clusters does not change. After merging,
we assign cluster labels Ci to the grouped data.
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Figure 4. Diagram of Overall System Function. This figure shows the overall pipeline of PEACH. First,
we extract deep features, then we compute the initial pairs, median{d(S)} and max{d(S)} for the EVT
Estimation to compute the threshold τr/τw. Next, we use the nearest neighbors to generate initial
clusters and the τr/τw will be used for merging to obtain final clustered data.

4.3. PET-FINCH

FINCH is an agglomerative clustering method that does not require an input parameter.
Instead, FINCH leaves some potential results as output in order to remove an input
parameter. The cost is that the user has to find a way to choose one of these partitions as
their final result, which is sometimes difficult if there is no ground-truth. This could be
called an extra “parameter” that users need to insert into the algorithm. Hence, while the
authors of FINCH claim that the algorithm is parameter-free, it is actually not. For some
types of experimental datasets, e.g., MNIST, CIFAR, and ImageNet, we already know how
many classes the dataset has; however, for some real world problems, there is no way to
know the number of clusters contained in the problem. Therefore, knowing how to choose
the appropriate partition/result for the FINCH approach presents an issue.

In this section, we introduce the datasets and evaluation protocols of our experiments.
Clustering of deep features from pre-trained classification networks has become a common
practice. While there are various clustering protocols for a variety of datasets, existing
clustering protocols for deep features have used only data from the same domain as training,
e.g., face clustering. In many practical applications, the training domain is different from
the clustering domain. Therefore, we provide a novel data-distribution view of clustering
protocols and then detail our evaluation protocols.

4.4. ImageNet-Based Evaluation Protocols

In-, Out-, Mixed- Distribution Protocol: We base our new in/mixed/out-of-domain
protocols on the ILSVRC partitions of 2010 and 2012 [62] from the ImageNet dataset, using
the data splits of [63]. While previously these splits were used for classification, we adapt
them to a novel clustering protocol. Since many available pre-trained deep networks
were trained on the 1000 classes of the 2012 dataset, we use the validation set of the 2012
dataset as our in-distribution data. We consider out-of-distribution data to be the 166
classes from the 2010 dataset that have not been re-used in the 2012 dataset. Finally, the
mixed-distribution data are a mix of the in- and out-of-distribution data containing images
from a total of 1166 classes.

Out-of-Domain Protocol: We use a network that is pre-trained on ILSVRC 2012
training set and apply it to face identity clustering, showing that the clustering properties
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of deep features transfer across domains. In particular, we use the Labeled Faces in the
Wild (LFW) dataset for testing and call this protocol Out-of-domain LFW (OLFW). Labeled
Faces in the Wild (LFW) [64] contains mostly frontal facial images from 5749 people, while
only 1680 of them have multiple images. The remaining subjects are singletons and should
not be clustered with other subjects—they produce many outliers for our theory. Since
performance on OLFW is not comparable to prior work that used in-domain face features
for clustering on LFW, we report those in-domain experiments in the supplemental material.

Unsupervised Network Training Protocol: The furthest out-of-domain, with the
greatest uncertainty of the feature space and similarity, occurs for unsupervised network
training or deep clustering. Initially, the features are random and all data are out-of-
distribution. As the networks learn from the samples, they start moving toward in-
distribution. However, there is no independent concept of correct classes/clusters and,
thus, no practical way to estimate clustering parameters. We follow the protocol of [10,11],
which requires a fully autonomous clustering subsystem, but where that past work guessed
an overestimate of the number of clusters.

4.5. Face Identity Clustering Experiments

The IARPA Janus Benchmark B (IJB-B) [15] data contain images of up to 1845 subjects
in different qualities and face poses, each with at least three images. IJB-B provides seven
clustering protocols with an increasing number of subjects. This is one of the largest
available datasets for clustering. Since deep networks used for face recognition are usually
trained on large corpora of facial images disjoint from the evaluation datasets, these
protocols can be regarded as an in-domain and out-of-distribution.

5. Experimental Results

We report the results of PEACH, which is fully automatic and does not use the test set
to optimize parameters. Ideally, we would not need to compare against results optimized
on the test set or by using ground-truth parameters. Still, to be consistent with past work,
we report results of other algorithms from their papers for classic algorithms optimized
over ground-truth. In particular, if they require specifying the number of clusters, e.g.
K-Means, we report their performance on either the ground-truth number or the PEACH
detected number of classes, whichever provides the best score. For FINCH, we report on
their best partition results, despite there not being a way to choose that in practice, and note
that PET-FINCH automatically selects that partition in all cases with one exception. Note
that these are optimistic results for the algorithms as the performance would be worse,
often much worse, if we would guess their parameters or obtain them via validation.

PEACH can be applied using many different distance metrics and dissimilarity mea-
sures, such as Euclidean distance, Mahalanobis distance, or cosine dissimilarity. Since most
previous publications indicate a higher performance with cosine for deep features, we em-
ploy the cosine dissimilarity for all approaches when supported and fall back to Euclidean
distance when required. In addition, we reduce dimensionality and apply whitening using
PCA as in [10].

5.1. Face Clustering on IJB-B

We evaluate several clustering algorithm on all seven of IJB-B protocols. We advance
the state of the art on all seven standard protocols but show only four in Table 1 in the main
paper, the remainder in later tables. To facilitate comparison, we use the 128-dimensional
features that have been used for identity clustering in PAHC [1,65], provided by the authors
of those papers. We also compare with the current state-of-the-art [2], which utilizes more
advanced features with hard negative mining, so they are not directly comparable on
clustering alone as PEACH may even do better with their features. Nevertheless, we still
outperform DCC-NEG without tuning clustering parameters on the test set as was done
in [2]. Classic algorithms other than PEACH and PET-FINCH use hyperparameters optimized
for best performance on the test set, yet it is observed that PEACH (τr) provides the best NMI
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and B3 performance for all of the existing algorithms on the IJB-B protocols. Moreover,
both PEACH versions significantly advance over the best baselines with those features. We
also evaluated a smaller clustering problem, randomly choosing three subjects—over ten
runs, we always got perfect clustering (NMI = 1) for PEACH, which shows that it works
fine with a small number of clusters.

Table 1. Clustering Out-of-Distribution/Out-of-Domain data. This table shows NMI and B3 F-scores for
various clustering algorithms on the IJB-B and LFW face datasets. For IJB-B experiments, everything
other than DCC-NEG uses older features from [1]; DCC-NEG uses its own (better) features and clustering
from the same research group. For OLFW, we use a ResNet-101 network trained on ILSVRC 2012. We
mark the best results, as well as algorithms that optimize parameters on the test set.

Algorithm IJB-B Protocols OLFW
# Subjects⇒ 256 512 1024 1845 1680 (5479)

NMI B3 NMI B3 NMI B3 NMI B3 NMI B3

K-Means True K 0.889 0.713 0.898 0.701 0.900 0.675 0.777 0.663 0.643 0.606
DCC-NEG [2] 0.926 0.816 0.921 0.802 0.922 0.751 0.925 0.746 — —

PAHC [1] 0.865 0.648 — — 0.890 0.639 0.890 0.610 — —
FINCH (Best Partition) [4] 0.891 0.731 0.887 0.693 0.891 0.678 0.894 0.677 0.873 0.540
FINCH (Closest to GT) [4] 0.645 0.286 0.648 0.273 0.667 0.270 0.690 0.259 0.894 0.611

PET-FINCH 0.876 0.599 0.888 0.608 0.892 0.594 0.892 0.576 0.894 0.611
PEACH(τw) 0.940 0.842 0.941 0.814 0.943 0.817 0.941 0.821 0.945 0.783
PEACH(τr) 0.960 0.907 0.956 0.886 0.956 0.875 0.956 0.870 0.957 0.860

# Clusters PEACH (τr, τw)
⇒ 329, 251 643, 474 1298, 902 2278, 1817 1221, 1166

5.2. ImageNet-Based Experiments

For all our ImageNet experiments, we use the ResNet-101 network pre-trained on
ILSVRC 2012 [62] data, which achieves a top-1 error rate of 20.69% on the ILSVRC 2012
validation set. While these features are no longer state-of-the-art on ImageNet, our focus is
on clustering not classification performance. We extract features for samples from ILSVRC
2010 and 2012 as detailed in Section 4.3. We chose to use the 1000 dimensional logits, i.e.,
the features before Softmax activation, and reduce their dimensionality to 128 by PCA.

The performance of our clustering algorithm compared to other approaches can be
observed for different distributions in Table 2. While the parameter-dependent clustering
algorithms need to know the actual number of clusters present in the data, they still cannot
match the performance of some of the claimed parameter-independent approaches (FINCH)
and our completely automatic approach (PEACH). The results depict that PEACH provides
the best performance even when compared to parameter-dependent approaches that use
ground-truth information to provide the same number of clusters as the number of classes.
In addition, PEACH outperforms the best performing partition of FINCH, the current
state of the art, and claimed parameter-free algorithm. The experiments on ImageNet also
demonstrate the feasibility of our clustering approach to work with large-scale datasets.

We use OLFW to test out-of-domain clustering, where we employ the same ILSVRC-
2012 pre-trained deep feature extraction, but use these features to cluster faces. Results
can be found in the last column in Table 1. PEACH outperforms PAHC even when PAHC
uses ground-truth number of clusters. The heuristically-scaled version PEACH is the most
robust to outliers and has the best performance. Additionally, PEACH is able to identify
1221 clusters, which is close to the 1680 subjects with more than one image, even though the
features were not trained on face data. Note that FINCH uses PyFlann to find nearest neighbor,
which results in slightly different NMIs each time, and we report what we actually obtain.
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Table 2. Clustering for Out/In/Mix Distribution ImageNet data. This table shows NMI and B3 F-scores
on ImageNet 2010 and 2012 validation sets with 166 (Out-of-Distribution data), 1000 (In-Distribution
data), and 1166 classes (Mixed-Distribution data). We mark the second-best and best results, as well
as algorithms that optimize parameters on the test set.

Param. Dep.
Approach Out-of-Distribution In-Distribution Mixed-Distribution

GT # Classes ImageNet:166 ImageNet:1000 ImageNet:1166

#C NMI B3 #C NMI B3 #C NMI B3

Ground-truth K-Means given 0.643 0.268 given 0.825 0.576 given 0.755 0.367
Ground-truth Spectral given 0.798 0.609 given 0.630 0.298 given 0.763 0.367
Ground-truth BIRCH given 0.798 0.573 given 0.832 0.545 given 0.808 0.468
Ground-truth AHC [32] given 0.632 0.253 given 0.805 0.444 given 0.730 0.264

Closest to GT FINCH [4] 247 0.819 0.604 1018 0.821 0.575 1441 0.768 0.343

Automatic PEACH(τr) 265 0.822 0.662 896 0.863 0.813 1031 0.837 0.487

In a final ImageNet comparison, we compare a transfer clustering task. Results are
provided in Table 3. The prior state of the art, Deep Transfer Clustering (DTC) [5], uses a
ResNet-18 backbone and a heuristic for estimating the number of clusters. It works well
with only 30 classes to cluster, but we find that its performance drops significantly with 118
classes. Using a ResNet-18 architecture trained on the 800 classes and 128 PCA dimensions,
PEACH outperforms DTC, even by a large margin for the 118 classes problem. PEACH also
outrivals the other algorithms, even when they use the ground-truth number of clusters.

In Table 3, we do not compare against approaches that develop self-supervised features
on the target dataset [66], as such work focuses on better features not just on clustering.
With their improved features, they report an NMI of 0.82, slightly better than our 0.818.
However, also using better features, e.g., using a ResNet-50 PEACH, significantly improves
to an NMI of 0.90.

Table 3. PEACH Transfer Clustering. This table shows NMI on transfer clustering for ImageNet with
partitions from [67] with either 800 training and 82 validation classes and three random samples
with 30 classes for testing, or 882 training and 118 test classes. Results with K used the ground-
truth number of clusters, while U indicates estimated cluster counts, partially by [5]. We mark the
best results.

Algorithm 30 K 30 U 118 K 118 U

Large Spectral Clustering 0.733 0.655 — —
KL-divergence Contrastive 0.750 0.715 — —

MetaClassification Likelihood 0.762 0.765 — —
Deep Transfer Clustering 0.791 0.786 0.38 0.53
FINCH(Best) ResNet-18 0.696 — 0.63 —
PEACH(τr) ResNet-18 — 0.818 — 0.68

5.3. Deep Clustering

Recent work [10,11] proposes an unsupervised feature learning approach, combining
self-supervision and clustering to capture complementary statistics from large-scale data.
During network training, the traditional clustering algorithms with hand-tuned parameters
K-Means [22] and PIC [30] are used to cluster features at every epoch. We replace these
clustering algorithms with the specified approach (AHC, FINCH, PEACH) and train for
100 epochs.

We report the deep clustering results for training the ILSVRC 2012 validation set in
Table 4. When used alongside network training to cluster features at each epoch for an
unsupervised deep learning approach, PEACH provides the best results. The improvement
over FINCH would be even great if we would not have manually selected the best partition.
More sensitive parameter-dependent algorithms are worse with bad guesses when used
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inside of deep- and deeper-clusters. This highlights that clustering approaches like PEACH
are indispensable since it is impossible to know beforehand how many classes are present
in unsupervised learning. We also report the top-1 accuracy of deep clustering on MNIST
in Table 5, which shows PEACH outperforms K-Means and FINCH at mature epochs.

Table 4. PEACH Improves Unsupervised Training. We show the NMI for various clustering algorithms
used during the training process of deep clustering, and gains over [10,11], respectively. We mark the
best results.

Algorithm Deeper Clustering Deep Clustering
NMI % Gain NMI % Gain

K-Means 0.447 – 0.446 –
AHC [32] 0.392 −12.3% 0.421 −5.8%

FINCH(GT) [4] 0.346 −22.6% 0.371 −17.0%
PEACH(τr) 0.756 69.1% 0.604 35.2%

Table 5. Top-1 Accuracy of Linear Classifier of Deep Clustering. We employ LeNet++ for deep clustering
of MNIST, and we report the top-1 accuracy of a converged linear classifier after feature extraction.
PEACH(τr) achieves higher accuracy than K-Means and FINCH at each of the deep clustering epochs
examined.

Algorithm MNIST/Deep Clustering Epochs
Epoch 100 Epoch 125 Epoch 150 Epoch 200

K-Means 94.44% 93.09% 92.11% 90.56%
FINCH(Best) [4] 96.63% 96.12% 96.39% 96.07%

PEACH(τr) 97.72% 96.23% 96.47% 96.46%

5.4. Timing

As shown in Table 6, PEACH(τr) is faster than all tested algorithms for large face
clustering problems of IJB-B, with the exception of FINCH which is the fastest by far. While
both PEACH and FINCH have overall time complexity of O(N log N), PEACH has a larger
constant because of a greater number of rounds of merging and its need to estimate the
scaling ω and threshold.

Table 6. Running Time of IJB-B Protocols. Running time in seconds for various clustering algorithms
is provided for all IJB-B protocols. Missing values (—) indicate that results could not be obtained
within one day. We mark the second-fastest and fastest algorithms.

Algorithm
Number of Classes

32 64 128 256 512 1024 1845

Agglomerative 0.04 0.13 0.91 4.18 18.67 99.51 462.51

BIRCH 0.11 0.31 1.51 5.46 21.31 102.61 444.20

K-Means 0.84 2.82 12.43 57.19 258.74 877.89 3784.34

Spectral Clustering 2.96 9.68 69.43 591.54 3238.38 — —

OPTICS 1.58 4.61 26.23 113.83 411.38 1254.61 —

Affinity Propagation 2.71 11.33 84.59 265.01 — — —

FINCH 0.06 0.08 0.27 0.71 2.16 7.78 25.71

PEACH 2.32 3.59 8.84 18.56 36.13 79.35 176.92

For example, consider IJB-B 1024, the rough timing is FINCH∼8 s, PEACH∼79 s,
AHC∼100 s, BIRCH∼102 s, K-Means∼877 s, OPTICS∼1255 s, and Spectral clustering was
stopped after running for more than a day. While FINCH is faster, PEACH is more accurate
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and does not require user selection among the final partitions. For large problems, PEACH
is faster than standard Agglomerative clustering since it stops merging sooner.

6. Ablation Study
6.1. Sensitivity to Variations in Threshold

The prime inner parameter of PEACH is the automatically computed distance thresh-
old τr/τw. Thus, variations in EVT fitting (or in maximum/median values used for τr) will
impact the threshold. As the critical parameter, it is important to have an ablation study to
assess the sensitivity to variations in τr/τw and show that clustering is stable to reasonable
variations around our estimation of the distance threshold.

We scale the automatically estimated threshold and replace it with the threshold s · τr
with values for s between 0.9 to 1.1 and observe how severely the clustering results are
impacted in terms of NMI. We applied this on the IJB-B 1845, LFW, and ImageNet 166
protocols. The resulting NMI scores in Figure 5 show that PEACH is stable with respect to
the prime inner parameter τr/τw and the performance of the system is not very sensitive—
the difference is less than 5% in NMI. This is an important observation—not only must the
threshold exist, but empirically we see that clustering results tend to be robust to moderate
variations in that threshold.

Figure 5. Different Scaling of τr. The figure shows how stable the final NMI values are with respect to
up to 10% perturbation of the threshold τr used in PEACH(τr). Evaluating the IJB-B 1845, LFW, and
ImageNet 360 protocols, we scale the automatically estimated τr/τw within the range of 90% to 110%.
The figure shows that even a moderate change in threshold computation, e.g., by a few outliers, is
not likely to break the PEACH algorithm.

6.2. Comparison with AHC Using a Robust Threshold

Given that we have proven the EVT distribution of various link distances, it is natural
to ask what happens if we use that distance threshold in standard linkage. In Table 7, we
show the NMI, B3, and ARI [39,40,44] scores for the three most common AHC [31] linkages
using the τ, which is also shown. A 1-sided paired t-test across the NMI, B3 and ARI for
all 11 datasets shows that PEACH(τr) is statistically significantly better than each AHC
version with p = 0.01.
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Table 7. AHC Linkages. These tables show NMI, B3, and ARI scores for AHC with classic linkages
when using τr to limit merges, while PEACH uses centroid linkage. Results are provided for all
experiments. We mark the second-best and best results.

(a) NMI

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

τ = 0.515 0.502 0.469 0.455 0.440 0.404 0.395 0.456 0.504 0.447 0.454

AHC (Average) 0.933 0.923 0.937 0.937 0.935 0.932 0.934 0.935 0.779 0.863 0.836
AHC (Single) 0.803 0.765 0.786 0.709 0.883 0.796 0.636 0.951 0.001 0.166 0.215

AHC (Complete) 0.837 0.859 0.855 0.879 0.883 0.879 0.885 0.924 0.793 0.837 0.812

PEACH(τw) 0.963 0.958 0.963 0.960 0.950 0.951 0.952 0.933 0.870 0.812 0.812
PEACH(τr) 0.967 0.954 0.962 0.960 0.956 0.956 0.956 0.957 0.876 0.838 0.812

(b) B3

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

AHC (Average) 0.904 0.837 0.859 0.841 0.804 0.767 0.761 0.742 0.554 0.552 0.423
AHC (Single) 0.711 0.657 0.718 0.604 0.784 0.680 0.533 0.832 0.013 0.172 0.188

AHC (Complete) 0.589 0.597 0.541 0.597 0.553 0.485 0.480 0.696 0.399 0.352 0.225

PEACH(w) 0.937 0.918 0.924 0.907 0.872 0.865 0.861 0.814 0.713 0.460 0.488
PEACH(r) 0.947 0.909 0.923 0.907 0.886 0.875 0.870 0.860 0.727 0.543 0.488

(c) ARI

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

AHC (Average) 0.943 0.847 0.955 0.955 0.907 0.832 0.756 0.126 0.308 0.514 0.367
AHC (Single) 0.345 0.176 0.272 0.093 0.253 0.048 0.009 0.536 0.001 0.0002 0.0001

AHC (Complete) 0.478 0.551 0.462 0.691 0.557 0.407 0.322 0.053 0.384 0.333 0.183

PEACH(w) 0.695 0.759 0.728 0.754 0.780 0.777 0.765 0.801 0.737 0.677 0.587
PEACH(r) 0.961 0.941 0.951 0.944 0.932 0.926 0.924 0.805 0.816 0.727 0.683

6.3. Optimized or Ground-Truth Number of Clusters

An important question is what happens if we use the number of clusters computed
using our robust threshold τr in classic algorithms that take the number of clusters as
their primary parameters. Here, we investigate classic K-Means and AHC as well as more
recent algorithms BIRCH [28], Spectral [25], and Bi-clustering [26], all as implemented
in the SciKit-Learn Python library. For comparison, in Table 8, we show results when
algorithms are provided the true number of clusters. For these algorithms, it is an optimistic
view since the number of classes is usually unknown. However, PEACH(τr) is generally
performs better.

In Table 9, we show the NMI, B3, and ARI scores for various experiments when
supplying the algorithm with our optimized number of clusters. A 1-sided paired t-
test across the NMI, B3, and ARI [39,40,44] for all 11 datasets shows that, even when
they are provided with the ground-truth number of classes or the number of clusters
computed by PEACH(τr), we see that PEACH(τr) is statistically significantly better than K-
Means, Spectral, and Bi-clustering with p = 0.01. While PEACH generally has better scores,
the difference over AHC and Birch is not statistically significant, though this is not that
surprising since both are agglomerative algorithms. Of course, they only obtain this level
of performance when given a ground-truth number of classes or when PEACH provides
an estimate of the number of clusters, so they offer no real advantage over PEACH.
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Table 8. Utilizing Ground-Truth Number of Classes. These tables include NMI and B3 results for various
classic algorithms when using the ground number of classes in the face clustering experiments. We
mark the second-best and best results.

(a) NMI

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW

Number of Classes 32 64 128 256 512 1024 1845 1680 (5479)

K-Means 0.928 0.898 0.892 0.889 0.897 0.900 0.777 0.643
AHC(average) 0.959 0.921 0.928 0.924 0.927 0.928 0.931 0.941

BIRCH 0.929 0.920 0.909 0.904 0.909 0.913 0.913 0.903
Spectral-Clustering 0.867 0.883 0.883 0.870 0.864 0.867 0.868 0.790

BI 0.781 0.767 0.728 0.719 0.723 0.740 0.749 0.834
Affinity-Prop 0.848 0.855 0.845 0.857 0.872 0.882 0.886 0.717

FINCH 0.888 0.874 0.879 0.891 0.887 0.891 0.894 0.873

PEACH(τr) 0.967 0.954 0.962 0.960 0.956 0.956 0.956 0.957

(b) B3

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW

K-Means 0.859 0.793 0.751 0.713 0.701 0.675 0.663 0.606
AHC (Average) 0.943 0.828 0.838 0.798 0.792 0.775 0.771 0.754

BIRCH 0.869 0.842 0.791 0.750 0.739 0.725 0.711 0.632
Spectral 0.766 0.785 0.762 0.726 0.705 0.698 0.676 0.606

BI 0.630 0.554 0.446 0.389 0.343 0.334 0.328 0.475
Affinity-Prop 0.622 0.595 0.537 0.534 0.544 0.542 0.538 0.402

FINCH 0.811 0.740 0.727 0.731 0.693 0.678 0.677 0.540
PEACH(τr) 0.967 0.954 0.962 0.960 0.956 0.956 .956 .957

Table 9. Utilizing Robust Number of Clusters. These tables show NMI, B3, and ARI results for various
classic algorithms when using the number of clusters as defined by our robust threshold estimation
τr. We mark the second-best and best results.

(a) NMI

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

Clusters 38 82 157 326 637 1304 2315 1216 265 677 1031

K-Means 0.909 0.891 0.882 0.885 0.894 0.896 0.899 0.862 0.810 0.837 0.825
AHC (Average) 0.956 0.944 0.944 0.943 0.935 0.935 0.937 0.886 0.774 0.797 0.781

BIRCH 0.909 0.903 0.899 0.896 0.905 0.909 0.910 0.886 0.803 0.813 0.803
Spectral 0.875 0.880 0.875 0.867 0.869 0.870 0.869 0.854 0.798 0.816 0.806

BI 0.807 0.781 0.750 0.737 0.749 0.758 0.766 0.783 0.626 0.590 0.571

PEACH(τr) 0.967 0.954 0.962 0.960 0.956 0.956 0.956 0.957 0.876 0.838 0.812

(b) B3

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

K-Means 0.810 0.744 0.688 0.665 0.665 0.641 0.635 0.508 0.546 0.540 0.509
AHC (Average) 0.921 0.883 0.877 0.859 0.816 0.793 0.783 0.554 0.506 0.403 0.386

BIRCH 0.823 0.766 0.735 0.699 0.701 0.681 0.672 0.589 0.542 0.476 0.461
Spectral 0.750 0.734 0.719 0.662 0.652 0.643 0.623 0.566 0.539 0.580 0.531

BI 0.664 0.568 0.459 0.378 0.360 0.333 0.328 0.324 0.229 0.179 0.124

PEACH(τr) 0.947 0.909 0.923 0.907 0.886 0.875 0.870 0.860 0.727 0.543 0.488

(c) ARI

IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

K-Means 0.709 0.639 0.440 0.415 0.441 0.413 0.344 0.189 0.525 0.470 0.456
AHC (Average) 0.949 0.915 0.965 0.961 0.905 0.851 0.781 0.453 0.442 0.352 0.337

BIRCH 0.699 0.678 0.550 0.497 0.513 0.473 0.395 0.307 0.527 0.404 0.401
Spectral 0.593 0.580 0.543 0.356 0.296 0.142 0.151 0.102 0.299 0.079 0.072

BI 0.617 0.529 0.285 0.251 0.257 0.253 0.185 0.067 0.202 0.137 0.098

PEACH(τr) 0.961 0.941 0.951 0.944 0.932 0.926 0.924 0.805 0.816 0.727 0.683



Algorithms 2022, 15, 170 19 of 23

6.4. FINCH Partition Analysis

Unlike PEACH, which provides one definitive clustering solution, FINCH—which
is claimed to be a parameter-free approach—provided six potential clustering solutions
for the IJB-B 1845 dataset, all of which are listed in Table 10. The final decision of which
solution to use has to be made by the user. As shown in Table 10, this choice of solution can
greatly impact the performance of the resulting clustering.

Table 10. Sensitivity of FINCH to Partition Selection. In this table, we show the NMI scores and the
number of clusters of each FINCH partition. In our optimistic evaluation of Table 1, we manually
selected partition three since the number of clusters of this partition is 880, which is the closest one
to the ground-truth 1845. If we would not have the ground-truth but pick a random partition, the
resulting NMI values could drop dramatically. In all experiments in this work, we always chose the
FINCH partition closest to the ground-truth.

Partition # Clusters NMI

1 13406 0.833
2 3223 0.892
3 880 0.894
4 208 0.803
5 43 0.642
6 10 0.439

The authors of FINCH [4] did not provide an indication regarding which of these
partitions to select without knowing the ground-truth number of classes. Even when we
choose the FINCH partition closest to the ground-truth, a 1-sided paired t-test across the
NMI/BCubed/ARI for all 11 datasets shows PEACH(τr) is statistically significantly better
than FINCH. For our PET-FINCH, we do experiment on a novel data-distribution view of
clustering protocols and then detail our evaluation protocols. The Table 11 shows that our
robust τr works with FINCH and made significant results.

Table 11. PET-FINCH. In this table, we show the NMI scores of FINCH partition which were selected
by using our τr. We estimate the number of clusters of AHC by using τr and then we choose the
FINCH partition, which is closest to the estimated number of clusters. We compare the results with
PEACH. We mark the best results.

NMI IJ32 IJ64 IJ128 IJ256 IJ512 IJ1024 IJ1845 OLFW IN166 IN1000 IN1166

τr = 0.456 0.513 0.467 0.467 0.471 0.448 0.424 0.507 0.597 0.502 0.454

PET-FINCH 0.851 0.874 0.865 0.876 0.888 0.892 0.892 0.894 0.852 0.821 0.798
PEACH(τr) 0.963 0.958 0.963 0.960 0.950 0.951 0.952 0.933 0.870 0.812 0.812

7. Limitations

Our Extreme-Linkage Theory and resulting threshold selection provide a transforma-
tive step in clustering; it is the first effective fully automatic clustering algorithm for deep
features to improve vision or learning systems’ performance. However, PEACE/PEACH
is not a panacea; our theory’s assumptions generally do not hold on many raw or hand-
crafted features used in classic clustering evaluation, and the resulting threshold is not
good. PEACE is also not parameter-free; it just provides good defaults. While we tested on
many different types of problems, there are a plethora of clustering problems in vision that
could be used in evaluation.

8. Conclusions

In most problems, one cannot know the number of clusters or choose between po-
tential clustering options—real-world problems, especially in computer vision, need fully
automatic clustering. This paper introduced our Provable Extreme-value Agglomerative
Clustering-threshold Estimation (PEACE), and the fully automated PEACH, which applies
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the fully automatic clustering threshold to classic agglomerative clustering. We proved
that nearest neighbors of correct links follow a EVT-distribution, in particular a Weibull
distribution, and used that to derive a threshold, and then develop a more robust threshold
with heuristics automatically reducing an outlier’s impact. We also show empirically that
this approach can select the best partition for FINCH [4], the current state of the art in a visual
clustering algorithm. For evaluation, we focused on clustering deep features relevant for
advancing the state of the art in vision.

Our experiments show that PEACH significantly advances the state of the art in clus-
tering through outperforming recent results from top venues [2,4,5,10,11,68–70]. Looking
across all of the different experimental domains, distribution, and problems, PEACH was
consistently better than FINCH and other algorithms. We encourage downloading our
Github code (released after acceptance) and try either PET-FINCH or PEACH on your
problem. If you like the previous state of the art, FINCH, then free yourself from the
selection problem with PET-FINCH with virtually no change to your code. However, also
note that PEACH offers superior performance, advancing the state of clustering, as well as
providing fully automatic parameter selection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a15050170/s1, Figure S1: Weibull fit and resulting τ. Example
plots showing Weibull fit and resulting threshold τ estimated from the distribution of ANN distances.
In this figure, we show a histogram of raw data from the named dataset, the resulting Weibull fit, its
CDF, and the resulting τw for 98% of the data and 99% confidence, except for ImageNet and LFW,
where we show the “robust” version based on the mode heuristic, which results in using only 88%
and 63% of the data, respectively. For LFW, the resulting fit is quite different from the example fit for
all LFW data, which is shown in the main paper. These plots show the trim-line of what data was
ignored in fitting the Weibull.
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