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A Discretization of the income process

We assume that log income follows a random walk with negative drift

d log yit = �µdt + sdZit (7)

with a reflecting barrier at the lower bound y. This is known to produce a Pareto sta-
tionary distribution with shape parameter 2µ/s

2. For tractability, the general equilib-
rium Huggett-Aiyagari model that we use, adapted from Adrien Auclert and Matthew
Rognlie (2016), has a discrete state space for exogenous incomes. Hence, it is necessary
to choose some discretization for (7).

To do so, we adapt a simple process from D. G. Champernowne (1953), which pro-
duces a discretized Pareto distribution.6 Assume that log income xit = log yit can
take the values {x + aj} for j � 0. Also assume that xit > x follows a continuous-time
Markov process with a transition rate of u to xit + a and d to xit � a, for some 0 < u < d,
with all other transition rates being zero. For xit = x, assume that the only permissible
transition is to xit + a, with rate u.

The stationary distribution is Pareto. The stationary distribution of this process is a
discretized Pareto distribution. Indeed, if pj denotes the mass of individuals in state
j 2 [0, J] in the stationary distribution, stationarity requires that the entering and exit-
ing flows are equalized in each state, i.e.

upj�1 + dpj+1 = (u + d)pj j � 1

dp1 = up0

6For better tractability and a closer approximation to the continuous-time random walk, we start by
formulating the process in continuous time, unlike discrete time as in Champernowne (1953), and then
derive the implied discrete time transition matrix.
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whose solution, enforcing Âj�0 pj = 1, is
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and hence for any yj = exj
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We recognize this as the CDF of a discretized Pareto distribution with scale parameter
(minimum value) y = ex and shape parameter

a =
� log

�u
d
�

a
(8)

Drift and volatility. Given u and d, both the drift and squared volatility of this pro-
cess are constant, with

µ = a(d � u)

s

2 = a2(d + u)

Inverting this relationship, for given µ and s

2, we have
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1
2

✓
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2
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Plugging into (8) and simplifying gives

a =
1
a

log

 
1 � aµ

s
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1 + aµ

s

2

!
(11)
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Note that in the limit a ! 0, log
⇣

1 ± aµ

s

2

⌘
⇠ aµ

s

2 , so that (11) reduces to a = 2µ

s

2 . This
is exactly the formula for a in (4). Hence, as the discretization becomes finer, the re-
lationship between µ, s, and a approaches that of our idealized income process, the
geometric random walk with negative drift and a lower reflecting barrier.

Calibrating the process. Given that x has to be chosen to achieve our normalization
E [yit] = 1, our process has three free parameters (a, u, d).

The Lorenz curve L (u) of a Pareto with shape a is 1 � L (u) = (1 � u)1� 1
a . As

mentioned in the text, given a value for the top 1% share, we can then back out the
implied Pareto a using

a =
1

1 � log(top 1% share)
log(1%)

Calibrating a on the basis of the top 1% share in 1980, (8) then provides one restriction
on (a, u, d). Our calibration of s

2
1980 = 0.02 provides another. Given a, these jointly pin

down u and d, which in turn imply µ = a(d � u), by

u
d

= e�aa

u + d =
s

2

a2

The remaining choice is a. This is made primarily on computational grounds. Since we
require finitely many states for computation, it is necessary to truncate the set {x + aj}
at some maximum x + aJ. To avoid truncation bias, we pick aJ high enough such that
only 0.001% of aggregate income is earned at or above this state in the ideal Pareto dis-
tribution for our initial calibration, writing e�(a�1)aJ = 10�5. It follows that aJ = 7.83,
so that the maximum income state is approximately 2500 times higher than the mini-
mum income state. Since the algorithm in AR is O(J2), we set J = 40 for reasonable
computation time, implying a ⇡ 0.2.

To map the process to discrete time, we take the matrix exponential to convert the
transition rate matrix S to a Markov transition matrix P: P = eS.

Changing the distribution. We consider a decline in a from 2.48 to 1.92 to match
the rise in the income share of the top 1% since 1980. Using (11), there are various
combinations of changes in (a, µ, s) that can replicate this decline. To ensure that the
truncation stays accurate, we vary a µ a

�1, such that the maximum state x+ aJ remains
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at the same percentile of the Pareto distribution. (It follows that all other states remain
at the same percentiles as well.)

Given a µ a

�1, it is clear from (11) that aµ/s

2 must be unchanged. The three
experiments in table 1, also discussed in the main text, represent different choices of
µ and s

2 that accomplish this: either (1) µ µ a and s constant (k = 0), (2) µ constant
and s

2 µ a

�1 (k = 1), or (3) µ µ a

�1 and s

2 µ a

�2 (k = 2). The third choice yields
unchanged u and d in (9) and (10), and this produces an unchanged transition matrix
that is particularly useful for the decomposition (5).

When computing transition dynamics, it is also necessary to specify how the pa-
rameters (a, µ, s) adjust over time to the new steady state. We continue to require
that aµ/s

2 is unchanged at all times, so that a µ a

�1 in every year. We choose a
quadratic trend of a from 1980 to 2011, such that a is consistent with the actual top 1%
income share in 1980 and 2011, and minimizes the average square difference between
the model and data for the top 1% share across intermediate years. We then assume
that s

2 follows the same convergence path from 1980 and 2011, and infer the implied
µ from µ µ s

2/a. From 2011 onward, we assume all parameters (a, µ, s) are constant
at their new steady-state values.

B Simulated paths for WGE and rGE

Figure 3 plots the perfect foresight transition dynamics of the general equilibrium ver-
sion of our model (with the benchmark experiment k = 2), from its initial steady state
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to its long-run new steady state after the rise in the Pareto tail of the income distribu-
tion. As discussed in the main text and elsewhere in the appendix, we phase in the
rise in inequality from 1980 to 2011. The slight discontinuity in interest rates around
2011 on the right panel reflects the end of this phase-in, with income inequality staying
constant thereafter, but interest rates continuing to decline.

Note, however, that convergence is much faster than the convergence of partial
equilibrium wealth in figure 1: whereas wealth/GDP is only a fraction of the way
toward its new steady state in partial equilibrium by 2030 (dashed line) in figure 1, it
is a majority of the way toward its new steady state in general equilibrium by 2030 in
figure 3.

The long-run increase in wealth/GDP is also much less dramatic in general equi-
librium: even when k = 2, it increases by slightly over 10% in figure 3, whereas partial
equilibrium wealth/GDP in figure 1 nearly doubles. The increase is much smaller in
general equilibrium because the endogenous fall in interest rates discourages house-
holds from accumulating so much wealth. In our calibration, this margin is more elastic
with respect to interest rates than the capital demand margin on the production side of
the economy, and therefore bears most of the burden of equilibriation.7

C Results for the wealth distribution

Our model also endogenously generates a household wealth distribution. Although
it is not the primary focus of this paper, it is also edifying to study this distribution,
especially at the top, and how it varies as we make the income distribution more con-
centrated.

Figure 4 shows the shares of wealth and income held by the top 1% and 0.1% in the
model. Several features are apparent:

a) Wealth is endogenously much more concentrated than income. In our 1980 cali-
bration, the top 1% wealth share is 23.6% and the top 0.1% wealth share is 6.5%.
(For comparison, these are just slighly below the Emmanuel Saez and Gabriel
Zucman (2016) estimates, which are respectively 24.3% and 8.0% for that year.)

7The 1980 level of wealth/GDP is differs in the left panel figure 3 for each choice of k. This is because
we are displaying perfect foresight paths after the shock becomes known. Due to capital adjustment
costs, the anticipated general equilibrium adjustment of r leads to changes in the valuation q of capital
from its pre-shock steady state. Although r declines in the long run for every k, they initially increase by
enough in the k = 0 case to offset that, leading to a decline on impact in wealth/GDP from its previous
steady-state level of 3. In the k = 2 case, by contrast, the long-run decline in r dominates, leading to an
increase in wealth/GDP on impact.

5



1980 2080 2180 2280 2380

10

20

30

Transition path for top 1% shares

Wealth (GE)

Wealth (PE)

Pre-tax income

After-tax income

1980 2080 2180 2280 2380

2

4

6

8

10

12

Transition path for top 0.1% shares

Wealth (GE)

Wealth (PE)

Pre-tax income

After-tax income

Figure 4: Simulated concentration of wealth and income in the model.

b) A positive, permanent shock to income concentration induces an upward move-
ment in wealth concentration. The induced wealth concentration effect is, in fact,
somewhat larger in percentage point terms, although not in relative terms. Fol-
lowing a rise in the top 1% pre-tax income share from 6.4% to 11.0% (1.72x), the
top 1% wealth share goes from 23.6% to 33.6% in general equilibrium (1.42x), and
from 23.6% to 27.0% (1.14x) in partial equilibrium.

c) On its own, the increase in income inequality is not able to match the trends in
wealth concentration documented by Saez and Zucman (2016). Our model first
misses the level: their latest (2012) numbers indicate a top 1% share of 41.8%,
and a top 0.1% share of 22.0%. By contrast our steady-state general equilibrium
numbers are, respectively, 33.6% and 11.8%. It also misses the trend: by 2011,
when the rise in the top 1% income share is entirely phased in, wealth concen-
tration in our simulations has barely moved at all from its original level. Slightly
less than half of the transition occurs in the first 50 years. This delayed con-
vergence has echoes of the slow convergence obtained for the Pareto tail of in-
come in Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll
(2016), although here the dynamics arise from the consumption-savings decisions
of households rather than from a stochastic income process.

d) Steady-state wealth is more concentrated in our general equilibrium experiments
than in our partial equilibrium experiments. This is because interest rates fall in
general equilibrium, and, perhaps suprisingly given that lower real interest rates
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make wealth accumulation more difficult, declining interest rates lead to higher
wealth concentration in our model.

Figure 5 shows a different feature of the wealth and income distributions: the tail
Pareto parameter. This is inferred from our simulation results by comparing shares
held by the top 0.01% and the top 0.001%, and then using the Pareto identity

1 � 1
a

=
log
⇣

0.01% share
0.001% share

⌘

log
⇣

0.01%
0.001%

⌘ (12)

The comparison of the top 0.01% and 0.001% shares is chosen because the wealth dis-
tribution is roughly Pareto this far out in the tail, and because approximation error
starts becoming more significant at higher quantiles.

Figure 5 provides numerical confirmation of an analytical result in Jess Benhabib,
Alberto Bisin and Shenghao Zhu (2015), which finds that in the stationary steady state
of standard Bewley model without idiosyncratic return risk, the wealth distribution
has a Pareto tail with the same parameter as the income distribution. The figure also
confirms that convergence to a thicker tail for wealth occurs more slowly than for in-
come.

Another important lesson emerges from the contrast between figures 4 and 5. In
figure 4, wealth appears substantially more concentrated than income, even though in
figure 5 both distributions have the same steady-state Pareto tail parameters. In short,
a larger fraction of wealth than income is held by the top 1%, but in the model the
shape of the distribution within the top 1% (and, even more so, higher percentiles) is
roughly the same for wealth and income.

Taken as a whole, these results suggest that models in the S. Rao Aiyagari (1994) tra-
dition may be able to match a substantial component of wealth inequality when aug-
mented with income processes that generate Pareto tails. They are unable, however,
to match phenomena that are specific to the right tail of the wealth distribution. These
include the Pareto shape parameter of the tail, which Saez and Zucman (2016) indi-
cates to be 1.43 in 2011.8 The model here also has difficulty matching recent increases
in wealth inequality that have been largely confined to the tail, also documented in
Saez and Zucman (2016). To obtain these features of the wealth distribution, it is likely
necessary to add additional elements to the model—for instance, idiosyncratic return

8This is inferred analogously to (12) by comparing the 0.1% and 0.01% shares for that year, which
were 20.3% and 10.1%, respectively.
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risk, entrepreneurship, or bequests. Benhabib, Bisin and Zhu (2015) and Mariacristina
De Nardi and Giulio Fella (2017) outline some of the possibilities.

D Obtaining our decompositions (5) and (6)

Recall that our discretization of the income process implies a J ⇥ J Markov transition
matrix P, together with levels of incomes y1, . . . yJ where yj = ey+aj, and that in our
k = 2 experiment the transition matrix P is fixed as we change the income levels yj are
changed.

Write W (Q, P, y1, . . . yJ) for the steady-state level of wealth generated by our partial-
equilibrium household model, given parameters Q = (b, n, r, tr), together with P and
yj. Given fixed Q, P, a first-order Taylor expansion of W yields a total change in W
equal to

dW =
J

Â
j=1

∂Wyj

∂yj
dyj + o (kdyk) (13)

Write pj for the weight of yj in the stationary distribution induced by P, then (13)
implies that

dW
W

=
J

Â
j=1

pj
∂Wyj/∂yj

pjW
dyj + o (kdyk)
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Write eWj ⌘
∂Wyj/∂yj

pjW
, and drop higher-order terms for notational simplicity. This yields

dW
W

= E
⇥
eWjdyj

⇤
= Cov

�
eWj, dyj

�
+ E

⇥
eWj
⇤

E
⇥
dyj
⇤

But notice that by construction our income process E
⇥
dyj
⇤
= 0, so we obtain (5).

Similarly, consider the change in consumption at date 0 induced by a change in in-
come at date 0 alone. We can write date-0 aggregate consumption as C0 (Q, P, y; y01, . . . y0J),
where now y = (y1, . . . yJ) represents income in each state at all future dates and is held
fixed. Then a first-order Taylor expansion of C0 with respect to this date-0 change is

dC0 =
J

Â
j=1

pj
∂Cy0j

pj∂y0j
dy0j + o (kdy0k)

But note that

C0 =
J

Â
j=1

pj

Z
c0
�
b, yj

�
dYj (b)

where c0
�
b, yj

�
is the date-0 policy function of agents with wealth level b and income

level j, and Yj (b) is the density function for wealth b conditional on income being

yj. Hence
∂Cy0j
pj∂y0j

=
R

MPCj (b) dYj (b), the average marginal propensity to consume of
agents with income level j, which we simply write MPCj. This delivers

dC0 = E
⇥
MPCjdy0j

⇤

and noting once again that E
⇥
dy0j

⇤
= 0, we obtain (6).
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