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ABSTRACT

This paper models 
uctuations in regional disaggregates as a nonsta-

tionary, dynamically evolving distribution. Doing so enables study of

the dynamics of aggregate 
uctuations jointly with those of the rich

cross-section of regional disaggregates. For the US, the leading state|

regardless of which it happens to be|contains strong predictive power

for aggregate 
uctuations. This e�ect is di�cult to understand if only ag-

gregate disturbances a�ect aggregate business cycles through aggregate

propagation mechanisms. Instead, a better picture might be one of a

\wave" of regional dynamics, rippling across the national economy.
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1. Introduction

Macroeconomics, by de�nition, concerns aggregate economic variables. And, tra-

ditionally, macro empirics hews to this same discipline. In whichever mainstream

version|real business cycle, aggregate demand and aggregate supply, or new

Keynesian|theoretical and empirical macroeconomics studies the dynamic re-

sponse of aggregate variables to hypothesized aggregate disturbances.

Departures from this focus exist, but are for the most part minor. In one

instance, disaggregates are analyzed only to provide an aggregation theory, i.e.,

only to understand the macro implications of modelling the underlying micro units.

The disaggregates themselves bear but auxiliary interest. In a second instance,

the researcher might study empirically the behavior of consumers and �rms, say

in cross-section or panel data modelling, to understand their responses to changes

in their environment. Often, the parameters of those disaggregates are then just

presented as if immediately having implications for macroeconomic behavior. Such

work views disaggregates as providing only more data (beyond aggregate time

series), not di�erent data. The latter, by contrast, is the view that this paper

adopts.

There are, of course, counter-examples to the crude characterization just

given. Interactions between individual income distributions and macroeconomic

dynamics (e.g., Galor and Zeira [12] and Persson and Tabellini [19]), between rel-

ative prices and aggregate in
ation (e.g., Lach and Tsiddon [15]), and between

sectoral imbalance and aggregate unemployment (e.g., Evans [11] and Lilien [16])

are instances where disaggregate analysis has contributed insights for understand-

ing macroeconomic 
uctuations. In the same vein are the ideas that cross-sectional

spillovers can cumulate for aggregate growth and 
uctuations (e.g., Durlauf [8] and

Long and Plosser [18]) and that gross labor 
ows|rather than just net ones|are

informative for macroeconomic business cycles (e.g., Davis and Haltiwanger [7]).

All these counter-examples share an important distinctive feature. This is that

there is signi�cant two-way interaction between aggregate and disaggregate behav-

ior: aggregates a�ect disaggregates, and disaggregates in turn a�ect aggregates.



{ 2 {

Because the interaction is two-way, it contradicts the standard assumption, for

instance, in panel data work where aggregate variables might a�ect disaggregates,

but not vice versa. Moreover, as the income distribution and relative price exam-

ples make clear, the operative economic mechanism sometimes involves a relation

between di�erent parts of the disaggregates distribution: interaction between rich

and poor, or tradeo�s between high- and low-priced commodities. Then, summary

statistics of the distribution|say a conditional mean or cross-sectional variance|

will be inappropriate for understanding the relation between disaggregates and

aggregates.1 What is needed, instead, is a way to analyze 
exibly the dynamics of

an entire distribution (or rich cross-section) of disaggregates.

Few econometric tools extant are appropriate for this. This paper seeks to add

to those tools. It explores theoretical and empirical modelling of the joint dynamics

of aggregate and regional disaggregate output. The regional disaggregates studied

below|the states in the US|are large enough compared to aggregate US output

that one cannot casually dismiss the potential e�ects of disaggregate dynamics on

the aggregate. At the same time, there are many enough regional disaggregates to

make apparent the modelling di�culties: standard vector time-series methods, for

instance, will not do for modelling the dynamics of a 50 by 1 random vector.2 If one

were to turn then to the joint dynamics of European Union regional disaggregates|

1 The easiest way to see this is through an example. Suppose that it is income

inequality that matters for aggregate 
uctuations and growth, as, e.g., in Galor

and Zeira [12, 19] and Persson and Tabellini [12, 19]. Which income inequality

measure should one use in empirical analysis? Theory doesn't always provide an

answer since the simpli�ed distributions that appear in a theoretical model are

only suggestive of more general economic forces at work. Atkinson's classic paper

[1] shows how alternative inequality measures imply substantively di�erent|and

potentially contradictory|views on the inequality actually extant.
2 Post-War quarterly time-series now contain 200 observations. But a VAR

model for a 50 by 1 vector already has 2500 free parameters in the �rst-order lag

matrix coe�cient; the variance-covariance matrix for the innovation contributes

another 1275. Quah and Sargent [29] attempt to control this parameter prolif-
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as in discussions of regional cohesion|one faces an 800 by 1 vector. Standard

methods will be ill-suited for such analyses. This paper studies instead a technique

to model the dynamics of a cross-section distribution. This technique, therefore,

works regardless of how numerous the cross section units get.3

The empirical model of distribution dynamics developed below allows quanti-

fying intra-distribution mobility, i.e., measuring how rapidly disaggregates traverse

the cross-section distribution. Such measures provide natural calibrations of the

speed of adjustment in a cross-section distribution to disaggregate perturbations.

Seeing how those measures relate to movements in an aggregate (like GNP) reveals

potential connections between aggregate 
uctuations and gradual adjustments in

disaggregates.4

The remainder of this paper is organized as follows. The next section sets

down a simple, abstract theoretical framework for understanding the econometric

calculations that follow. Section 3 presents some stylized facts; Section 4 gives

more detailed analysis. Sections 3 and 4 are not, by any means, intended as formal

statistical tests of the predictions in Section 2, only as groundwork for later, more

complete study.

The key results from Section 4 are as follows. Mobility, while present, has

little to do with aggregate 
uctuations. However, leading states|which di�er over

time|have strong predictive power for aggregate output.5

eration, using dynamic index representations, but for certain issues|identi�ed

below|those will be inappropriate.
3 Nevertheless, because the cross-section disaggregates are studied in the form

of their distribution dynamics, the framework necessarily cannot address every

interesting question on diaggregate dynamics. For instance, spatial interaction

is altogether ignored in the current work, although Quah [28] has used related

techniques precisely to investigate such concerns.
4 See, among others, Davis and Haltiwanger [7], Evans [11], Lilien [16], and

Pissarides and McMaster [20].
5 A referee has emphasized that the \leading states" �ndings are not special to
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Finally, Section 5 brie
y concludes.

2. A simple model

This section develops a simple theoretical model to analyze aggregate and regional

disaggregate dynamics. The model is stylized to a degree where many interesting

e�ects are absent, but in return it is explicit about the dynamics of the aggregate

jointly with those of the entire disaggregate cross-section.6

One by-product of the reasoning below is to show the danger in interpreting

as causal certain estimated relationships between aggregates and disaggregates.

That, however, is not the main point of this section. Instead, the primary goal is to

provide a theoretical framework for interpreting models of distribution dynamics.

To interpret variation along the time dimension, Sargent [30] has emphasized

an optimizing, Euler equation characterization. Below, I do the same with varia-

tion over the cross section. Then, informally, I put the two together.

To focus on aggregate business cycles, assume that a single good is produced

and consumed. To make di�erent regions di�erent, introduce a function z(x),

the new dynamic-distribution methodology developed in this paper. I agree, but

have kept them in the paper nonetheless: those results do relate to the dynamic

behavior of distributions, and they do serve to highlight how certain features of

distribution dynamics are empirically important, and others not.
6 In its focus on aggregate business cycles, the analysis here di�ers from eco-

nomic geography work on location and agglomeration dynamics (e.g., Krugman

and Venables [14]). In its focus on many, many regional disaggregates, it di�ers

from that macro time series work (e.g., Engle and Kozicki [10] and Sargent and

Sims [31]) which might seem pertinent and directly applicable; they are not, for

reasons already given in the introduction. Work such as Barro and Sala-i-Martin

[2], Blanchard and Katz [3], and Carlino and Mills [5]|which either average across

the cross-section, or model regional disaggregates separately|are examples where

one gets no information about the relation between di�erent parts of the cross

section of regions. Likely most directly relevant is work such as Ciccone and Hall

[6], although the analyses there and in this paper di�er substantially.
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which maps location x to (productivity) characteristics z; the latter could be multi-

dimensional, but is required to be non-negative in each entry. The analysis takes

function z �xed, but eventually one would like to allow z to vary over time. Exam-

ples of z might include the work ethos on the Microsoft campus, Massachusetts's

human capital in technology, and automotive engineering skills around Heathrow

Airport: these all change through time in response to economic incentives.

Physical geography is a probability space (X;X; �x) that allows for possibly

mixed discrete-continuous locations, nonuniform mountains, valleys, and plains,

and so on. For di�erent models, one might take X to be alternately a set comprising

two points, a straight line, a circle, or a plane (�nite or in�nite). Then X comprises

the collection of interesting subsets of X, and the probability measure �x is a

function from elements in X to [0; 1]; it evaluates members of X to measure their

proportions out of total locations X.

With this structure, z can also include measures of distance or accessibility

of particular locations x. Physical distance, of course, doesn't change over time,

but accessibility might, when roads and electronic highways are built. Therefore,

function z can be viewed to have some components time-invariant and observable,

others time-varying and unobservable, as well as combinations in between.

Denote employment at location x by l(x); output is given by a standard

neoclassical technology:

y(x) = f(l(x); z(x)); (2:1)

assumed identical across locations. Assume that for any �xed z (including zero),

the partial derivative fl = @f=@l diverges to in�nity as l tends towards zero.

In words, the �rst input of labor is always highly productive: for z unobservable,

specifying fl at zero z is only a normalization. A measure �x on locations, together

with technology (2.1), a characteristics pro�le z, and an employment pro�le l,

induces a measure each for characteristics �z, employment �l, and output �y.

The output pro�le y across locations, in turn, implies observed total output:

y =

Z
y(x)�x(dx) =

Z
f(l(x); z(x))�x(dx):
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Aggregate output y can always be calculated as above, mechanically, regardless of

whether z and l are \good" or \bad" allocation pro�les. Similarly, one can always

�nd the distribution of wages across locations by calculating:

w(x) = fl(l(x); z(x)) =
@f

@l
(l(x); z(x));

again, mechanically.

More interesting is to ask whether particular allocations z and l, and their

evolution over time, can be supported by some economic process. A useful starting

point is to allow labor to move freely across locations. In that case, in equilibrium

the labor allocation l adjusts so that wages equalize across x, and the labor market

clears. Normalizing total labor supply to 1, this is:

fl(l(x); z(x)) = w(x) = w;Z
l(x)�x(dx) = 1:

(2:2)

A nonnegative function l solving (2.2) is a static (i.e., point-in-time) e�cient labor

allocation. Assuming fl unbounded rules out corner solutions where some location

might have zero employment. Given any distribution of characteristics �z, an

allocation l satisfying (2.2) for some positive w is not just economically sensible;

it turns out also to maximize aggregate output y:

Proposition: Denote by M + the class of non-negative measurable functions on

(X;X). Suppose that for x in X (a.e.-�x), the function f(�; z(x)) has derivative

fl = @f=@l > 0, decreasing in l. Then the program

sup
l2M+

Z
f(l(x); z(x))�x(dx)

s.t.

Z
l(x)�x(dx) � 1
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is solved by any l� in M + such that there exists a positive number  for which

simultaneously:

(i) fl(l
�(x); z(x)) �  � 0 (a.e. � �x), with equality whenever l�(x) > 0; and

(ii)
R
l�(x)�x(dx) = 1.

(The proof of this result is in the technical appendix.)

Equation (2.2) implies that when z(x) varies over x then so too will e�cient

employment levels. Stated this way, the result in the proposition seems trivial and

obvious. However, the characterization also asserts that nothing about the cross-

section standard deviation (or any other moment) of the observed distribution �l
says anything about the behavior of total output about its maximum. There is a

precise and natural economic relation embedded in (2.2), but it does not translate

simply to, say, using dispersion as a measure of \imbalance" or \disequilibrium."

To see this explicitly, it is useful to work through an explicit example.

Suppose z is scalar, and assume the technology:

f(l; z) = l�z� ; for constants � in (0; 1) and � > 0;

so that labor's marginal product is w = fl = �l��1z� . This implies local labor

demand

l = (�=w)1=(1��)z�=(1��):

Labor market clearing then is

(�=w)1=(1��)
Z
z�=(1��) �z(dz) = 1: (2:3)

De�ne an arti�cial random variable Z having the distribution given by �z. Using

this notation the integral in the market-clearing condition (2.3) can be rewritten

as the expectation E
�
Z�=(1��)

�
. Then (2.3) implies the market clearing wage

w = �
�
EZ�=(1��)

�1��
: (2:4)
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De�ne p(�) = (1��)�1, and recall the de�nition of p-norm for a random variable,

kZkp = E (jZjp)
1=p

for p � 1:

The market clearing wage (2.4) thus can also be written:

w = �kZ�
kp(�):

Using this in the local labor demand function (2.3) we see that the equilibrium

employment pro�le across regions is:

l(x) = (�=w)p(�)z(x)�p(�) : (2:5)

In characteristics z, employment is increasing, and either convex or concave de-

pending on whether � is greater or less than p(�)
�1

= 1� �.

When all locations x have the same value of z, the measure �z places point

mass on that value of z. The distribution of employment is then also degenerate at

the value given by (2.5). In this special case, employment is equal across regions,

and its being so happens to maximize aggregate output y. In general, however,

when z varies over x, then so too will l: equation (2.5) allows calculating �l
from knowledge of �z. Aggregate output y in this more general case is no longer

maximized by a degenerate distribution in l, or equivalently, by having zero (small)

variance in employment across locations.

Regional output is given by substituting equilibrium employment into the

technology:

y(x) = (�=w)�p(�)z(x)��p(�)z(x)�

= (�=w)�p(�)z(x)�p(�) (2:6)

and therefore has the same shape in z as does employment. Despite curvature in

the technology f , output y and employment l are, roughly speaking, collinear in

equilibrium. But then the statements above on employment's distribution and its
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relation to aggregate output y apply immediately to the distribution �y of regional

outputs and its relation to y.

Integrating y(x) across locations gives aggregate output. In our random vari-

able notation, we can write this as:

y = (�=w)�p(�)E
�
Z�p(�)

�
= kZ�

k
��p(�)

p(�)
� kZ�

k
p(�)

p(�)

= kZ�
kp(�) = w=�:

Aggregate output therefore behaves as a particular absolute moment of the cross-

section distribution of Z. In equilibrium, aggregate output will also be observed

to move as does the real wage w, only more so, since j�j is less than 1. Thus, when

wages and output 
uctuate over time, wages will be less variable than output.

Substituting this last relation between w and y into (2.6), we get:

y(x) = (y)
��p(�)

� z(x)�p(�)

or

log y(x) = (��p(�)) log y + �p(�) log z(x): (2:7)

Equation (2.7) looks like an (observable) index model representation for regional

outputs: regional dynamics can be viewed as made up of a region-speci�c distur-

bance, �p(�)� log z(x), on top of some multiplier of aggregate output, (��p(�))�

log y. The development above, however, says that such a representation does not

imply that aggregate output 
uctuations \a�ect" regions with multiplier ��p(�).

Moreover, while the multiplier ��p(�) depends only on parameters of the pro-

duction technology (and is thus certainly policy-invariant and structural), there

is no sense in which it describes the e�ect on regional outputs of aggregate out-

put movements. Instead, regional and aggregate outputs are jointly determined:

neither one causes the other.
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Returning now to the general case, it is easy to see that much the same conclu-

sions from the special case (except of course the precise functional form solutions)

apply directly. Aggregate and local dynamics can be simply described: If the en-

tire function z is perturbed, then a previously optimal employment pro�le l need

no longer imply a uniform wage across regions, and labor will wish to reallocate

towards a new pro�le. If we maintain the perfect mobility assumption, no new dif-

�culties arise in the general case. We can take a random �eld|a doubly-indexed

stochastic process|z(x; t), where the t index denotes time, to drive the dynamics

of the system. In each time period t, given z(�; t), the equilibrium employment pro-

�le l(�; t) again implies (i) a wage w(t) uniform across locations and (ii) maximized

aggregate output y(t). There is also a resulting equilibrium pro�le of incomes

across regions y(�; t): all the random �elds, z, l, and y, indexed by x and t 
uctu-

ate across both space and time. Thus, embedded in the equilibrium is a sequence

of evolving regional income distributions given by �y(t) 
uctuating jointly with y.

This discussion motivates a new view of aggregate and disaggregate distur-

bances. In the framework above, a natural de�nition of an aggregate disturbance

is a perturbation that keeps the function z invariant in particular ways|for in-

stance, aggregate disturbances might be associated with perturbations where z is

simply shifted vertically. Disaggregate disturbances are then those perturbations

that twist z's pro�le but maintain its vertical location. Put another way, disaggre-

gate disturbances are a \wave" rippling through the surface comprising regional

quantities.7

The model illustrates why certain kinds of empirical calculations are uninfor-

mative. For instance, from equation (2.7), stable relations between aggregates and

measures of cross-section dispersion should not be viewed as movements in one

implying movements in the other. Both the aggregate and the cross-section dis-

7 Contrast this with a representation like that used in Quah and Sargent [29]

where no similarly simple characterization is available. There, aggregate distur-

bances are characterized by an extensive set of dynamic orthogonality conditions.
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tribution are jointly determined. Except in special cases, even the simplest theory

gives neither a determinate sign on this relation nor the appropriate statistic of

the cross-section distributions to look at.

The aggregate and disaggregate dynamics described thus far are simple and

naive. Because I have assumed perfect mobility for labor, calculating the dynamic

equilibrium path is easy: just string together in time the static equilibria across

the cross-section distribution. Such analysis is interesting, however, for at least

three reasons. First, it is convenient to calculate and easy to understand, and thus

serves as a benchmark for more di�cult calculations. Second, it makes explicit

the limits on what we can hope to infer from data on disaggregate 
uctuations:

examining point-in-time statistics (like means, variances, modes, and so on) of

the cross-section distributions is unlikely to be fruitful. Third, it suggests where

further theoretical and empirical investigation can advance understanding.

To make progress beyond the simple model, some conjecture is needed on the

economic mechanism underlying regional adjustments. One way to begin might be

to make explicit the pattern of labor mobility, how readily one l pro�le translates

into another. A useful story of regional 
uctuations and aggregate business cycles,

therefore, will likely embed within it the solution to the following abstract problem.

How does a distribution of economic activity �y;t evolve|form the sequence of

measures f�y;t+s; s = 1; 2; : : : g|in response to an ongoing series of aggregate

and idiosyncratic disturbances?8

What is needed, therefore, is a model that produces an equilibrium in the form

of a vector stochastic di�erence equation in �y;t, together with relevant aggregates:

such an equation can then be estimated and simulated to give a characterization

of steady states limt!1 �y;t. Tracing out the transition dynamics implied by that

8 One reasonable guess is that in a model without externalities of the kinds in,

e.g., Krugman and Venables [14], �y;t will, in response to a one time disturbance,

converge to a distribution as characterized in the Proposition above. But, even if

so, such \punctuated equilibrium dynamics" will never be observed in real world

data since disturbances are ongoing through time.
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equation then gives some insight into the interplay of 
uctuations in aggregates

and in the disaggregates dispersed over x.

3. Cross-section dynamics over one business cycle

We turn next to empirical application of the preceding ideas. To appreciate the

issues to follow, begin by recording some facts on what happened over one complete

NBER US business cycle upturn.9

Between 1982 and 1990|a complete NBER trough to peak span|average US

per capita nominal personal income rose by 48%, an annual growth rate of 7%.

Over this time, experiences across US states di�ered. Before looking at these, we

establish preliminary intuition by considering some theoretical possibilities.

If the cross-section distribution about the average were stationary, then the

relative positions of states might always remain unchanged: the richest states

always remain richest; the poorest, poorest. Or, maintaining the hypothesis of an

invariant cross-section distribution, some regional disaggregates might rise above

the average from below, and others fall below the average from above. Stationary

steady state, by itself, places no restriction on intra-distribution mobility.

If individual states were independent and identically distributed both in time

and across each other, and the invariant cross-section distribution were symmetric,

then any subset of states at the beginning of any time sample would have half end

up below average and half above, by the end of the time sample. Since this holds

9 The US states series here are constructed from Barro and Sala-i-Martin [2]

and the Data Appendix in Blanchard and Katz [3]. As there, state refers to

the 50 US states and the District of Columbia. I use nominal personal incomes

throughout this section, rather than real. When there is a common general price

index|because of the common national currency|the statements here carry over

qualitatively unchanged to real personal incomes, as I am comparing behavior

across states; similarly, if one studies personal incomes relative to any aggregate.

The more formal analysis in the next section will use state incomes relative to per

capita GDP.
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for any subset of states, it must hold for those states beginning above average, as

well as for those beginning below.

There is thus a range of possibilities, all consistent with well-behaved station-

ary 
uctuations about an average (itself possibly varying through time).

We can take the \extreme-case" discussion further. Suppose only aggregate

disturbances were important, and the propagation mechanism were an aggregate

one. Then up to minimal variation, one should not expect signi�cant asymmetries

across states over business cycles. Di�erent parts of the cross-section distribution

should have roughly the same dynamic behavior relative to the aggregate and to

each other. (The discussion in the rest of this section will not speak directly to

this point, but we return to it in Section 4 below.)

What, in the event, transpired? The answer is none of the above. In 1982, at

the beginning of the upturn, 20 states had per capita personal incomes above the

US average. Over the upturn, one half of these|already relatively rich|saw their

lead on the US average increase. Over the same upturn, again one half of the 31

states initially below average saw their relative incomes fall even further. Thus,

the realized event di�ered from the hypothetical cases previously described: the

cross-section spread apart over the upturn, and did so by systematically pulling

out even further those parts of the distribution that were already at the extremes.

Details reinforce this conclusion. Of the 20 states that began above average in

1982, only three (Kansas, Texas, and Wyoming) transited below average by 1990;

of the 31 initially below average, only one (Rhode Island) transited above average

by 1990. Over this upturn the two fastest growers among states already richer

than average were New Hampshire and New Jersey, whose leads on the average

increased from 0.5% and 19% to 11% and 29% respectively. By contrast, the two

worst growers among those already relatively poor were Louisiana and Oklahoma,

whose income disparities from the average worsened from -12% and -1% to -26%

and -19%, respectively.10

10 Overall, the fastest grower was Maine (11% increase over 1982{90, from -19%

to -8% about the US average); the worst, Alaska (-25% change over 1982{90),
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What do these facts mean? Is it that as aggregate output grows over the

business cycle, those states already rich gain most from the rise in aggregate ac-

tivity? Or is it instead that rich states are the �rst ones a�ected by disturbances,

and they then pull the nation out of recession? Whichever the reality is, these

regional and state 
uctuations are large. To see this, recall that most detrending

techniques give business cycle 
uctuations in US GNP of 3{4% about trend (see,

among many others, Blanchard and Quah [4] and Prescott [21]).11 If an average

business cycle lasts 6 years, then the measured aggregate growth rate over an up-

turn is 4% over 18 months or 2.7% per year. From above, New Hampshire and

New Jersey's 
uctuations, about the national average, are close to 2% per year;

those of Wyoming and Oklahoma, 3% per year. State 
uctuations are thus large,

compared to aggregate business cycles.

These stylized facts carry a meta-message, reinforcing statements made in

the introduction. Intra-distribution dynamics contain regularities. However, the

interesting regularities here will not be easily found using standard econometric

techniques. To see this, recall what those techniques do. Estimating a panel data

model on states or regions takes an average across the cross section (even when

allowing for heterogeneities like \individual e�ects"). The di�ering behavior of

states in the upper and lower parts of the cross-section distribution|if not aver-

aged out exactly|will not be observable as starkly as described above. Certainly,

how the top 10% of the distribution behaves relative to the bottom 10% is, in

principle, available from panel data estimation (e.g., Lillard and Willis [17]); it is

just that that kind of intra-distribution behavior is not obviously displayed there.

Nor will intra-distribution dynamics be conveniently modelled.

By contrast, estimating individual time series models|one for each state, say,

to permit di�erences across Maine and Oklahoma (e.g., Carlino and Mills [5])|

leaves undetected the co-movements across states. The researcher then cannot

Wyoming, and Oklahoma (both -18%).
11 I take these numbers as a reasoned consensus although such numbers can, in

theory, be dramatically altered by varying the detrending method (Quah [22]).
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tell if rich states vary positively or negatively with poor ones. Attempting to

model all those cross-sectional correlations leads, of course, to the (conceptual)

degree-of-freedom problems already described in the introduction.

4. Distribution dynamics

This section develops an empirical model of aggregate and disaggregate 
uctua-

tions. The model is designed to take into account the issues previously described:

it 
exibly permits interactions between aggregates and disaggregates; it allows po-

tentially many, many disaggregates; it captures how one part of the cross section

distribution behaves relative to another. In brief, the model provides the law of

motion for a sequence of dynamically evolving distributions.

Take the basic data to be the log of annual state personal income per capita

relative to the national average each period.12 Figure 4.1 is their three-dimensional

plot; the states in this �gure are arrayed in US Census ordering, i.e., beginning

with Maine and Massachusetts, and ending with California, Alaska, and Hawaii.

Such a graph emphasizes the data's rich variation across both time series and cross

section dimensions. It clari�es why standard multiple time series modelling would

be inappropriate here. The cross-section dimension in �gure 4.1 has the same order

of magnitude as does the time series: an investigator could not even estimate a

full-rank variance-covariance matrix from these data, much less the dynamics in a

multiple time series model of the 51-variate vector of state incomes.

12 This choice is not inconsequential. If, at one extreme, the disaggregates were

taken as the (�tted) idiosyncratic components from a dynamic observable index

model, then by construction they would be everywhere orthogonal to the aggregate.

If, at the other extreme, the disaggregates were unchanged from the original data,

then purely mechanically some of their 
uctuations would be the same as their

aggregate's. The choice made in the text was for two reasons: �rst, convenience

in interpretation; second, following, loosely, Section 2's discussion on \twists" of

the cross-section distribution to de�ne disaggregates.
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Establish notation for the subsequent discussion: Let � be a �xed, �nite-

dimensional vector of aggregates|GNP growth rates, national unemployment,

and so on|and y be a rich cross-section of disaggregates. The researcher seeks to

characterize the dynamic evolution of the pair (�; y). The proposal here is simple:

transform the system from (�; y) to (�; �y). (Recall from Section 2 that �y denotes

the measure describing the cross-section distribution of y.) Then, the researcher

models a system as depicted conceptually in �gure 4.2.

The top panel of �gure 4.2 contains the standard time-series plot of a scalar

economic variable. The bottom panel plots the sequence of evolving distribu-

tions (implied by) f�y;t : integer t � 1g. It highlights two di�erent characteristics

in that sequence: (i) the changing shape of the distribution, and (ii) the intra-

distribution dynamics, how a given part of the distribution at time t transits to

another part of the distribution by time t+ s. Call (i) and (ii) shape and mobility

dynamics.13 Subsequent analysis will decompose distribution dynamics into these

two components.

To see how the decomposition works, recall that dynamically evolving prob-

ability measures f�y;t : integer t � 1g can be written as a stochastic kernel equa-

tion:

8 measurable A : �y;t+1(A) =

Z
Mt(y;A)�y;t(dy); (4:1)

13 Distinguish intra-distribution mobility (ii) from geographical mobility. The

mobility here refers to moving about within the cross-section distribution of per

capita incomes, not to moving about across physical space. In this scheme, if three

states happen to have the same per capita income, they are not di�erentiated,

even though two of them might be adjacent (like New York and New Jersey) and

the third geographically distant (like California). Physical separation has little

signi�cance for the measures of economic activity studied here. For instance, when

UPS relocated from Greenwich, Connecticut to Atlanta, Georgia, what mattered

were the two locations' characteristics, not how far apart physically they happened

to be (Financial Times, 28 October 1993). This idea on the irrelevance of physical

separation is studied further in Quah [28].
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(see, for instance, Stokey and Lucas [34, Ch. 8]). In general, �y might show more

than �rst-order dependence. As with standard time-series state-space models,

however, equation (4.1) is easily modi�ed to permit that.

Each stochastic kernel Mt encodes information on both type (i) and (ii) dy-

namics in �y. When �y is discrete, then fMt : integer tg is just a sequence of

stochastic matrices (i.e., square arrays of non-negative numbers with row sums

equal to 1). If, further, that sequence is time-invariant then (the observable) �y
can be viewed as corresponding to the marginal distributions of an arti�cial (un-

observed) Markov chain.14 Then M0 = Mt (all t � 1) can be estimated directly

from frequency counts.

When �y is continuous (or mixed discrete-continuous) thenM0 can no longer

be represented by a matrix, although it can still be analyzed using related meth-

ods (Quah [26]). If, however, Mt varies over time|as we wish to allow here|

such analysis is no longer possible. Then, one way to proceed builds on the non-

stationarities available in Markov-renewal structures; this is done in Quah [25],

exploiting insights from Singer and Spilerman [33]. A second possibility is to de-

composeM explicitly into shape and mobility components|as suggested in �gure

4.2|and then to parameterize their dynamics separately. We follow this approach

here.

Fix a positive integer n: this will be the number of cells in a discretization of

the basic data. Then, represent each stochastic kernelMt by the pair (M(t); q(t))

where M(t) is an n � n fractile transition probability matrix and q(t) is an n-

element quantile set, i.e., a collection of n disjoint random intervals. (A transition

probability matrix is said to be fractile when it describes transitions out of cells

containing equal fractions of the entire distribution.) To see that this gives a

decomposition with the desired properties, it is easiest to provide constructive

14 This reverses the usual reasoning where one observes the Markov chain, and

then infers its unobserved associated probability distributions. Here, it is the cross-

section distributions that are observed, and the Markov chain unobservable. Of

course, the mathematics works the same either way.
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de�nitions for M and q.

Denote the basic data by

�
yj(t) : j = 1; 2; : : : ; N ; t = 0; 1; : : : ; T

	
where j denotes cross-sectional units and t indexes time. The sequence �y relates

to the basic data by

8r 2 R : �y;t
�
(�1; r]

�
= # f j : yj(t) � r g �N�1:

Every �xed positive integer n implies a unique set of equally-spaced probabilities

�
m=n : m = 0; 1; : : : ; n

	
:

De�ne at time t the quantiles

(quant)m(t) = inf
�
r 2 R j �y;t

�
(�1; r]

�
> m=n

	
; m = 1; 2; : : : ; n;

and take

(quant)0(t) = �1:

These give the consecutive disjoint random intervals

qm(t) =
�
(quant)m�1(t); (quant)m(t)

�
; m = 1; 2; : : : ; n;

which, in turn, comprise the quantile set

q(t) = f qm(t) : m = 1; 2; : : : ; n g :

By construction, �y;t(q1(t)) = �y;t(qm(t)) for all m, i.e., the elements of every

quantile set have equal measure.
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The sequence of quantile sets together with the basic data de�ne the transition

probabilities M : let matrix M(t) have (l;m) entry

Mlm(t) =
# f j : yj(t+ 1) 2 qm(t+ 1) and yj(t) 2 ql(t) g

�y;t(ql(t))
;

l;m = 1; 2; : : : ; n:

Clearly,M(t) comprises all non-negative entries and has row sums equal to 1. Also

immediate, by construction, is that each M(t) is fractile, i.e.,� nX
m=1

Mlm(t)

�
�y;t(ql(t)) = �y;t(ql(t)) = �y;t(q1(t))

is the same for all l.

To summarize, M encodes information on mobility while q encodes informa-

tion on shape. We can further clarifyM 's role by using a mobility index (Geweke,

Marshall, and Zarkin [13] or Shorrocks [32]). Analogous to measures of income

inequality|summarizing the information in an entire distribution into a single

scalar|a mobility index collapses into one number the mobility information in a

transition probability. However, as already emphasized above for inequality mea-

sures, no single mobility index need be completely satisfactory. Thus we consider

four such indexes (three from Geweke, Marshall, and Zarkin [13] and Shorrocks

[32], and one new). The stochastic kernel representation (M(t); q(t))|a pair for

each time period|will imply time series on each of these indexes.

First, take Shorrocks's index �1 de�ned by:

�1(M) =
n� tr(M)

n� 1

=

�
n

n� 1

��
n�1

X
j

(1�Mjj)

�
;

where Mjj denotes the j-th diagonal entry of the matrix M . Since 1�Mjj is the

probability of exiting state j, Shorrocks's �1 is the inverse of the harmonic mean of
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expected durations of remaining in a given part of the cross-section distribution.

It thus provides one natural index of mobility: the higher is �1(M), the less

\persistence" is there in M .

Since the trace of a matrix equals the sum of its eigenvalues, Shorrocks's index

can also be written as:

�1(M) =
n�

P
j �j

n� 1
;

where �j are the eigenvalues of M . Thus when M 's eigenvalues are all real and

non-negative, Shorrocks's �1 is identical to the second index we consider:

�2(M) =
n�

P
j j�j j

n� 1
;

in general, however, �1 and �2 will di�er.

To see the motivation behind �2 recall that every stochastic matrixM always

has one eigenvalue equal to unity, and all its other eigenvalues bounded from

above by 1 in modulus. In the most regular case, when M implies a unique

ergodic distribution, the sequence
�
Mk : k � 1

	
converges to that distinguished

matrix having all rows equal to the ergodic distribution.15 Convergence occurs at

a geometric rate, given by powers of (Jordan blocks in) the eigenvalues �j . Thus

the smaller is the modulus of an eigenvalue|the larger is 1�j�j j|the faster does

the corresponding component in Mk converge. Putting these facts together, we

see that �2 sensibly indexes mobility; it relates positively to the average rate of

convergence of the cross-section distribution towards the ergodic limit.

When all eigenvalues except the unit one are strictly less than 1 in modulus,

then as horizon k grows, the dominant convergence term is given by j�2j, the

modulus of the second largest eigenvalue. Thus, for the same reason that �2 is

sensible, one might consider our third mobility index:

�3(M) = 1� j�2j:

15 When M is fractile|as here|the uniform distribution is always an ergodic

limit.
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This, like �2, indexes the speed of convergence. But whereas �2 incorporates all

the di�erent rates of convergence, �3 captures only the asymptotic rate. The two,

�2 and �3, would be identical|up to a scaling involving only n|when evaluated

at an M whose smallest eigenvalues, beyond the largest two, turn out to be zero.

Mobility indexes �1, �2, and �3 have previously appeared (Geweke, Marshall,

and Zarkin [13] and Shorrocks [32]). The discussion above gives conditions under

which they coincide, but in general they are not directly related to each other.

These mobility indexes|like all others I know in the literature|use only transition

probabilityM information. But the quantile sets also contain relevant information.

It means one thing to transit from the poorest 10% to the richest 10% when the

poor and rich di�er by only a small amount; it means something else when the

poor and rich are orders of magnitude apart. Thus for the last mobility index

considered here, I bring in information on the quantile sets.16

To motivate this new index, denoted �AR, note that the evolution of �y;t (and

thus of the stochastic kernelMt) implies an unobservable scalar stochastic process

feyt : integer tg. If for each t, the arti�cial variable eyt has �nite variance, then|
even though ey is never observed|one can calculate the projection P [ eyt+1 j eyt ]
from knowledge of just �y and M.

(I say that ey is arti�cial because it is not observed directly but only hypothe-

sized by the researcher. In standard time-series analysis, a researcher uses observa-

tions on a scalar (or vector) time series Y and then hypothesizes a distribution for

that random variable (this is particularly apparent in, say, ARCH models). Here,

the opposite happens: the researcher observes the empirical (cross-section) distri-

bution and then hypothesizes a random variable to go along with that distribution.

16 Yet another mobility index that might be considered measures the speed of

transition across the support of the evolving distributions. In its simplest form, it

could be the mean �rst-passage time from the bottom to top 10% of the distribution

(as used for di�erent purposes in Durlauf and Johnson [9] and Quah [26]). However,

experimentation showed such indexes uninformative here; I thus omit the results

using them.
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As Quah [24, 26] has observed, this is usefully viewed as the dual to standard prac-

tice in time-series analysis. To compute the projection P [ eyt+1 j eyt ], one never

needs to observe ey; only the sequence of dynamic cross-moments is needed, and

�y and M together readily allow calculating that.)

Call �t the coe�cient on eyt in this projection, and de�ne the mobility index

�AR;t
= �AR(M(t); q(t); q(t + 1)) = 1� �t:

Call this our fourth mobility index. Why does it measure mobility? Some

special cases help answer this. When M is the identity matrix, there is extreme

persistence. All parts of the cross-section distribution remain exactly where they

begin. When, further, �y;t = �y;t+1, then �AR is easily shown to be 0. Main-

taining this assumption for �y, suppose now that M only has 1's on the main

anti-diagonal: the richest become the poorest; conversely the poorest, richest. A

simple calculation then gives �AR equal to 2 for this case of \extreme mobility"

(unlike �1, �2, and �3 the new index �AR is not restricted to lie between 0 and 1;

a simple transformation can, of course, enforce that restriction although nothing

relevant hinges on it).

Keeping the skew-symmetric M , now let �y;t+1 be a mean-preserving spread

on �y;t. The richest now become even poorer than the originally poorest, and

vice versa. There is thus greater mobility than before. The value of �AR in-

creases above 2; by contrast, any mobility index de�ned only on M would remain

unchanged.

Using the same reasoning, when �y;t+1 is a mean-preserving spread on �y;t,

but M is the identity matrix, the index �AR decreases below 0. Again, any

mobility index ignoring q would remain invariant|concealing that in this example

the rich have become richer and the poor poorer.17 Thus, �AR correctly captures

our intuition on intra-distribution mobility.

17 There are, of course, situations where ignoring �y is appropriate. IfM has all

rows identical (and thus equal to the ergodic distribution), the index �AR equals 1,

independent of �y. In this case, the arti�cial ey is independent (but not necessarily
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Figure 4.3 plots, in its �rst panel, aggregate GNP annual growth rates, and

in subsequent panels �1, �2, �3, and �AR, respectively. The mobility indexes


uctuate; they are neither extremely persistent nor serially independent. There

are periods|for instance the mid-50s|when all the indexes are large together,

but also periods|for instance the 80s|where they show little co-movement.

Over the entire sample the mobility indexes all correlate positively with each

other. Thus, even if no single index is perfect, at least all show the same tendencies.

The largest correlation is 0.41 for �2 with �3, suggesting that even for short-run

dynamics higher-order mobility and distribution convergence rates are negligible.

The smallest correlation is 0.15 for �3 with �AR, suggesting that the location

content in �AR does contain potentially important, independent information.

However, that independent information in �AR turns out not to be impor-

tant for aggregate 
uctuations. The contemporaneous correlation of �AR with

aggregate growth rates is just 0.06, compared with 0.15 for �2 with aggregate

growth rates, and -0.24 for �1 (for �3 it is 0.02). Thus, the evidence is weak that

intra-distribution mobility has much to do with aggregate GNP movements. The

suggestive evidence over a single upturn, previously discussed in Section 3, turns

out to be no more than suggestive. The conjectured links there have no �rm basis

over the entire sample.18

Turn now to shape dynamics. Quah [23] provides Granger-causality calcu-

lations suggesting that it is median and the maximum of the distribution of US

states' relative incomes that are most strongly dynamically correlated with ag-

gregate growth rates. Roughly speaking, the maximum Granger-causes aggregate

output (but not vice versa), while aggregate output Granger-causes the median

identically distributed) in time. It is appropriate that this case is intermediate

between those discussed in the text.
18 Might dynamic correlations overturn this conclusion? The answer is no. Com-

puting bivariate vector autoregressions in aggregates and mobility indexes showed

no interesting signi�cant patterns of Granger causality. Quah [23, 27] discusses

other properties of the transition probabilities M .
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(again, but not vice versa). Here, I report results from extending that analysis.

The table gives a compact description of tests of (Granger-causality) exclusion

restrictions in trivariate VARs in aggregate growth, the median of the cross section

income distribution (in levels), and the maximum (again of the distribution in

levels). Results are presented here for 2- and 5-lag VARs, extremes in the range

I tried: larger systems have too few degrees of freedom to say anything precise;

systems in between have results intermediate between the extremes given. In the

table each cell entry is a pair of numbers giving marginal signi�cance levels for

excluding that right-hand-side bloc from the named left-hand-side variable. The

�rst number in each cell is the marginal signi�cance level in the 2-lag VAR; the

second, the 5-lag.

The maximum's strong predictive content for aggregate growth rates manifests

once again. The marginal signi�cance level for excluding the maximum in the

equation for aggregate growth is between 3% and 4%, and is the smallest of the

table's o�-diagonal entries. As pointed out in Quah [23] it is not that any single

state or region is responsible for this predictive power. Five di�erent states, at

di�erent times, were at this point of the distribution. Connecticut was there the

longest (17 non-consecutive years out of 43), but using it in the VAR in place of

the maximum loses all predictive content: marginal signi�cance levels increased to

over 75% in all cases.

The maximum, however, does not help to predict the median: marginal signif-

icance levels here exceed 40%. In shorter-lag systems, the median appears to help

predict the maximum; however, that predictive power is unstable, and vanishes

once longer-lag systems are considered. Unlike in bivariate systems the aggre-

gate no longer helps to predict the median|again, marginal signi�cance levels for

excluding aggregates from the median's equation exceed 20%.

To conclude, the maximum of the distribution|the leading state|contains

important predictive information for the aggregate. Little else is stable and signif-

icant. These conclusions are di�cult to understand if one views aggregate 
uctu-

ations as aggregate disturbances moving through an aggregate propagation mech-
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anism. Under that scenario, all parts of the distribution should behave symmet-

rically with the aggregate; there is no reason why di�erent disaggregates should

behave systematically di�erently in relation to aggregate 
uctuations.

Instead, the results here suggest a di�erent picture. Asymmetry is important

across di�erent portions of the cross section distribution. Fluctuations appear to

constitute a \wave" rippling across regions; the initial impulse for that wave varies,

but, on average, locates in the highest-income states.

5. Conclusions and extensions

This paper has provided a framework for analyzing comovements in aggregate

and regional disaggregate 
uctuations. It has developed new tools for modelling

dynamically evolving, nonstationary distributions, and applied them to a study of

US business cycles.

Section 2 presented a simplistic, naive model. The aim here was to provide a

framework for relating distribution dynamics to an explicit economic model. That

model served a further concrete role: it highlighted where the investigator needed

more empirical facts before proceeding to further theoretical reasoning. As a by-

product, however, the model also showed why certain apparently natural point-

in-time statistics of cross-section distributions need not be related to aggregate


uctuations, sectoral adjustment, or regional mobility.

The distance between Section 2's theoretical analysis and the empirics in

subsequent sections is large but, given available econometric tools, inevitable. The

empirical analysis above cannot be interpreted as a test of any assertion from

Section 2. Rather, it simply �lled in groundwork|future analysis should take the

investigation further.

What, however, are the substantive empirical �ndings at this preliminary

stage? Disaggregate dynamics show interesting properties|the mobility indexes

and quantile sets are not trivially constant series|but only very particular parts

of those disaggregate dynamics are strongly related to aggregate 
uctuations. The

leading state, varying in identity over time, contains strong predictive power for
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aggregate 
uctuations. By contrast, no single state does so. Why this should be is

unclear, but is di�cult to understand in models where only aggregate disturbances

a�ect aggregate business cycles through aggregate propagation mechanisms. In-

stead a better picture might be one of a \wave" of regional dynamics, rippling

across the national economy; its initial source varies, depending on which state is

the leading one.

Theoretical work to formalize this, and sharpen the empirical analysis, is the

next step in this research. One potential way forward is to build on the insights

on spillovers and dynamics in Durlauf [8].
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Technical Appendix

This technical appendix contains the proof of Section 2's Proposition.

Proof of Proposition: Suppose that for some positive number  there is a

function bl in M + giving simultaneously:

(a) For x in X (a.e.-�x), bl(x) in arg sup��0 ff(�; z(x)) �  �g; and

(b)
R bl(x)�x(dx) = 1.

Let l be any other element of M + such that
R
l(x)�x(dx) � 1. By (a) we have for

x in X (a.e.-�x):

f(bl(x); z(x)) �  bl(x) � f(l(x); z(x)) �  l(x)

or

f(bl(x); z(x)) � f(l(x); z(x)) �  
hbl(x)� l(x)

i
:

Integrating with respect to �x on both sides gives:

Z �
f(bl(x); z(x)) � f(l(x); z(x))

�
�x(dx) �  

�Z �bl(x)� l(x)
�
�x(dx)

�
� 0;

so that Z
f(bl(x); z(x))�x(dx) � Z

f(l(x); z(x))�x(dx):

Thus, (a) and (b) su�ce for bl to solve the maximization program. But under the

hypotheses of the Proposition, (a) and (i) are equivalent. Q.E.D.



Table: Exclusion restriction (Granger causality) testsy

Marginal Signi�cance Levels

Right hand side bloc

Left-hand-side Variable GNP growth median maximum

GNP growth (0.07,0.33) (0.95,0.47) (0.03,0.04)

median (0.23,0.40) (0.00,0.00) (0.50,0.44)

maximum (0.06,0.17) (0.02,0.28) (0.00,0.00)

y The �rst number in each cell entry is the marginal signi�cance level for excluding
a right hand side bloc in a 2-lag VAR; the second, in a 5-lag VAR. Systems with
lag lengths 3 and 4, as expected, give something in between. All VARs include a
constant, and were estimated using annual data from 1948 through 1990.





Figure 4.1

Relative Per Capita Personal Incomes (Log), 1948{1990



Figure 4.2:
Aggregate and Disaggregate Distribution Fluctuations

Aggregate dynamics, �

time

Disaggregate distribution dynamics, �y

time



Figure 4.3

Aggregate 
uctuations and intra-distribution mobility

In order, GNP growth rates, �1, �2, �3, and �AR
(See text for de�nitions.)


