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Abstract

The Industrial Internet of Things (IIoT) promises to bring many ben-
efits, including increased productivity, reduced costs, and increased safety
to new generation manufacturing plants. The main ingredients of IIoT
are the connected, communicating devices directly located in the work-
shop floor (far edge devices), as well as edge gateways that connect such
devices to the Internet and, in particular, to cloud servers. The field of
Edge Computing advocates that keeping computations as close as possible
to the sources of data can be an effective means of reducing latency, pre-
serving privacy, and improve the overall efficiency of the system, although
building systems where (far) edge and cloud nodes cooperate is quite chal-
lenging. In the present work we propose the adoption of the Aggregate
Programming (AP) paradigm (and, in particular, the “aggregate process”
construct) as a way to simplify building distributed, intelligent services at
the far edge of an IIoT architecture. We demonstrate the feasibility and
efficacy of the approach with simulated experiments on FCPP (a C++
library for AP), and with some basic experiments on physical IIoT boards
running an ad-hoc porting of FCPP.

1 Introduction

The Industrial Internet of Things (IIoT), namely the concepts and technologies
of IoT applied to (smart) industry, is gaining increasing interest as it promises to
improve productivity and safety in the workplace through the collection, anal-
ysis and exploitation of large amounts of data from the workshop floor. While
there is no single definition of IIoT, the following one (taken from [23]) can be a
useful reference for our purposes: “IIoT is the network of intelligent and highly
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Figure 1: Reference Architecture of the IIoT (from https://en.wikipedia.

org/wiki/Industrial_internet_of_things).

connected industrial components that are deployed to achieve high production
rate with reduced operational costs through real-time monitoring, efficient man-
agement and controlling of industrial processes, assets and operational time.”

From this definition we can deduce that connectivity and data collection are
the main enabling elements of the IIoT. Furthermore, the reference architectures
of the IIoT also stress the need of accessing high performance computational
and storage nodes at a higher level, usually in the cloud. Again, we find several
slightly different definitions of the IIoT architecture (see, e.g., [23, 35]); all of
which, however, share most aspects with one depicted in Figure 1.

We further partition the bottom layer in the figure into two sublayers: the
Far Edge layer which contains the connected devices in the workshop floor,
including: machines, sensors, actuators, real-time controllers, Human-Machine-
Interface (HMI) units; and the Edge gateways that act as bridges towards the
outside world. Then, the information collected by the gateways crosses the
Network layer to reach the Cloud layer, where it is processed by rich applications
for analysis, planning, optimization, etc. Of course the flow can also be reversed,
so that plans and decisions created at the Cloud layer can reach the Far Edge.

A well known potential problem with this scheme is that pushing all the
high-level functions to the cloud (i.e., far from the workshop floor), can have a
negative impact on the reliability, cost, scalability and latency of the system.
The field of edge computing aims at addressing the problem by moving some
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Figure 2: Cloud-Edge-IoT Orchestration.

computations closer to the edge, notably moving (part of) the data processing
closer to where the data is produced (see Figure 2, image from the presentation
of the Horizon Europe Destination 3: Call ‘World leading data and computing
technologies 2022’.).1 The term edge computing does not prescribe exactly how
close to the things (i.e., devices) the computation should be moved, and how
much powerful should be the edge computing nodes. Thus, referring to Figure 1,
the term can be applied to all the following (and quite diverse) situations: com-
putations running at servers in the Network layer that are only a few hops from
the Edge Gateways; computations running in the Edge Gateways themselves;
and computations running in the Far Edge layer, exploiting the constrained
memory and computing capabilities of smart devices.

In this paper we focus on the latter meaning of edge computation, whereby
offloading some of the computations to the Far Edge layer can make them more
robust, adaptive and responsive. In particular, we propose an approach that
makes it possible to build distributed services for the IIoT running on highly
resource-constrained devices. At the core of our approach lies the possibility of
running distributed computations – defined as processes in the Aggregate Pro-
gramming (AP) paradigm [9] and in the foundation of this paradigm provided
by the Field Calculus (FC) [5] – on IIoT devices by relying on the FCCP library,
a C++ implementation of FC [1]. The AP paradigm is suitable for program-
ming networks of devices forming an open dynamic topology with gossip-based
communication. In the IIoT settings, this covers the devices at the Far Edge
layer including in particular mobile devices, such as wearables carried by work-
ers, or sensors attached to machines and objects that move, such as forklifts and
pallets.

1The presentation (given by Jan Comar at the Horizon Europe Cluster 4 - Digital, Indus-
try & Space Info Day 2021 https://ec.europa.eu/info/research-and-innovation/events/

upcoming-events/horizon-europe-info-days/cluster-4_en) can be found at https://www.
youtube.com/watch?v=SevWyhwaEwE.
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The main contributions of this paper are as follows:

1. we extend the FCPP library with the spawn construct enabling aggregate
processes;

2. we port the extended FCPP library to a resource constrained, IoT physical
DecaWave board, equipped with the Contiki NG operating system;

3. we identify several IIoT use cases that can be addressed by applying the
AP paradigm to program a network of devices equipped with FCPP;

4. we provide simulations of such IIoT use cases; and

5. we provide preliminary experiments with physical DecaWave boards run-
ning FCPP.

The paper is structured as follows. Section 2 reviews related work. Sec-
tion 3 briefly recalls AP and its FCCP implementation [1], which is a library
providing FC as a C++ internal Domain-Specific Language (DSL). Section 4
describes the fundamental step of porting the FCPP library on a DecaWave
board, which provides wireless communication on a resource contrained System
on Chip (SOC). Section 5 links the powerful constructs of FC to some types
of services that can be implemented in an IIoT setting. Section 6 describes an
IIoT scenario of a Warehouse App, an AP service run on hardware with the
physical characteristics of the DecaWave board; then simulates its operation
through the FCPP 3D simulator, and presents preliminary experiments with
physical DecaWave boards running a port of the FCPP library. Finally, section
7 concludes the paper discussing further research directions.

2 Related work

2.1 Edge Computing in the IIoT

Distributed edge architectures have been explored in the context of Data Man-
agement for the IIoT, which involves generating, aggregating, storing, analysing
and requesting data. These are the main kinds of tasks we shall discuss in the
present paper for AP powered IIoT edge devices.

In [37], the authors review the role of Big Data Analytics (BDA) in the
IIoT setting. They recall that BDA involves several sub-tasks, such as data
engineering, preparation, and analytics; and, in additiom, the management and
automation of the data pipeline. They propose an architectural model called
Concentric Computing, whereby the elements of a BDA/IIoT system are placed
in concentric circles from the external far edge devices, to the outer and inner
edge servers, to the cloud services.

According to Concentric Computing, computational and storage resources
must be offered by different devices and systems across the complete set of
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cirles. The objectives are expressed in terms of storage, in-network data move-
ment, energy consumption, privacy, security and real-time knowledge availabil-
ity. Therefore, in many cases priority should be given to devices and systems
near data sources to ensure real-time or near real-time intelligence near end
points, IoT devices and other data sources in IIoT systems

In [34] the authors propose a Data Management Layer (DML) for the IIoT
that is separated from the Network Routing. They focus on the lower (far-
edge) layer of the IIoT architecture, and consider a typical scenario where a
set of source nodes produce data, a set of destination nodes require those data,
and a maximum latency Lmax is tolerated by destinations. They borrow the
idea of proxy from other data distribution contexts (e.g., Content Distribution
Networks [15] and Multimedia Streaming [45]), and dynamically compute a
caching scheme on proxy nodes that aims at improving latency while keeping
the number of proxies (and, thus, the data redundancy costs) as low as possible.

In [33], the authors explicitly consider user User Equipment (UE) that fea-
tures 5G connectivity as a means to fill the gap between the intelligence embed-
ded in the tools, shop-floors, and conveyor belts and the cloud services able to
process such information. The main problem becomes that of associating each
IoT device to a UE in a (approximately) optimal way. The authors find that
the greedy association scheme, whereby the IoT devices associate with the UEs
with probabilities that are proportional to the number of devices that the UEs
can support, performs best. An interesting aspect of this study is the variation
of several parameters during (simulated) tests, including the number of IoT de-
vices, the number of UEss, the data arrival probability at the IoT devices, and
the evolution of uplink data processes of the UEs.

2.2 Programming ensembles of devices spread over space
at the far edge

Different development approaches for systems involving a potentially vast num-
ber of heterogeneous devices that need to coordinate to perform collective tasks
by relying on proximity-based interactions (as in wireless sensor networks) have
been proposed in literature. In the following we classify them into five categories,
identified by a survey [8].

• Foundational approaches propose compact formalizations aimed at mod-
elling the interaction of groups in complex environments. Most of them
extend π-calculus [28]. They include, for instance: models of environment
structure (from ”ambients” to 3D abstractions) [11, 12, 27]; shared-space
abstractions allowing multiple processes to interact in a decoupled way
[10, 40]; and attribute-based models featuring declarative specification of
the target of communication for dynamically creating ensembles [17].

• Device abstraction languages are aimed at allowing programmers to fo-
cus on cooperation and adaptation, by making the details of device in-
teractions implicit. They include, for instance: TOTA [25], which sup-
ports programming tuples with reaction and diffusion rules; the SAPERE
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approach [43], which supports similar rules embedded in space and ap-
ply semantically; the στ -Linda model [42], which supports manipulation
of tuples over space and time; MPI [26], which allows to declaratively
expresses topologies of processes in supercomputing applications; NetL-
ogo [36], which provides abstract means to interact with neighbours ac-
cording to the cellular automata style; and Hood [44], which features
implicit sharing of values with neighbours.

• Pattern languages provide adaptive means for composing geometric and/or
topological constructions, with little focus on computational capability.
They include, for instance: the Origami Shape Language [29], which al-
lows to imperatively specify geometric folds that are compiled into pro-
cesses identifying regions of space; the Growing Point Language [16], which
allows to describe topologies in terms of a “botanical” metaphor with
growing points and tropisms; ASCAPE [22], which supports agent com-
munication by means of topological abstractions and a rule language; and
a catalogue of self-organisation patterns [19], which organises a variety
of mechanisms from low-level primitives to complex self-organization pat-
terns.

• Information movement languages are the complement of pattern languages.
They provide support summarising information obtained from across space-
time regions of the environment and streaming these summaries to other
regions, however, they provide little control over the patterning of that
computation. They include, for instance: TinyDB [24], which views a
wireless sensor network as a database; Regiment [30], which uses a func-
tional language to be compiled into protocols of device-to-device interac-
tion; and KQML [20], an agent communication language.

• Spatial computing languages provide flexible mechanisms and abstractions
for spatial aspects of computation. They avoid the limiting constraints of
the other categories. They include, for instance: the Lisp-like functional
language and simulator Proto [7], for programming wireless sensor net-
works with the notion of computational fields; and the rule-based language
MGS [21], for computation of and on top of topological complexes.

As pointed out in [9], the successes and failures of the above languages,
suggest that arraging adaptive mechanisms to be implicit helps to ensure simple
and transarent composition of aggregate-level modules and subsystems. This
observation is further pursued by a recent survey [39], which overviews AP and
its foundation provided by the FC.

3 Aggregate Programming in FCPP

AP [9, 39] is an approach for programming networks of devices by abstracting
away from individual devices behaviour and focusing on the global, aggregate
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aggregate function declaration

F ::= FUN t d(ARGS, t x∗) {CODE return e; }

aggregate expression

e ::= x
∣∣ ` ∣∣ t{e∗} ∣∣ ue ∣∣ e o e

∣∣ p(e∗)
∣∣ node.c(e∗)

∣∣ f(CALL, e∗)∣∣ t x = e; e
∣∣ [&](t x∗)->t {return e; }

∣∣ e ? e : e

type aggregate function

t ::= T
∣∣ bt ∣∣ tt<t∗, ` ∗ > f ::= b

∣∣ d
built-in aggregate functions

b ::= old
∣∣ nbr ∣∣ spawn ∣∣ self ∣∣ mod self

∣∣ map hood
∣∣ fold hood

∣∣ mux
Figure 3: Syntax of FCPP aggregate functions.

behaviour of the collection of all devices. It assumes only local communication
between neighbour devices, and it is robust with respect to devices joining/leav-
ing the network, or failing (open dynamic topology). Beside communicating
with neighbours, the devices are capable to perform asynchronous computa-
tions. In particular, every device performs periodically the same sequence of
operations, with an usually steady rate:

1. collection of received messages,

2. computation of a program that is the same for all the devices, and

3. transmission of messages

AP is formally backed by FC [5], a small functional language for expressing
aggregate programs, which currently has three incarnations as a full-fledged
DSL: the Scala internal DSL/library ScaFi (Scala Fields) [13], the Java external
DSL Protelis [32], and the C++ internal DSL/library FCPP [1]. In this paper
we focus on the FCPP incarnation, because it is the only one that lends itself
to be ported to devices with constrained resources, such as the ones we consider
for IIoT (see Section 4).

FCPP is based on an extensible software architecture, at the core of which
are components, that define abstractions for single devices (node) and overall
network orchestration (net), the latter one being crucial in simulations and
cloud-oriented applications. In an FCPP application, the two types node and
net are obtained by combining a chosen sequence of components, providing the
needed functionalities in a mixin-like fashion.

Compared to the original presentation of FCPP [1], we have added a fun-
damental construct for supporting aggregate processes [14], namely the built-in
spawn function (see below). Aggregate processes can be figured as computational
bubbles that involve a subset of the devices running a given FCPP program; such
bubbles can spring out, expand, perform some work, stretch and vanish. Given
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a computational bubble, a device can be either within the bubble (i.e., par-
ticipating in the computation and bubble spreading), external to the bubble
(i.e., not participating in the computation), or at the border of the bubble (i.e.,
participating in the computation but not in bubble spreading).

A fundamental aspect is that every process instance is automatically propa-
gated by all the participating (internal) devices to their neighbours. Therefore,
when a device generates a process, it just needs not to leave it immediately in
order to propagate it to its neighbours; and so on. Unless nodes explicitly indi-
cate that they are willing to leave the process, the process will tend to expand
to every reachable node. On the other hand, when a device leaves a process,
even if it happens to be the process creator, it is up to the other nodes still in
the process to decide whether they also want to leave (eventually leading up
to the termination of the whole process) or not. It is also possible, however,
to explicitly initiate a propagating shutdown of the process (through a special
status, see below).

The syntax of aggregate functions in FCPP is given in Fig. 3. It should be
noted that, since FCPP is a C++ library providing an internal DSL, an FCCP
program is a C++ program (so all the features of C++ are available). We use
∗ to indicate an element that may be repeated multiple times (possibly zero).

An aggregate function declaration consists of keyword FUN, followed by the
return type t and the function name d, followed by a parenthesized sequence of
comma-separated arguments t x (prepended by the keyword ARGS), followed by
an aggregate expression e (within brackets and keywords CODE return). Aggre-
gate expressions can be either:

• a variable identifier x, or a C++ literal value ` (e.g. an integer or floating-
point number);

• an object of type t built through a class constructor call t{e∗} with argu-
ments e;

• an unary operator u (e.g. −, ∼, !, etc.) applied to e, or a binary operator
e o e (e.g. +, ∗, etc.);

• a pure function call p(e∗), where p is a basic C++ function which does
not depend on node information nor message exchanges

• a component function call node.c(e∗), where c is a function provided by
some component, depending on node information but not on messages;

• an aggregate function call f(CALL, e∗), where f can be either a defined
aggregate function name d or an aggregate built-in function b (see below);

• a let-style statement t x = e1; e2, declaring a variable x of type t with
value e1 referable in e2;

• a conditional branching expression eguard ? e> : e⊥, such that e> is eval-
uated and returned if eguard evaluates to true, while e⊥ is evaluated and
returned if eguard evaluates to false.
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The old and nbr built-in functions, constitute the fundamental constructs of
Field Calculus; in FCPP, they are overloaded to several different signatures:

• old(CALL, v0, v) with v0, v of type t returns the value fed as second argu-
ment v in the previous round of computation (thus introducing one round
of delay), defaulting to v0 if no such value is available;

• old(CALL, v) is a shorthand for old(CALL, v, v);

• old(CALL, v0, f) computes the result of applying f to the value of the
whole old function at the previous computation cycle (using v0 if no such
value is available);

• nbr(CALL, v0, v) with v0, v of type t returns the neighbouring field of val-
ues fed as second argument v in the previous round of computation of
neighbour nodes, defaulting to v0 for the current node if no such value is
available for it;

• nbr(CALL, v) is a shorthand for nbr(CALL, v, v);

• nbr(CALL, v0, f) (whose logic is described in [2] as the share operator),
computes the result of applying f to the neighbouring field of values of
the whole nbr function at the previous computation cycle of neighbour
nodes (using v0 for the current node if no such value is available).

The newly implemented spawn built-in function has the following signature:

spawn(CALL, p, ks, v0, ...)

and spawns an aggregate process corresponding to function p for every key in
the container ks, passing the values of the (possibly empty) sequence v0, . . .
as further input to each of them. The aggregate process function p takes as
arguments a key and a sequence of values, and returns a pair consisting of a
result and a process status. Currently, FCPP supports overloads of spawn for
two different types of process status:

1. status, that is one of the following constants:

(a) terminated: the node wants to shutdown the computation (propa-
gating to its neighbours)

(b) external: the node is not part of the computation

(c) border: the node is at the border of the computation (see above)

(d) internal: the node is within the computational bubble

(e) ∗ output (where ∗ is one of terminated, external, border, or
internal): the node is in status ∗ and the output of function p
should be returned by spawn

2. bool, with true and false corresponding to the internal output and
border output values of type status
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The spawn function itself returns an unordered map from the keys of the pro-
cesses with an ∗ output state to their output values, so that such output values
can be used for further computations in the current round.

The other built-in aggregate functions currently available are:

• self(CALL, φ), which given a value φ of field<t> type returns the value
φ(i) taken by the neighbouring field φ for the current node (of identifier
i = node.uid);

• mod self(CALL, φ, v), which given a value φ of field<t> type, returns the
same value with φ(i) changed to v, where i = node.uid;

• map hood(CALL, f, v∗) which applies f point-wise to a sequence of local or
field values v∗;

• fold hood(CALL, f, φ) which folds the values in the range of φ of field<t>
type through the commutative and associative binary operator f of type
(t, t)->t, reducing them to a single value of type t;2

• fold hood(CALL, f, φ, v) which folds φ as above, using v instead of the
value of φ for the current device: in other words, it is equivalent to
fold hood(CALL, f, mod self(CALL, φ, v);

• mux(CALL, ec, et, ef ), which evaluates all the expressions ec, et, ef and re-
turns the value of either et or ef based on the Boolean value of ec; note
how mux differs from the conditional branching expression described above
which evaluates only the branch selected by the condition.

4 Port of FCPP on a DecaWave Board

A fundamental step for using FCPP in real-world IIoT scenarios is porting it to
a suitable platform, including hardware and operating system. We have chosen
the DWM1001C module produced by Decawave, which is currently used by
Reply3 to offer solutions to some of its industrial customers.

The DWM1001C module integrates the Nordic Semiconductor nRF52832
general-purpose system on a chip (SoC), the Decawave DW1000 Ultra Wide-
band (UWB) transceiver and the STM LIS2DH12TR 3-axis accelerometer. The
nRF52832 SoC offers a 64MHz ARM Cortex-M4 CPU with floating-point unit,
a Bluetooth Low Energy (BLE) transceiver with Bluetooth 5 support, a 512
KB flash memory and a 64 KB RAM. Decawave also offers a developer board
(DWM1001-DEV) with a battery connector, a charging circuit, eight LEDs, two
buttons, a USB connector and a J-Link on board debug probe for debugging
and logging.

2In Field Calculus, a neighbouring field always has at least a value for the current node;
thus, folding is well-defined.

3The company which co-operated to the present study: https://www.reply.com.
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The UWB transceiver allows the module to perform communication over an
higher range than the BLE transceiver and to compute the distance between
two modules (ranging) with a precision of up to 10 centimeters. In particular, in
our experiments we measured a range of communication in open air of around
70 meters with UWB and of around 25 meters with BLE, with a ranging error of
under 30 centimeters with UWB. We also measured the energy consumption by
the UWB transceiver to be around three times higher than the BLE transceiver.

We based our FCPP porting on the existing work of the D3S Research Group
of the University of Trento4, which includes a port of the Contiki operating
system5 on the DWM1001C and a UWB driver with ranging API. Contiki is an
open source operating system for microcontrollers in the IoT, which provides
high level APIs for cooperatives threads (proto-threads, see [18]), timers and
networking (with protocols for each network stack layer). We upgraded the
porting to the newer Contiki NG,6 which provides a partial support for the C++
programming language required by FCPP, and we improved the C++ support
by integrating the C++ clock API and standard output with the Decawave
hardware. Contiki NG offers a low code footprint of just about 100kB and the
possibility to configure memory usage to be as low as 10kB. The access to the
UWB and BLE features of DWM1001C is granted, respectively, by a port of
the UWB driver for Contiki developed by the D3S Research Group (see above),
and by the Soft Device for BLE offered by the Nordic SDK for the nRF52832
SoC.

In order to connect FCPP with the UWB and BLE drivers, we had to extend
it. In particular, the hardware connector component included in the library
handles the communications between physical (hardware) nodes. The construc-
tor of its node class receives an object whose type is the class implementing
the communication functions on a specific hardware. For our present purposes,
we have created two classes (FCPP drivers), one for UWB and one for BLE.
In order to work with the hardware connector component, they just need to
expose:

• a constructor taking a node which represents the current device;

• a constructor taking a node and a data structure for configuring the driver;

• a send method taking a vector of characters to send; and

• a receive method that returns a vector of messages from neighbours.

The UWB FCPP driver exploits the native UWB driver to broadcast all com-
munications between devices over the CSMA protocol with the UWB transceiver,
reaching a greater distance of communication compared to BLE at the expense
of an higher energy consumption. The UWB configuration allows to send mes-
sages of size up to 116 bytes.

4See https://github.com/d3s-trento/contiki-uwb.
5See https://github.com/contiki-os/contiki.
6See https://github.com/contiki-ng/contiki-ng.
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The BLE FCPP driver exploits the native BLE driver to broadcast the
messages using the Bluetooth 5 extended advertisement. Moreover, it uses the
UWB transceiver to perform the ranging between devices for computing their
distances. The main goal of the protocol for intermixing BLE communication
with ranging is that of keeping the UWB transceiver in sleep mode for as long
as possible to reduce energy consumption. More precisely, the main steps are
as follows:

• when a node sends a message through the BLE native driver, it adds a
prefix with a list of neighbour nodes it wants to invite to do a ranging
session at the beginning of the next round;

• the node then prepares to do ranging with the neighbours in the list at
the beginning of its next round; and

• when a node receives a message through the BLE native driver, and it
appears in the prefix list, it prepares to do ranging with the sender at the
beginning of the next round of the sender.

Thanks to the synchronization information exchanged by piggybacking the BLE
messages, the nodes can turn on their UWB transceivers just for the time needed
for performing the ranging operations. The BLE configuration allows to send
messages of over 200 bytes, with the actual size depending on the ranging config-
uration, i.e., on the maximum size of the prefix devoted to synchronize ranging,
which is not available for the regular payload.

As mentioned above, a serious constraint of the DWM1001C module is the
quantity of RAM, limited to 64kB. Thanks to the small footprint of Contiki NG
and of FCPP, it has been possible to leave approximately 16kB of stack space
and 16kB of heap space to be used by applications built on FCPP.

5 AP Services in an Industrial IoT

5.1 Overall Hardware Architecture

Figure 4 shows the schematic architecture that we assume for the IIoT scenarios
we address. It is derived from the one in Figure 1, but is specifically tailored to
the assumptions and focus of this paper.

We assume two networks, based on different technologies and covering dif-
ferent layers:

1. a Far Edge net NEDGE composed of low-end computational nodes that
communicate point-2-point based on proximity. Corresponds to the Edge
layer in Figure 1 but assumes specifically point-2-point wireless commu-
nication; and

2. an Intranet and Cloud net NINET that connects more powerful systems
within the factory among them and, possibly, with external cloud systems,
using standard internet technologies and protocols. Corresponds to the
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Figure 4: Schema of the Architecture for the IIoT Service Scenarios.

Network and Cloud layers in Figure 1, that we do not need to distinguish
for our purposes.

We envision the following types of computational nodes:

1. fixed nodes NF of the NEDGE net, associated with fixed equipment such as
machines, controllers, or fixed sensors (depicted as empty circles in Figure
4);

2. mobile nodes NM of the NEDGE net, associated with mobile equipment
(e.g., forklifts) and users (depicted as full circles in Figure 4);

3. gateway nodes NG that are nodes that can communicate with both the
NEDGE nodes and the NINET nodes, thus making it possible to route data
between the two nets; and

4. cloud central system nodes NC that can provide: long term storage; ex-
pensive data analysis and ML; connection to a Digital Twin; etc.

It should be noted that the set of nodes NM can change dynamically quite often,
since, e.g., users enter/leave the factory or moving machines are switched on/off.
Moreover, gateway nodes g ∈ NG may be either fixed or mobile.

Sensors and actuators can be associated with both mobile and fixed nodes.
For convenience, we spell two important categories:

1. distance sensors SDIST , that can detect the distance between nodes of the
NEDGE ; and

2. parameter sensors SPARAM , that measure the values of relevant parameters
at their location.

We do not detail how the nodes of NEDGE communicate with their associated
sensors and actuators: they may, e.g., be directly connected through a com-
mon physical board, or use a short-range wireless technology such as BLE. We
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Figure 5: Life of an aggregate process spawned by a client node (a-d). See
explanation in the text.

just assume that NEDGE can retrieve data from associated sensors and issue
commands to associated actuators.

5.2 Services Software Architecture

AP-based services consist of the execution of FCPP programs by the nodes of
the NEDGE . An important role, however, is played by Aggregate Processes and
how they are generated, managed, and terminated.

Consider a node nc (client) that must reach another node ns (server) for
receiving a service or an information. A simple schema would be to have nc
broadcast its request into the NEDGE , then collect the replies from the available
service providers n′s, n

′′
s , . . ., and finally choosing to adopt, e.g., the reply of the

closest one, and discard the others. The problem with this schema, is that, in
order for it to work, every node in the NEDGE should be executing an FCPP
program that includes the logic for the broadcast from nc and the generation and
collection of replies from service provider nodes. This is obviously not practical,
since the client can be any node in NEDGE and there may be many possible
types of requests that must be handled and answered according to different
logics.

This is where aggregate processes come into play as a fundamental building
block of AP systems. In a situation like the one described above:

• The client node nc creates a process, by passing a suitable key (e.g., its
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node id idc) to a spawn that appears in the FCPP program being executed:

spawn(CALL, p, {idc}, v0, ...)

Note that, up to the current round the spawn has always been executed
by node nc as part of the program, but since it was given an empty set
of keys, it immediately returned as a no-operation (if it didn’t execute
processes generated by other clients). Figure 5 (a) depicts nc as a full
circle to indicate that it participates to the new process.

• The function executed by the new process is the one specified as the p
argument to spawn, and of course depends on how exactly the interaction
between nc and the service provider(s) should happen; it receives the key
of the process idc and the additional parameters v0, ....

• Typically, nc wants to place a limit rmax to the maximum radius of the
process expansion, and this can be achieved by passing rmax (shown as a
dotted arc in Figure 5) as one of the additional parameters v0, ... of spawn
that are forwarded to p.

• The process created by nc starts to spread automatically to the neighbours
of nc, and on to more and more nodes np ∈ NEDGE . Figure 5 (b) shows
as full circles the nodes within rmax to which the process propagates.

• Consider a node np to which the process has just been propagated:

– np executes the p function, which, exactly as in nc, receives the key
of the process idc and the other parameters including rmax.

– The body of function p should be such that node np gets to know
whether it is beyond the maximum radius rmax from node nc (e.g., by
participating to a gradient aggregate computation, see section 5.4).

– If so, np should immediately leave the process (i.e., return an external

or false status). In Figure 5 (b), the nodes beyond rmax remain
empty circles although the nodes within the bubble try to propagate
the process to them.

– Otherwise, it should determine whether it can (try to) provide the
service requested by nc; if yes, it should send its reply to np (e.g.,
by participating as a producer to a collection aggregate computation,
see section 5.4). Figure 5 (c) shows the replies originating from the
server nodes n′s, n

′′
s flowing towards nc through the NEDGE .

– When nc decides to terminate the process, it initiates the shutdown
by returning a terminated status, which propagates to the other
nodes within the bubble. Figure 5 (d) depicts all the nodes, including
nc, as empty circles to indicate that they have all left the process.
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5.3 Safety Services

An important set of AP-based services that can be implemented in the architec-
ture of Figure 4 are those that improve the safety of the industrial environment
and, in particular, of the people that populate it at any given time.

The typical schema for the AP implementation of a safety service is the
following:

1. let NSAFE be the subset of nodes of the NEDGE net involved in the safety
service;

2. nodes NSAFE continuously exchange relevant information (i.e., their ve-
locity) with neighbours, and receive data from their sensors;

3. in particular, if the node is equipped with a distance sensor s ∈ SDIST , the
built-in funtion nbr dist returns a field of type field<real_t> associating
each neighbour UID (of type device_t) with its distance from the current
node (of type real_t);

4. the sensor data is evaluated w.r.t. the internal status and with the safety-
related data collected from the neighbours;

5. if a danger is detected, the node can react immediately (e.g., stop moving)
and initiate an information sharing process to share the detected danger
with other NEDGE and/or NINET nodes (see sections 5.4, 5.5).

It should be noted that even a simple safety process as the one just described
can take advantage of the intelligence provided by AP. For example, the safety
threshold of the distance between two nodes can depend on whether the two
nodes are not moving, moving towards each other, or moving away from each
other. This can be easily achieved with AP.

5.4 Information Sharing for Intelligent Decisions

The sharing of information among NEDGE nodes (without involving the NINET

nodes) can provide many useful, robust and low-latency services. In particular,
when executed as an Aggregate Process, it can support the request of a service
by a node and the collection of the replies from potential servers, as explained
in section 5.2.

Information sharing can typically follow two alternative ways: the first one
assumes that the nodes that directly sense (or, more generally, own) relevant
information spread it to the rest of the net; the second one assumes that nodes
that need information, collect it from the other nodes possibly accumulating
it into a suitable data structure. The spreading and collection of information
are fundamental blocks of the AP paradigm, and are sometimes named, respec-
tively, G-block and C-block in the literature [38]. Referring again to the service
request/reply described in section 5.2, the client node can spread its request
with a G-block, and collect the replies with a C-block.
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GEN(P,T) T broadcast(ARGS, P const& distance, T const& value) { CODE

return nbr(CALL, value, [&] (field<T> x) {

return get<1>(min_hood(CALL,

make_tuple(nbr(CALL, distance), x),

make_tuple(distance, value)));

});

}

Figure 6: The broadcast function implementation in FCPP.

The typical schema for the AP implementation of information spreading in
our reference setting is the following:

1. let NCONS be the subset of nodes of the NEDGE net interested in the
information produced by a node nPROD

2. node nPROD produces the information and broadcasts it (see below) to all
the NEDGE nodes

3. the nodes outside NCONS are used just to propagate the information, while
the nodes in NCONS also pick-it up and use it for their computations,
possibly including making decisions, and posting a reply

Figure 6 shows the implementation of the broadcast function in FCPP. First
of all, we note that it is a templated function, which parametrizes the types P,
T of the distance and value arguments: in this case, the FUN keyword is substi-
tuted with the alternative GEN(T ∗) listing the parameter types. The distance

parameter represents the (estimated) distance of the node from the source of
the information, i.e. it is 0 for the node that generates the information, and can
be estimated with a suitable aggregate function for the other nodes in NEDGE .
The FCPP library offers several functions for the distance estimation, ranging
from a basic function abf_hops counting the number of hops from the source with
the Bellman-Ford algorithm, to sophisticated functions such as bis_distance [4],
or flex_distance [6]. Clearly, a more accurate estimate can be achieved if the
underlying system provides SDIST sensors for measuring the distance between
each node and its neighbours.

The function body uses the form of nbr that takes a lambda function that
processes the field x of most-recent values exchanged with neighbours to derive
the new value for the current node. The lambda applies min_hood to pairs (d, v)
for each neighbour δ, where d is the distance of δ from the source and v is the
value held by δ; the result of min_hood is thus a pair (d′, v′) corresponding to the
neighbour closest to the source. Finally, the use of get extracts the value v′, and
such a value is returned by broadcast and will be associated with the current
node in the field x when broadcast is computed again in the next round.

The AP implementation of information collection and accumulation in our
reference setting typically has the following schema:
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GEN(P, T, U, G)

T sp_collection(ARGS, P const& distance, T const& value,

U const& null, G&& accumulate) { CODE

return nbr(CALL, (T)null, [&](field<T> x){

device_t parent = get<1>(min_hood(CALL,

make_tuple(nbr(CALL, distance),

nbr_uid(CALL)) ));

return fold_hood(CALL, accumulate,

mux(nbr(CALL, parent) == node.uid, x, (T)null),

value);

});

}

Figure 7: The single-path collection function implementation in FCPP.

1. let NPROD be the subset of nodes of the NEDGE net involved in the pro-
duction of information that must be collected by a node nCONS ;

2. each node in NPROD produces a piece of information and aggregates it
into the data that is collected towards nCONS through the other NEDGE

nodes (see below);

3. when the aggregated data reaches nCONS it is picked-up and used.

Note that, in the second step, it is possible to aggregate the information while
it flows from the NPROD nodes to the nCONS . For instance, imagine that a
client node nc has spawned a process to ask for a service, and it then collects
the answers of servers n′s, n

′′
s , . . . consisting of pairs pair<real,real> where the

second element is the value of the reply, and the first element is the degree of
confidence that the server had in that reply. As the replies flow towards nc,
each node in NEDGE will propagate only the pair with the highest first element.
In this case, the aggregation function is thus the max function, but any other
aggregation function could be used in the process.

Figure 7 shows the implementation of the sp_collect function in FCPP. The
FCPP library also offers more sophisticated multi-path collection functions,
namely mp_collect and wmp_collect [3], but the simpler sp_collect serves well
our current explanation purposes. The sp_collect templated function has the
following type parameters: P, of the distance parameter, representing the (es-
timated) distance of the node from the consumer of the information; T, of the
value parameter, representing the aggregate value awaited by the consumer; U,
of the null parameter, the identity element of the accumuation function; and G,
of the accumulate parameter, representing the accumulation function that should
take two T values and aggregate them into a a single output T value.

Similarly to broadcast, the function body uses the form of nbr that takes a
lambda function that processes the field x of most-recent values exchanged with
neighbours to derive the new value for the current node. First, the lambda
applies get<1> to the result of a min_hood to get the node uid of the neighbour
closest to the consumer; we store the result in a parent variable, to stress the
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fact that the flow of information follows a tree7 from the furthest nodes to the
consumer itself.

Then, the accumulate function is exploited by fold_hood to aggregate a field of
T values into a single result of type T. Such a value is returned by sp_collection

and will be associated with the current node in the field x when sp_collection is
computed again in the next round. Using the mux function, the field aggregated
by fold_hood associates to each neighbour δ′ of the current node δ a T value as
follows: if δ′ has determined that δ is its parent, the most recent value sent by
δ′ (contained in the x field); otherwise the identity element null of accumulate.
In other words, the current device δ aggregates all and only the values received
from neighbours that chose it as their parent.

5.5 Interaction with the Cloud

The sharing of information between the NEDGE nodes and the NINET nodes,
and especially between the edge and the NC nodes of the NINET that host cloud
services, is different than the NEDGE -level sharing described in the previous
section in the following main respects:

• all the communications must necessarily go through the gateway nodes
NG ;

• the amount of data collected by cloud nodes can be much higher, in
general, than that required by services provided completely within the
NEDGE ;

• typical benefits of the AP paradigm such as low latency, robustness, and
privacy, which apply to the NEDGE services, may not apply to services
that also require information to cross the NINET .

Given these characteristics, the following additional mechanisms can be suitable:

• distribute the workload among NG gateway nodes as far as possible;

• ensure some redundancy in the data transmitted to the NC cloud nodes
(for improving both latency and robustness).

In FCPP, the distribution of workload can be easily done by partitioning the
nodes in NEDGE in as many regions as there are gateway nodes in NG . A design
pattern specifically created to achive these goals in a fully distributed fashion
through FC itself is the SCR (Self-Organising Coordination Regions) pattern
described in [31]. The pattern supports distributed selection of the leaders,
but in case all the NG nodes are used, the selection becomes trivial. Also the
formation of the regions can be trivial in its simplest form, whereby each node
decides to belong to the region associated with the the closest NG node.

7It is easy to see that such a tree is a Single Source Shortest Path (SSSP) tree with the
consumer as source, on the (unweighted) network graph.
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As for ensuring redundancy, a natural approach is to extend the SCR pattern
in such a way that regions overlap, i.e., each node belongs to two or more regions.
Again, the criteria adopted by a node to select the regions to join can have
varying degrees of complexity depending on the context. If the NG nodes can
be partitioned a-priori into two or more subgroups or types, a simple approach
consists of each node joining one region per type.

6 Experimental Validation

6.1 Case Study: Warehouse App

To validate the proposed approach experimentally, we consider a scenario in-
spired by use-cases currently being investigated in Reply of smart warehouse
management. We assume that warehouse workers move around a series of aisles
with forklifts moving at a maximum speed of 10 km/h (a standard for forklifts).
Pallets containing goods are arranged in a regular grid along aisles, while some
empty pallets are available in a common loading zone, where every load and
unload operation is performed. We assume that the warehouse is managed with
a high turnover, so that goods are placed as close as possible to the relevant
point of operation for them, without a fixed placement based on the good type.
High turnover allows for greater efficiency in principle, but it also suffers from
performance degradation as the warehouse starts to fill up: workers may need
to perform long searches for a required good, or even to find an empty space for
a new pallet. As a byproduct, a digital representation of the warehouse status
(e.g., a digital twin) is usually inaccurate or impossible. Furthermore, workers
may occasionally run into each other at aisle joints, damaging goods and slowing
down the warehouse operations.

In order to overcome these issues, we propose a warehouse management app
realising the following services:

1. preventing accidental collisions, by warning workers whenever another
forklift is approaching with a speed greater than a threshold, within a
given safety radius;

2. providing route information towards either empty spaces and goods match-
ing a given query, presented to the interested warehouse worker by turning
on led lights on neighbouring smart devices;

3. collecting logs of relevant events (loading/unloading of goods and collision
warnings) towards central points that are connected to the cloud.

We assume that the app runs on a network of DWM1001C modules, where each
pallet and forklift has an associated module. Pallet modules have lower power
(to save battery life), and only present output in the form of small led lights
(for routing). Instead, forklift modules are connected with a simple applica-
tion on the workers’ personal smartphone, which allows the worker to provide
some basic input (i.e., logging loading and unloading details, issuing routing
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requests), shows her some basic output (i.e., collision warnings and additional
route information), and stores locally the collected logs, uploading them on the
cloud as soon as possible.

Service 1 is realised as a simple aggregate process, that is spawned by every
forklift module and extends until reaching the safety radius. In this area, the
distance towards the closest other forklift is gathered: if this distance decreases
faster than the threshold, a warning is issued.

Service 2 is also realised through aggregate processes. One process computes
routes towards empty spaces (more precisely, pallets that detect an empty space
around them), others compute routes towards goods satisfying given queries, as
they are issued. Each process expands naturally into the whole network, and is
terminated everywhere once the routing request is cancelled.

Service 3 is realised through two simultaneous aggregate collection processes,
to enable redundancy and greatly reducing the chances of information losses.
Forklift modules are used as collection sinks, since they can upload data on the
cloud: based on their unique identifier, half of them are assigned to sink group
1 and the other half to sink group 2. The logs produced are collected twice,
towards the closest sink in group 1 and towards the closest sink in group 2. The
collection algorithm used is a custom version of multi-path collection, designed
to keep the network load low for the specific log collection task. Firstly, hop-
count distances towards sinks are produced. Then, every device computes its
partial log collection, by including every log that appears farther than it from
the sink, but not also closer than it from the sink. This second condition ensures
that logs stop being propagated when they are already closer to the sink, greatly
reducing the communication load.

6.2 Simulations

Firstly, we simulated the operations of a smart warehouse empowered by the
proposed app through the FCPP simulation framework [1] for aggregate com-
puting.8 A screenshot of the simulation is shown in Figure 8. The simulated
warehouse consists of 22 rows × 3 columns of aisles; each of them composed
by 15 slots in the horizontal direction × 3 slots in the vertical direction. The
bottom part is dedicated to a loading zone (left) and office space (right).

Pallets are represented as cubes with a 1m side (spaced 1.5m from each
other), while forklifts are represented as spheres. The content of a pallet is
displayed by the colour of its middle band: white represents no content, and
various colours are used for 100 different types of goods (randomly generated
according to a Zipf distribution [46], so that few goods are very common, and
many are uncommon). The middle band of a forklift is coloured analogously
according to the good that the forklift is currently searching or loading (if any,
black otherwise). For both pallets and forklifts, the lateral bands are grey if
the device is idling, yellow if it has a led turned on (pallet routing or forklift
signalling a collision risk), and red during handling (loading/unloading for fork-

8Code available at: https://github.com/fcpp-experiments/warehouse-case-study
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Figure 8: Screenshot of the simulation execution.

lifts, being carried by a forklift for pallets). Forklifts randomly perform either
a retrieve task of a specific good (picking up a matching pallet, and bringing
it to the loading zone for unload), or a insert task (where an empty palled is
filled up and then brought to an empty space in the aisles). Tasks are generated
randomly during idling times.

In Figure 8, we can see few empty pallets in the loading zone (gray and white
cubes), and several hundreds of loaded pallets in the aisles (coloured cubes in
the grid). In the loading zone, two forklifts are currently idling (gray and black
spheres), while one is currently unloading a pallet (bottom left corner, coloured
red and white). A forklift (bottom of the 4th vertical aisle, gray and black
sphere followed by a red and violet cube) has recently loaded a pallet, and is
bringing it to the closest available space. Another forklift (bottom of the 7th
vertical aisle, grey and cerulean sphere) is currently looking for a specific good
(identified by the cerulean colour), following led lights (currently, the yellow
and red cube further up in the same aisle). The last forklift (middle-bottom
horizontal corridor, yellow and black sphere followed by a red and cerulean cube)
is bringing back a pallet to the loading zone for unloading. Since these last two
forklift are quickly approaching the same intersection, a collision warning is
triggered (the external yellow bands of the last forklift).

Figure 9 presents few performance indicators of the proposed app through
the course of the first 500 seconds of simulated time. The size of messages is
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Figure 9: Plots of simulated performance over time: message size in bytes (top-
left); percentage of messages delivered, log received at least once and received
twice (top-right); logs created and collected (bottom-left), average delay of log
collection (bottom-right).

usually below 150 bytes, with peaks below 250 bytes: almost every message is
small enough to be sent, as the message limit of the modules is currently of 222
bytes (and 20 bytes are used by the simulation logics, and would not be used in
a deployment). Every log that is created is eventually received, but only about
70% of them are received twice in both sink groups, while another 30% is only
received in one sink group, proving the effectiveness of the redundancy strategy.
Across the simulation, at most 2 logs are created simultaneously (and never
more than one in a single device), while a single sink may collect up to 3 logs in
a single round (with 4 total logs collected in the same round by sinks overall).
The average delay between the log creation and collection is very small, being
mostly below 5 seconds (missing parts in the bottom-right graph correspond to
times when no log was collected, so that no delay was computable).

6.3 Physical Deployment: a Proof-of-Concept

We validated the aggregate program implemented for the simulation on a batch
of seven DWM1001-DEV modules. Six modules were configured as if they were
attached to pallets, four of them having some goods already loaded and two
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Figure 10: Layout of the devices in the Proof-of-Concept

empty, while one module was configured as the personal device of a forklift op-
erator. The devices were arranged as visible in Figure 10, with the modules
associated to loaded pallets on the darker table, the module of the forklift oper-
ator connected to a PC to read the logs in real time and the modules associated
to empty pallets near the PC. The BLE transmission power was configured to
-16dBm to reduce the range of communication due to the small space available.

Two scenarios of actions performed by the operator were tested: the loading
of goods on an empty pallet followed by its placement near the already loaded
pallets, and the search for a pallet containing a predermined kind of good fol-
lowed by its unloading near the empty pallets. In both scenarios the operator
interacts with the modules by using the button available on the personal module
while receiving a feedback from the LEDs. In the former scenario the operator
marks the nearest pallet as loaded with some good by using the button on the
personal module, then finds an empty space near the previously loaded pallets
by following the ones with the LEDs turned on. In the latter scenario the op-
erator starts the request to find a kind of good by pressing the button on the
personal module, then follows the turned on LEDs on the loaded pallets until
reaching one containing the requested goods. The LEDs on that pallet start to
blink and the operator delivers it back to the starting area and marks the pallet
as empty by pressing the button on the pallet’s module.

At the end of each test the FCPP logs, from both the personal module and
the module representing the pallet handled by the operator, were collected on
the PC to verify that the network presented the expected behavior. In all tests
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the network was left in a consistent state but all the computation were slower
than expected (with reaction times of 5s to 10s) due to an high number of
dropped messages in both communication and ranging.

7 Conclusions

We have considered intelligent services for the IIoT, deployed on far-edge devices
placed at fixed locations in the workshop floor or attached to people and moving
machines, and sharing information with cloud servers through edge gateways.

Previous work on offloading part of the computational and storage needs
to the far edge of the IIoT mostly focusses on data management and proposes
architectural schemes to satisfy specific needs of efficient storage distribution
or edge-to-cloud communication (c.f. Section 2). Compared to such existing
work, we show that by exploiting the spawn construct of FCPP it is possible
to implement any kind of service that a set of client nodes may require from
a set of potential server nodes by querying the far-edge network (including
safety, information retrieval, path planning). Additionally, the AP paradigm
guarantees “for free” that the system is open and adaptable, thus allowing node
failures, mobile nodes, and nodes joining/leaving the network at any time.

A valuable contribution of the paper is the actual deployment of AP-based
applications on physical IoT boards with highly constrained resources. Without
the highly optimized FCPP library it would have been impossible to achieve
these results. Alternative libraries implementing AP based on the JVM [41],
would introduce a memory footprint that exceeds by far the resources of the
target devices.

We want to further pursue the research described here in several directions.
First of all, we would like to experiment with the physical deployment in a full-
size, real world factory setting, to assess the scalability and reliability of our
systems when faced with a noisy, highly dynamic environment. In particular,
we envision the need for a better synchronization between FCPP computation
rounds and the ranging operations, and for retransmission protocols, since with
the current deployment many messages are lost. The deployment of a larger
number of devices in an area corresponding to a real warehouse should also
provide valuable feedback for tuning our system.

We would also like to exploit the ranging capabilities offered by the De-
caWave boards to implement an efficient and accurate cooperative RTLS (Real
Time Location System) based on FCPP. Such a service would open the way for
many other interesting services to be offered at the far edge. In particular, we
envision the possibility of designing “intelligent” triangulation algorithms for
3D position estimation, to be exploited in routing and discovery services.

Finally, we are considering to apply our approach to scenarios involving large
numbers of mobile robotic agents that need to coordinate in an indoor space
(e.g., factory, warehouse) to achieve global goals.
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