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Abstract. Aggregate signatures provide bandwidth-saving aggregation of ordinary signatures.

We present the first unrestricted instantiation in the standard model, Moreover, our construction

yields a multisignature scheme where a single message is signed by a number of signers. Our

second result is an application to verifiably encrypted signatures. There, signers encrypt their

signature under the public key of a trusted third party and output a proof that the signature is

inside. Upon dispute between signer and verifier, the trusted third party is able to recover the

signature. These schemes are provably secure in the standard model.

1 Introduction

Boneh et al. present aggregate signature schemes (AS) and verifiably encrypted signature schemes
(VES) in [BGLS03]. In essence, an AS allows any party to combine q signatures σ1, . . . , σq on q
messages m1, . . . ,mq of q signers into a single aggregate signature S, which has roughly the same
size as an ordinary signature. VES schemes serve a different purpose, typically in fair exchange
protocols [ASW00]. Signers encrypt their signatures under the public key of a trusted party, the
adjudicator, while preserving signature verifiability. The adjudicator is able to extract a regular
signature from a verifiably encrypted signature in the case of a dispute. Note that we use the
revised security model from [RS09].

A variant of AS, called sequential aggregate signature (SAS), is organized like a chain. The
i-th signer receives an “aggregate-so-far”, adds its own signature and sends the new aggregate to
the (i + 1)-th signer. Thus, SAS are a slightly restricted variant of AS as they do not support
simultaneous aggregation. Basically, security of AS is formalized in the chosen-key model, where
an adversary gets as input a challenge public key and is allowed to choose all other user keys. The
adversary has access to a signing oracle for the challenge key and is successful if it outputs a valid
aggregate signature containing a signature that verifies under the challenge public key.

Typical applications for aggregate signatures are, e.g., secure routing [KLMS00] or certifi-
cate chain compression [BGLS03]. The main advantage of AS is that it saves bandwidth, which
makes it an optimal solution for networks of small, battery-powered devices that communicate over
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energy-consuming wireless channels [Nev08]. Other important applications, mentioned by Bellare
et al. [BNN07], are sensor networks such as the “Tsunami early warning system” located the Indian
Ocean. There, each sensor node collects data from the environment and sends it — digitally signed
— to a monitoring station. Typically, a sensor node does not send its data directly to the station,
but rather forwards it over several nodes to the station, which is why there is a need to ensure
authenticity.

Random Oracle Model vs. Registered-Key Model. The random oracle model [BR93], due
to Bellare and Rogaway, treats hash function like truly random function. This approach allows
researchers to give confidence about their construction as long as the hash function is ideal. How-
ever, Canetti, Goldreich, and Halevi [CGH04] disputed the soundness of the random oracle model
and encourage researchers to find efficient schemes, provably secure without them. In the context
of multi-message-signatures, such as multisignatures or aggregate signatures, the known schemes
either rely on the random oracle model or on a different proof model, known as certified-key model.
There, each user has to prove knowledge of the secret key during a key registration protocol. We
follow this idea and model this by forcing the adversary to certify all key pairs. Note that this
methodology follows the work of, e.g., Boldyreva [Bol03] or Lu et al. [LOS+06].

Related Work. After Boneh et al. [BGLS03] proposed the notion of aggregate signatures schemes
and presented a construction, there were, to the best of our knowledge, only sequential aggregate sig-
nature schemes such as [BGLS03, LMRS04, LOS+06, BNN07, Nev08, Sch11]. As for VES schemes,
we refer the reader to the instantiations in, e.g., [BGLS03, LOS+06].

Our Contribution. The results of this paper are twofold. As the first result, we present an
aggregate signature scheme in the certified-key model without random oracles. The scheme is based
on the Boneh-Silverberg signature scheme [BS03], which in turn is a variant of the signature scheme
by Lysyanskaya [Lys02]. In fact, our scheme provides the first (unrestricted) aggregate signature
in the standard model. Moreover, our scheme can be used as a multisignature scheme without any
modifications. We prove its security in the standard model while maintaining an optimal signature
size and reasonable efficiency. The construction is based on multilinear maps. Very recently, Garg,
Gentry, and Halevi presented the first instantiation of multi-linear maps [GGH12].

The second result covers a different area, namely verifiably encrypted signatures. In [BGLS03],
the authors observe that AS schemes give rise to VES schemes if the extraction of individual
signatures from an aggregate signature is hard. Therefore, based on our aggregate signature scheme,
we construct a VES scheme that is secure in the standard model.

Organization. Some basic notations and the necessary assumptions are briefly recalled in Section
2. In Section 3, we review the security model for aggregate signature schemes and subsequently
present our construction in Section 3.2. Finally, in Section 4, we deal with an application to
verifiably encrypted signatures along with the according security proofs.

2 Preliminaries

In this section, we recall some background on multilinear (n-linear) maps, following the notation of
[BS03]. We refer the reader to the recent work of Garg, Gentry, and Halevi about the instantiatia-
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bility of multi-linear maps [GGH12]. By (G1, ∗) and (GT, ∗), we denote two groups of prime order ℓ
such that: all group actions can be computed efficiently; if a1, . . . , an ∈ Z and x1, . . . , xn ∈ G1 then
e (xa11 , xa22 , . . . , xann ) = e (x1, x2, . . . , xn)

a1 a2···an ; if g ∈ G1 is a generator of G1then e (g, g, . . . , g)
generates GT.

In the rest of this paper, we assume that G1, GT, g, and e are fixed and public parameters. The
security parameter is 1k and the length of the message is n. Let |S| denote the size of the finite set
S. An adversary is an efficient algorithm. A function, which is not negligible, is noticeable.

2.1 Complexity Assumption

This section deals with the complexity assumption for the proposed aggregate signature scheme
and for the novel verifiably encrypted signature scheme. The following definition can be found in
[BS03].

Generalized Diffie-Hellman Assumption. An algorithm A, breaking the generalized Diffie-
Hellman problem, takes as input (ga1 , . . . , gan) ∈ G1 for randomly chosen (a1, . . . , an) ∈ Z

∗
ℓ and has

access to an oracle OGDH((a1, . . . , an), ·) which, when queried with any strict subset S ⊂ {1, . . . , n},

responds with OGDH((a1, . . . , an), S) = g

∏

i∈S

ai
∈ G1.

The probability that A returns ga1 a2...an is defined as

AdvGDH
A := Prob[AOGDH(g, ga1 , . . . , gan) = ga1 a2...an : (a1, . . . , an) ∈ Z

∗
ℓ ] .

The GDH problem is (t, qGDH, ǫ)-hard if for any algorithm A, running in time at most t, querying
OGDH no more than qGDH times, the probability AdvGDH

A is less than ǫ.

2.2 Secure Signature Schemes

We briefly recall the Boneh-Silverberg (BS) signature scheme [BS03] and the definition of secure
signature schemes. Roughly speaking, a digital signature scheme is secure if there is no adversary
which (adaptively) queries a signing oracle and outputs a valid message-signature pair (m∗, σ∗) such
that it never queried m∗ to the signing oracle. The formal definition can be found in [GMR88].

BS Signature Scheme. The signature scheme of Boneh and Silverberg, which builds upon
the unique signature scheme proposed by Lysyanskaya [Lys02], is defined through the following
algorithms.

KeyGen: The key generation algorithm Kg(1k) takes as input the security parameter 1k. It
randomly selects 2n elements a1,0, a1,1, . . . , an,0, an,1 ∈ {1, . . . , ℓ−1}. The algorithm computes
u1,0 ← ga1,0 , u1,1 ← ga1,1 , . . . , un,0 ← gan,0 , un,1 ← gan,1 and returns the private key sk =
(a1,0, a1,1, . . . , an,0, an,1) and the public key pk = (u1,0, u1,1, . . . , un,0, un,1).

Signing: Sign(sk,m) accepts as input a message m = (m1, . . . ,mn) ∈ {0, 1}
n as well as a signing

key sk = (a1,0, a1,1, . . . , an,0, an,1) and computes the signature σ ← g

n∏

i=1
ai,mi

∈ G1. Note that
the message space {0, 1}n can always be extended to {0, 1}∗ by hashing the messages first.

Verification: Vf(pk, σ,m) returns 1 iff e (σ, g, . . . , g) = e (u1,m1 , u2,m2 , . . . , un,mn).
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Boneh and Silverberg follow the proof of Lysyanskaya ([Lys02, BS03]) and show that their
scheme is unforgeable under chosen message attacks.

3 Unrestricted Aggregate Signatures

Basically, an aggregate signature [BGLS03] is a signature of q different signers on q different mes-
sages such that the signature has roughly the same size as a single signature. In such a scheme,
the aggregation algorithm can be executed by anyone, including untrusted parties. Bellare, Nam-
prempre, and Neven [BNN07] generalize aggregate signatures to unrestricted aggregate signatures,
removing the restriction that all messages as well as all signers have to be distinct. For brevity, we
just write aggregate signature instead of unrestricted aggregate signature.

An aggregate signature scheme is a tuple of algorithms AS = (AggKGen, Sign,Agg,Vf,AggVf),
where

Key Generation AggKGen(1k) generates a key pair (sk, pk) for each user independently.

Signature Issue The signing algorithm Sign(sk,m) takes as input the secret key sk as well as a
message m ∈ {0, 1}n and outputs a signature σ.

Signature Aggregation Agg((pk(1),m(1), σ(1)), . . . , (pk(q),m(q), σ(q))) builds an aggregate S on
messages M = (m(1), . . . ,m(q)) under public keys pk = (pk(1), . . . , pk(q)) and outputs the
triple (pk,M,S).

Signature Verification The signature verification algorithm Vf(pk,m, σ) accepts as input a pub-
lic key pk, the message m, and a signature σ. It outputs a bit, indicating the validity of
σ.

Aggregate Verification The algorithm AggVf(pk,M,S) takes as input a set of public keys
pk = (pk(1), . . . , pk(q)), a set of messages M = (m(1), . . . ,m(q)) as well as an aggregate S.
It returns 1 iff S is a valid aggregate signature on messages (m(1), . . . ,m(q)) under public keys
(pk(1), . . . , pk(q)).

The scheme is complete if for any set of q key-pairs (sk(i), pk(i)) ← AggKGen(1k), for any set of q
messages m(i) ∈ {0, 1}n, for any honestly generated set of q signatures σ(i) ← Sign(sk,m(i)), and
for any aggregate S returned by Agg((pk(1),m(1), σ(1)), . . . , (pk(q),m(q), σ(q))) we have that for all
i ∈ {1, 2, . . . , q} : Vf(pk(i),m(i), σ(i)) = 1 and AggVf(pk,M,S) = 1.

3.1 Security

The security of aggregate signatures is formalized in the aggregate certified-key model, which com-
bines the chosen-key model of [BGLS03] with the certified-key approach presented in [Bol03] and
[LOS+06]. Informally, an adversary is given a challenge public key and tries to forge an aggregate
signature on messages of its choice and users (keys) of its choice. This adversary has access to
a signing oracle O for the challenge key and wins if it is able to output an aggregate signature
including a signature σ′ on m′ under the challenge key, without querying the signing oracle with
m′. In addition, the adversary has to certify all signature keys, using a method that allows secret
key extraction. To keep it simple, we avoid rewinding the adversary during complex proof protocols
and simply force it to provide the secret key during the key certification process.
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An aggregate signature scheme AS is secure in the certified-key model if the probability that
following game evaluates to 1 is negligible (as a function of k).

Setup Choose the challenge key pair (pk, sk) ← AggKGen(1k), initialize the set of certified keys
with C ← ∅, and execute algorithm A on input pk.

Certification Queries AlgorithmA provides a key pair (sk′, pk′) in order to certify pk′. If (sk′, pk′)
is a valid key pair, add (sk′, pk′) to C.

Signing Queries Algorithm A adaptively queries qO messages. For any message m, it receives
the signature σ ← Sign(sk,m) under the private key sk.

Output A stops, outputting a triple (pk,M,S). This triple consists of a set of public keys
pk, a set of messages M, and a forged aggregate signature S. The game outputs 1 iff
AggVf(pk,M,S) = 1, all keys in pk (except for pk) are in C, ∃i : pk(i) = pk, and A never
invoked Sign(sk, ·) on m(i).

An aggregate signature scheme is (t, qO, qmax, ǫ)-secure if for any adversary A, running in time at
most t, querying the sign oracle at most qO times, the probability that it outputs a valid forgery
using at most qmax public key-message pairs, is less than ǫ.

3.2 Our Construction

The proposed aggregate signature scheme AS is defined as follows.

Key Generation, Signature Issue, Signature Verification Same as in the Boneh-Silverberg
signature scheme.

Signature Aggregation The algorithm Agg((pk(1),m(1), σ(1)), . . . , (pk(q),m(q), σ(q))) sets pk ←
(pk(1), pk(2), . . . , pk(q)), M← (m(1),m(2), . . . ,m(q)), computes S←

∏q
i=1 σ

(i), and outputs the
triple (pk,M,S).

Aggregate Verification AggVf(pk,M,S) returns 1 iff

q
∏

i=1

e

(

u
(i)

1,m
(i)
1

, u
(i)

2,m
(i)
2

, . . . , u
(i)

n,m
(i)
n

)

= e (S, g, . . . , g) .

In the following we show that our aggregate signature scheme is complete. Let (sk(1), pk(1)), . . . ,
(sk(q), pk(q)) be the honestly generated key pairs of all participating users and let (m(1), σ(1)), . . . ,
(m(q), σ(q)) be the corresponding message-signature pairs that verify under Vf. Now, let S be the
output of Agg under those messages, signatures, and keys. AggVf evaluates

q
∏

i=1

e

(

u
(i)

1,m
(i)
1

, u
(i)

2,m
(i)
2

, . . . , u
(i)

n,m
(i)
n

)

=

q
∏

i=1

e
(

σ(i), g, . . . , g
)

= e (g, g, . . . , g)

∑q
i=1

∏n
j=1 a

(i)

j,m
(i)
j

= e

(

g

∑q
i=1

∏n
j=1 a

(i)

j,m
(i)
j , g, . . . , g

)

= e

(

q
∏

i=1

σ(i), g, . . . , g

)

= e (S, g, . . . , g) .

Aggregate Security. We prove that our scheme is secure in the chosen-key model as long as the
BS signature scheme is unforgeable.
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Theorem 3.1 Let TSign be the cost function for BS signature generation. Our scheme is (t, qO, qmax, ǫ)-
secure if the BS signature scheme is (t′, q′O, ǫ

′)-unforgeable with t′ = t+ (qmax − 1)TSign, q
′
O = qO,

and ǫ′ = ǫ.

The proof is a black-box reduction. We build an algorithm B against unforgeability of the underlying
signature scheme. B gets as input a public key pk and has access to a signing oracle Sign(sk, ·).
The adversary A, which is a forger against the aggregate signature scheme, is given the challenge
public key pk and, if successful, outputs a forged aggregate signature (pk,M,S) containing a forged
(ordinary) signature under the key pair (sk, pk). Algorithm B can extract this signature and thus
returns a forgery against the underlying signature scheme.

Proof. Assuming there exists a successful adversary A against the aggregate signature scheme, we
construct an algorithm B via a black-box simulation, which is an equally successful forger against
the BS signature scheme.

Setup B receives the challenge key pk, initializes the set of certified keys (C ← ∅), and runs A on
input pk.

Certification Queries A wants to certify a key pk′ and hands over the pair (sk′, pk′). If sk′ is the
corresponding secret key to pk′, then add the pair to the list C ← C ∪ {(sk, pk)}, otherwise
reject.

Signature queries B answers A’s queries on a message m by querying its own signature oracle
σ ← Sign(sk,m) and returns σ.

Output A halts, outputting an aggregate signature triple (pk,M,S). If A is successful, all public
keys (except the challenge key) are registered. B extracts the message-signature pair (m∗, σ∗),
corresponding to the public key pk, outputs (m∗, σ∗), and stops.

W.l.o.g., let (sk1, pk1) be the key pair of B’s signing oracle, i.e. pk1 = pk. The extraction of the
corresponding message-signature pair from (pk,M,S), with |pk| = q, works as follows:

1. Let sk be the sequence of secret keys (a
(i)
1,0, a

(i)
1,1, . . . , a

(i)
n,0, a

(i)
n,1) for i = 2, . . . , q, obtained from

the certified key store C, which were chosen by A.

2. Let m∗ ← m(1) and σ∗ ← S

(

q
∏

i=2
g

∏n
j=1 a

(i)

j,m
(i)
j

)−1

.

3. Output the forged signature (m∗, σ∗).

Analysis. We first show that the extraction yields a valid signature. We have

e (σ∗, g, . . . , g) = e



S

(

q
∏

i=2

g

∏n
j=1 a

(i)

j,m
(i)
j

)−1

, g, . . . , g





= e

(

g

∑q
i=1

∏n
j=1 a

(i)

j,m
(i)
j

−
∑q

i=2

∏n
j=1 a

(i)

j,m
(i)
j , g, . . . , g

)

= e(u1,m1 , u2,m2 , . . . , un,mn) .

Therefore, σ∗ verifies under pk. Moreover, algorithm B answers all of A’s queries as expected and
therefore simulates the environment perfectly. Whenever A invokes the signing oracle, algorithm
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B queries its signing oracle. Since B has access to the secret signing keys, which A generates prior
to outputting a corresponding forgery, B can always extract a valid forged signature. Thus, B is
successful whenever A is. The overhead of the extraction algorithm is (qmax−1)TSign (we omit the
list processing cost induced by C). �

4 Verifiably Encrypted Signatures

Boneh et al. [BGLS03] introduced verifiably encrypted signature schemes (VES) along with a secu-
rity model that is extended in [RS09]. In a VES, a signer encrypts its signature under the public
key of a trusted third party (the adjudicator) and proves that the encrypted value contains a valid
signature.

A verifiably encrypted signature scheme VES = (VesKGen,VesAdjKGen, Sign,Vf,Create,VesVf,
Adj) consists of the following seven algorithms.

Key Generation, Signing, Verification. Defined as in a standard digital signature scheme.

Adjudicator Key Generation. VesAdjKGen(1k) outputs (ask, apk), where ask is private and apk
is public.

VES Creation. Create(sk, apk,m) takes as input a secret signature key sk, the adjudicator’s public
key apk, and a message m ∈M. It returns a verifiably encrypted signature ω on m.

VES Verification. VesVf(apk, pk, ω,m) takes as input the adjudicator’s public key apk, a public
verification key pk, a verifiably encrypted signature ω, and a message m. It returns a bit.

Adjudication. Adj(ask, apk, pk, ω,m) accepts as input the key pair (ask, apk) of the adjudicator,
the public key pk of the signer, a verifiably encrypted signature ω, and a message m. It
extracts an ordinary signature σ on m.

For brevity, we sometimes omit the key parameters. A verifiably encrypted signature scheme is com-
plete if for all honestly generated keys (ask, apk) ← VesAdjKGen(1k) and (sk, pk) ← VesKGen(1k),
and for all m ∈M we have VesVf(Create(m),m) = 1 ∧ Vf(Adj(Create(m)),m) = 1.

4.1 Security

VES schemes must satisfy unforgeability, opacity [BGLS03], extractability, and abuse-freeness
[RS09]. Unforgeability requires that it is hard to forge a verifiably encrypted signature. The
adversary is given access to two oracles: oracle VESig gets a message m as input and returns a
verifiably encrypted signature ω, and oracle VEAdj, which extracts a signature σ from a given ω.
The adversary is successful if it outputs a pair (m∗, ω∗) such that it never queried m∗ to VESig or
VEAdj.

A scheme is (t, qVESig, qVEAdj, ǫ)-unforgeable if there is no adversary A that runs in time at most
t, makes at most qVESig queries to the VESig, at most qVEAdj queries to VEAdj, and AdvVSigFA is
at least ǫ, where AdvVSigFA =

Prob









VesVf(apk, pk, ω∗,m∗) = 1 :
(apk, ask) ← VesAdjKGen(1n)

(pk, sk) ← VesKGen(1n)
(m∗, ω∗) ← AVESig,VEAdj(apk, pk)









.
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Opacity states that it is difficult to extract an ordinary signature from ω. Again, the adversary
is given access to the oracles VESig and VEAdj. A scheme is (t, qVESig, qVEAdj, ǫ)-opaque if there is
no adversary B that runs in time at most t, makes at most qVESig queries to the VESig, at most
qVEAdj queries to VEAdj, and AdvVSigOA is at least ǫ, where AdvVSigOA =

Prob









Vf(pk, σ∗,m∗) = 1 :
(apk, ask) ← VesAdjKGen(1n)

(pk, sk) ← VesKGen(1n)
(m∗, σ∗) ← AVESig,VEAdj(apk, pk)









.

An additional requirement is weak-extractability, stating that for all (ask, apk)← VesAdjKGen(1k),
(sk, pk) ← VesKGen(1k), and all verifiably encrypted signatures ω on some message m, we have
VesVf(ω,m) = 1 =⇒ Vf(Adj(ω,m),m) = 1, i.e. if ω is valid then the adjudicator can always
extract a valid ordinary signature. This can be improved to extractability by a standard transfor-
mation in [RS09]. Moreover, VES schemes have to satisfy abuse-freeness, which ensures that signer
and adjudicator cannot collude in order to forge verifiably encrypted signatures on bahalf of a third
party.

4.2 Our Construction

Our verifiably encrypted signature scheme VES is defined as follows.

Key Generation, Signing, Verification. As in BS.

Adjudicator Key Generation. Pick a random element β ← Z
∗
p and return the secret key ask←

β along with the public key apk← gβ .

VES Creation. Create(sk, apk,m) takes as input a signing key sk, the adjudicator’s public key
apk, as well as a message m ∈ {0, 1}n. It selects a random value r ∈ Z

∗
p and computes the

verifiably encrypted signature as σ ← ga1,m1 ···an,mn . The algorithm sets K ← (apk)r, µ← gr,
and calculates ω ← σ ·K. It returns (ω, µ).

VES Verification. VesVf(apk, pk, (ω, µ),m) returns 1 iff e (u1,m1 , u2,m2 , . . . , un,mn) = e (ω, g, . . . , g)·
e (µ, apk, g, . . . , g)−1.

Adjudication. Adj(ask, pk, (ω, µ),m) extracts the signature σ ← ω · µ−β if (ω, µ) is valid.

It is easy to see that the scheme is complete. For the following security proofs, let TVesKGen,
TVesAdjKGen, TCreate, TAdj be the cost functions for user key generation, adjudication key generation,
verifiably encrypted signature generation, and adjudication.

Theorem 4.1 If the BS-signature is (t′, q′O, ǫ
′)-unforgeable then our scheme is (t, qVESig, qVEAdj, ǫ)-

unforgeable, where t′ = t+ qVESig TCreate + TVesAdjKGen + (qVEAdj + 1)TAdj, q
′
O = qVESig, and ǫ′ = ǫ.

The proof is a straightforward black-box reduction against the BS signature.
The presented verifiably encrypted signature scheme is opaque. The reduction is somewhat

different to the one of Boneh et al. [BGLS03] as well as Lu et al. [LOS+06]. Both require the
aggregate extraction problem to be hard, for which Coron and Naccache [CN03] showed that it is
equivalent to the Diffie-Hellmann problem. In our case, however, the security of the underlying
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signature scheme is not based on the Diffie-Hellmann assumption and we therefore cannot base any
security property on the aggregate extraction problem. Instead, we show that it is opaque under
the GDH assumption.

Theorem 4.2 If the GDH problem is (t′, ǫ′)-hard, our scheme is (t, qVESig, qVEAdj, ǫ)-opaque with
t′ = t+ TVesAdjKGen + TVesKGen + (qVESig + qVEAdj)TCreate and ǫ′ = ǫ/O(t).

The reduction immediately follows the idea of the proof of Lysyanskaya [Lys02, Theorem 1] but
differs in an important aspect. We first explain the main idea and then the difference. Due to space
restrictions, the full proof is omitted. The main idea is to guess s-bits, along with their positions,
of the adversary’s output message. Once the reduction has guessed s bits B = (b1, . . . , bs), it
puts the values (Y1, . . . , Ys) (which the reduction gets as input from the GDH instance) into the
corresponding parts of the public verification key and selects all other keys on its own.

The difference to the proof in [Lys02] is that, here, the adversary is allowed to invoke VESig

on the message it outputs, but not VEAdj. Thus, the adversary is allowed to invoke VESig on
a message, which contains the bits B, each at the guessed position. In order to simulate VESig

upon this query, we query the GDH oracle on the index set (0, 1, . . . , 1) and set ω and µ such that
they pass the VesVf algorithm. By correctly guessing some bits of A’s output message during the
setup phase, the reduction forces A to output a signature that contains a valid answer to the GDH

problem.
Extractability. The scheme is weakly-extractable because

e
(

ω µ−β , g, . . . , g
)

= e (u1,m1 , u2,m2 , . . . , un,mn)

for all valid ω (on m) for honestly chosen keys.
Abuse-freeness. Since our scheme employs the signature and encryption algorithms indepen-

dently of each other, a theorem in [RS09] applies, which states that extractability is sufficient for
abuse-freeness in this case.
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