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Abstract. Aggregate window queries return summarized information about ob-
jects that fall inside a query rectangle (e.g., the number of objects instead of 
their concrete ids). Traditional approaches for processing such queries usually 
retrieve considerable extra information, thus compromising the processing cost. 
The paper addresses this problem for planar points from both theoretical and 
practical points of view. We show that, an aggregate window query can be an-
swered in logarithmic worst-case time by an indexing structure called the aP-
tree. Next we study the practical behavior of the aP-tree and propose efficient 
cost models that predict the structure size and actual query cost. Extensive ex-
periments show that the aP-tree, while involving more space consumption, ac-
celerates query processing by up to an order of magnitude compared to a spe-
cialized method based on R-trees. Furthermore, our cost models are accurate 
and can be employed for the selection of the most appropriate method, balanc-
ing the space and query time tradeoff. 

1. Introduction 

Window queries retrieve the objects that fall inside (or intersect) a multi-dimensional 
window. Such queries are important for numerous domains and have been studied 
extensively in the database literature. Recently a related type, called the window ag-
gregate query (WA for short), is gaining increasing attention in the context of OLAP 
applications. A WA query returns summarized information about objects that fall 
inside the query window, for example the number of cars in a road segment, the aver-
age number of mobile phone users per city block etc. An obvious approach to answer 
such queries is to first retrieve the actual objects by performing traditional window 
queries, and then compute the aggregate function. This, however, entails a lot of un-
necessary effort, compromising performance. A solution for the problem is to store 
aggregate information in the nodes of specialized index structures. Such aggregate 
trees have already been employed in the context of temporal databases for computing 
aggregates over temporal data [KS95, KKK99, YW01, ZMT+01]. 

In order to improve the performance of WA queries in OLAP applications involv-
ing multi-dimensional ranges, Jurgens and Lenz [JL98] proposed the storage of 
summarized data in the nodes of the R-tree [BKS+90] used to index the fact table. The 
same concept was applied in [PKZ+01] for spatial data warehouses. Each entry of the 
resulting aggregate R-tree (aR-tree), in addition to the minimum bounding rectangle 



(MBR), stores summarized data about objects under the corresponding subtree. As a 
result, nodes totally contained by the query window do not have to be accessed during 
the processing of WA queries. aR-trees and other aggregate multi-dimensional indexes 
were employed by [LM01] in order to compute fast approximate answers of OLAP 
queries. By traversing the index, a rough approximation is obtained from the values at 
the higher levels, which is progressively refined as the search continues towards the 
leaves. Papadias et al [PTK+02] proposed combinations of aggregate R- and B-trees 
for indexing spatio-temporal data warehouses.  

Although aR-trees (and other aggregate trees based on the straightforward adapta-
tion of multi-dimensional structures) improve performance of WA queries considera-
bly compared to regular R-trees, their processing cost can still be very high, especially 
for queries with large ranges common in OLAP applications. In this paper, we focus 
on aggregate processing of planar points and show that any WA query can be an-
swered with O(logbn) page accesses by a specialized indexing structure, the aggregate 
Point-tree (aP-tree), which consumes O(n/b logbn) space, where n is the number of 
data points and b the disk page size. The intuition behind aP-trees, is that two-
dimensional points can be viewed as intervals in the key-time plane and indexed by 
temporal access methods. 

In addition to asymptotic performance, we analyze the practical behavior of aP-
trees, and propose cost models for their sizes and query costs. Extensive experimenta-
tion shows that the aP-tree is more than just theoretical contribution, since it answers 
WA queries significantly faster than the aR-tree while consuming some more space. 
Besides their applicability in traditional OLAP applications, aP-trees are important for 
spatial [PT01] and spatio-temporal [PTK+02] data warehouses.    

The rest of the paper is organized as follows. Section 2 surveys the aR-tree and 
proposes cost models for query performance. It also introduces the multi-version B-
tree, which provides the main motivation for the aP-tree. Section 3 discusses the aP-
tree in detail and proves its asymptotical performance. Section 4 contains cost models 
that accurately predict the structure size and query cost of aP-trees. Section 5 presents 
an extensive experimental evaluation with synthetic and real datasets, and Section 6 
concludes the paper with directions for future work. 

2. Related Work 

Existing work on aggregate trees has been based mostly on the R-tree due to its popu-
larity as a multi-dimensional access method. In this section, we describe the aR-tree 
and analyze its expected performance on WA queries. Next we overview the multi-
version B-tree and its related algorithms. 

2.1 The aggregate R-tree (aR-tree) and analysis 

The aggregate R-tree improves the original R-tree towards aggregate processing by 
storing, in each intermediate entry, summarized data about objects residing in the 
subtree. In case of the COUNT function, for example, each entry stores the number of 



objects in its subtree (the extension to any non-holistic functions is straightforward ). 
Figure 1a shows a simple example where 8 points are clustered into 3 leaf nodes R1, 
R2, R3, which are further grouped into a root node R. The solid rectangles refer to the 
MBR of the nodes. The corresponding R-tree with intermediate aggregate numbers is 
shown in Figure 1b. Entry e1:2, for instance, means that 2 points are in the subtree of 
e1 (i.e., node R1). Notice that each point is counted only once, e.g., the point which lies 
inside the MBRs of both R1 and R2 is added to the aggregate result of the node where 
it belongs (e1). The WA query represented by the bold rectangle in Figure 1a is proc-
essed in the following manner. First the root R is retrieved and each entry inside is 
compared with the query rectangle q. One of the 3 following conditions holds: (i) the 
(MBR of the) entry does not intersect q (e.g., entry e1) and its sub-tree is not explored 
further; (ii) the entry partially intersects q (e.g., entry e2) and we retrieve its child node 
to continue the search; (iii) the entry is contained in q (e.g., entry e3), in which case, it 
suffices to add the aggregate number of the entry (e.g., 3 stored with e3) without ac-
cessing its subtree. As a result, only two node visits (R and R2) are necessary. Notice 
that conventional R-trees would require 3 node visits.  
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R1 R2 R3

R

 
(a) Clustering of points (b) The corresponding aR-tree 

Fig. 1. An aR-tree example 

In summary, the improvement of the aR-tree over the conventional R-tree is that we 
do not need to visit the nodes (whose MBRs are) inside the query window, but only 
those nodes that intersect the edges of the window. To answer the query in Figure 2a 
(where the nodes correspond to the clustering on uniform points as in [TS96]), for 
example, the aR-tree only needs to retrieve the white nodes, while the R-tree must also 
access the gray ones. The cost savings obviously increase with the size of the query 
window, an important fact because OLAP queries often involve large ranges. Notice, 
however, that despite the improvement of the aR-tree, query performance is still sensi-
tive to the window size since, the larger the window, the higher the number of node 
MBRs that are expected to intersect its sides.  
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(a) Cost saving of aR-trees (b) Shrinking the query rectangle 

Fig. 2. Cost analysis of aR-trees 



This sensitivity of aR-trees to window area, is confirmed by the following analysis.  
For a query q and a node MBR m, let PRintr(q,m), PRpart(q,m), and PRcont(q,m) refer to 
the probabilities that q intersects, partially intersects, and contains m respectively: 

PRintr(q,m) = PRpart(q,m) + PRcont(q,m) 
The estimation of PRintr(q, m) was previously studied in [KF93]. Assuming a unit 
universe and uniform distribution of points, PRintr(q, m) can be represented as 

PRintr(q,m) = (q.x + m.x) · (q.y + m.y) 
where q.x and q.y refer to the lengths of the horizontal and vertical extents of q respec-
tively (and similarly for m.x and m.y). On the other hand, observe that query q con-
tains m if and only if, after shrinking q from the lower-right corner point by the corre-
sponding extents of m along each dimension, the resulting rectangle still contains the 
upper-left corner point of m, as illustrated in Figure 2b. Hence, the probability that the 
query window contains m is: 

PRcont(q,m) = (q.x – m.x) · (q.y – m.y) 
So the probability of partial intersection is:  

PRpart(q,m) = PRintr(q,m) – PRcont(q,m) = 2(m.x · q.y + m.y · q.x) 
PRpart(q, m) corresponds to the probability that a node with MBR m is visited in an-
swering the WA query q using the aR-tree. Let h be the height of the aR-tree, Ni the 
number of nodes at level i, and si the average MBR of nodes at level i; then, the ex-
pected number of node accesses in answering q is: 
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The estimation for h, Ni, and si was studied in [TS96], where the following results 
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It is clear that the cost increases with the lengths of the query’s extents and can be 
prohibitive for large query windows. This is a serious problem because aR-trees were 
motivated by the need to efficiently process queries with large windows in the first 
place. aP-trees overcome this problem (i.e., the cost is independent of the query ex-
tent) by transforming points to intervals in the key-time plane and adapting specialized 
interval indexing methods such as the multi-version B-tree introduced next. 

2.2 The Multi-version B-tree (MVB-tree) 

The multi-version B-tree [BGO+96] is an extension of the B-tree for indexing the 
evolution of one-dimensional data in transaction time temporal databases [ST97], 



which are best described as intervals in the key-time plane. In the example of Figure 3, 
intervals a1, a2, a3, and b correspond to the bank balances of two accounts a and b. 
The key axis represents the amount of the balance. Both accounts are created at time t0 
and cancelled at t3. There are two changes to account a: one withdrawal at t1 and one 
deposit at t2, while account b remains constant during the period [t0, t3). In the sequel, 
we represent an interval (e.g., a1) in the form lifespan: key (e.g., [t0, t1):a1). 

Intervals are inserted into a MVB-tree in a plane-sweep manner. To be specific, at 
the beginning a vertical sweeping line is placed at the starting point of the left-most 
interval before it starts moving right. An interval is inserted when its starting point is 
reached by the sweeping line. For example, at t0, a1 and b are inserted as [t0, *):a1 and 
[t0, *):b respectively, where * means that the ending point of the interval is not deter-
mined yet, but progresses with the sweeping line (such intervals are said to be alive). 
When the ending point of an interval is encountered, its lifespan is finalized, and the 
interval dies (it is logically deleted). For instance, when the sweeping line reaches t1, 
interval a1 is modified to [t0, t1): a1.  

 key 

tim e

a 1 

a 2 

a 3 

b  

t1  t2  t0  t3  

tim esta m p 
q uery q  

 
Fig. 3. Representation of temporal data 

The MVB-tree is optimized for the so-called timestamp query, which, as shown in 
Figure 3, is a vertical line segment q that retrieves the horizontal line segments inter-
secting q. Figure 4 illustrates a simple MVB-tree when the sweeping line is at time 3. 
Each entry has the form <key, tstart, tend, pointer>. For leaf entries, the pointer points to 
the actual record with the corresponding key value, while, for intermediate entries, it 
points to a next level node. The temporal attributes tstart and tend denote the time that 
the record was inserted and (logically) deleted in the tree respectively.  

<5, 1, *, A>
<43, 1, *, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot
<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>  
Fig. 4. Example of MVB-tree 

There can be multiple logical B-trees in a MVB-tree, and each root of a logical tree 
has a jurisdiction interval, which is the minimum bounding interval of the lifespans of 
all the entries in the logical tree. Processing of a timestamp query starts by retrieving 
the corresponding root whose jurisdiction interval contains the queried timestamp, 
after which the search is guided by key, tstart, and tend. For each timestamp t and each 
node except the roots, it is required that either none, or at least b⋅Pversion entries are 
alive at t, where Pversion is a tree parameter (for the following examples Pversion=1/3 and 



b=6). This weak version condition ensures that entries alive at the same timestamps 
are mostly grouped together in order to facilitate timestamp query processing. Viola-
tions of this condition generate weak version underflows, which occur as a result of 
deletions. 

Insertions and deletions are carried out in a way similar to B-trees except that over-
flows and underflows are handled differently. Block overflow occurs when an entry is 
inserted into a full node, in which case a version split is performed. To be specific, all 
the live entries of the node are copied to a new node, with their tstart modified to the 
insertion time. The tend of these entries in the original node is changed from * to the 
insertion time (in practice this step can be avoided since the deletion time is implied 
by the entry in the parent node). In Figure 5, the insertion of <28,4,*> at timestamp 4 
(in the tree of Figure 4) causes node A to overflow. A new node D is created to store 
the live entries of A, and A “dies” (notice that all * are replaced by 4) meaning that it 
will not be modified in the future.  

<5, 1, 4, A>
<43, 1, *, B>

<5, 1, 4>

<13, 1, 4>
<25, 1, 3>
<27, 1, 3>

<8, 1, 4>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot

<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>

<5, 4, *>

<13, 4, *>
<8, 4, *>

D

<28, 4, *><5, 4, *, D>

 
Fig. 5. Example of block overflow and version split 

In some cases, the new node may be almost full so that a small number of insertions 
would cause it to overflow again. On the other hand, if it contains too few entries, a 
small number of deletions will cause it to underflow. To avoid these problems, it is 
required that the number of entries in the new node must be in the range [b⋅Psvu, b⋅Psvo] 
where Psvo and Psvu are tree parameters (for the following examples, Psvu=1/3, 
Psvo=5/6). A strong version overflow (underflow) occurs when the number of entries 
exceeds b⋅Psvo (becomes lower than b⋅Psvu). A strong version overflow is handled by a 
key split, a version-independent split according to the key values of the entries in the 
block. Notice that the strong version condition is only checked after a version split, 
i.e., it is possible that the live entries of a node are above b⋅Psvo before the node block-
overflows. 

Strong version underflow is similar to weak version underflow, the only difference 
being that the former happens after a version split, while the latter occurs when the 
weak version condition is violated. In both cases a merge is attempted with the copy 
of a sibling node using only its live entries. If the merged node strong version over-
flows, a key split is performed. Assume that at timestamp 4 we want to delete entry 
<48,1,*> from the tree in Figure 4. Node B weak version-underflows since it contains 
only one live entry <43,1,*>. A sibling, let node C, is chosen and its live entries are 
copied to a new node, let C'. The insertion of <43,4,*> into C' causes strong version 
overflow, leading to a key split and, finally, nodes D and E are created. Figure 6 illus-
trates this process. 



<5, 1, *, A>
<43, 1, 4, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, 4>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, 4>

A BRoot

<72, 1, 4, C>

<43, 4, *>

<78, 4, *>
<72, 4, *>

D

<72, 1, 4>

<83, 1, 4>
<95, 1, 3>
<99, 1, 4>

<78, 1, 4>

C

<102, 1, 4>

<43, 4, *, D>

<83, 4 *>

<102, 4, *>
<99,4, *>

E

<83, 4, *, E>

 
Fig. 6. Example of weak version underflow 

As shown in [BGO+96], MVB-trees require O(n/b) space, where n is the number of 
updates ever made to the database and b is the block capacity. Answering a timestamp 
query requires O(logbm+r/b) node accesses, where m is the number of live intervals at 
the queried timestamp, and r is the number of output intervals. Both the space re-
quirements and query performance are asymptotically optimal. A variation of MVB-
trees, which reduces the tree size by a constant factor can be found in [VV97]. Several 
algorithms for processing interval queries and temporal joins with MVB-trees, are 
proposed in [BS96] and [ZTS02], respectively. The multi-version framework has also 
been applied to R-trees to obtain various bi-temporal and spatio-temporal access 
methods [KTF98, TP01, KGT]. General cost models for multi-version structures can 
be found in [TPZ02]. 

3. The aggregate Point-Tree (aP-tree) 

A WA query can be formally defined as follows: given a set of points in the 2D uni-
verse [0, Mx]:[0, My], retrieve the number WA(q) of points contained in a rectangle [x0, 
x1]:[y0, y1]. In order to optimally solve the problem we start with the observation that a 
two-dimensional point can be transformed to an open-ended interval (in the key-time 
plane as described in section 2.2) as follows: the y-coordinate of the point can be 
thought of as a key value, while the x-coordinate represents the starting time of the 
interval. The ending time of all intervals is the current time (lying on the right bound-
ary of the time axis). Figure 7a shows the points used in the example of Figure 1a, and 
Figure 7b illustrates the resulting intervals.  

query q

y axis

x axis

y
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y
1

x0
x1

q
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time axis

0 q1
y
0

y
1

x0
x1  

(a) Original points and query (b) Transformed intervals and queries 
Fig. 7. Transformation of the problem 

The original query is also transformed since the goal of query processing now is to 
retrieve the number of intervals that intersect the vertical line segment q1 but not q0. 
Query q1 is represented as x1:[y0, y1], while q0 as →x0:[y0, y1]. The symbol “→” indi-
cates that the x-coordinate of q0 infinitely approaches (but does not equal) x0 from the 



left. In the sequel, we refer to q1 and q0 as vertical range aggregate (VRA) queries. In 
words, a VRA query x1:[y0, y1] will retrieve the number VRA(q1) of intervals that start 
before or at timestamp x1, and their keys are in the range [y0, y1]. Similarly, → x0:[y0, 
y1] will retrieve the number VRA(q0) of intervals that start before (but not at) time-
stamp x0 (this is needed in order to retrieve points at the left boundary of the query 
window). The result of WA(q) is the (arithmetic) difference VRA(q1)- VRA(q0). 

Thus, WA query processing can be reduced to the vertical line segment intersection 
problem optimally solved by the MVB-tree, except that here we are interested in the 
aggregate number, instead of the concrete ids, of the qualifying objects. This fact 
differentiates query processing since we can avoid the retrieval of the actual objects 
intersecting q1 and q0 and the expensive computation of their set difference. In the 
sequel, we present the aP-tree, which modifies MVB-trees to support VRA queries.  

3.1 Insertion and overflow handling 

The aP-tree is similar to the MVB-tree, consisting of several logical B-trees each 
responsible for a jurisdiction interval, which is the minimum bounding interval of all 
the lifespans of its entries. An entry of the aP-tree has the form <y, [xstart, xend), agg, 
pointer>, where pointer is the same as in MVB-trees, while y and [xstart, xend) corre-
spond to key and [tstart, tend) as defined in section 2.2 respectively. The additional field 
agg denotes the aggregate number over the entries alive during [xstart, xend) in the child 
node. Without ambiguity, in the sequel we refer to the y-field and [xstart, xend) of each 
entry as the key and lifespan of the entry respectively. The minimum bounding interval 
of all the lifespans in a node is called the lifespan of the node. Figure 8a illustrates a 
simple example. The agg fields in leaf entries are omitted since they are all equal to 1 
for the COUNT function. The leaf entry <5,[1,*)> in node A, for example, refers to 
the horizontal interval [1, Mx]:5, transformed from point (1, 5). The intermediate entry 
<5,[1,*),6,A> implies that there are 6 entries in node A such that (i) the key of each 
interval is equal to or greater than 5; (ii) the lifespan of each entry is contained in [1, 
Mx]. Figure 8b shows the equivalent tree where all leaf entries are represented in (px, 
py) format.  

<5, [1, *), 6, A> <5, [1, *)>

<13, [1, *)>
<25, [1, *)>
<27, [1, *)>

<8, [1, *)>

<39, [1, *)>

<43, [5, *)>

<52, [5, *)>
<48, [5, *)>

A BRoot

<72, [10, *)>

<83, [10, *)>
<78, [10, *)>

C

<43, [5, *), 3, B>
<72, [10, *), 3,  C> 

 

<5, [1, *), 6, A> (1, 5)

(1, 13)
(1, 25)
(1, 27)

(1, 8)

(1, 39)

(5, 43)

(5, 52)
(5, 48)

A BRoot

(10, 72)

(10, 83)
(10, 78)

C

<43, [5, *), 3, B>
<72, [10, *), 3,  C> 

 
(a) Example  (b) Alternative representation 

Fig. 8. An aP-tree 

A preprocessing step is required to sort the original points in ascending order of their 
x-coordinates because, as with MVB-trees, the transformed intervals must be inserted 
in this order. Furthermore, since all the intervals have their right end-points on the 
right boundary of the universe, no logical deletion is necessary. As a result, the num-
ber of live entries in any node will never decrease until the node dies, so weak and 
strong version underflows never happen. Therefore, the aP-tree has only a single pa-



rameter Psvo (no parameters Pversion and Psvu), which denotes the strong version over-
flow threshold. 

Insertion is performed as in MVB-trees except that it may be necessary to duplicate 
intermediate entries on the path. As an example, assume that an interval <55,[15,*)> 
(or equivalently point (15,55)) is inserted into the tree in Figure 8. Following the in-
termediate entry <45,[5,*),3,B>, the leaf node B that accommodates the new entry is 
first identified. As shown in Figure 9, the following changes are applied to the root 
node: (i) entry <45,[5,*),3,B> dies, having its xend modified to 15; (ii) a new live entry, 
pointing to the same child node, is created with its xstart set to 15. The aggregate num-
ber of the new entry is incremented to accommodate the insertion. Such entry duplica-
tion is required by the aP-tree (but not the MVB-tree) to ensure that the agg field 
correctly reflects the aggregate result during the entry’s lifespan [xstart, xend). In gen-
eral, duplication is necessary when the xstart of the intermediate entry is smaller than 
the xstart of the interval being inserted. 

<5, [1, *), 6, A> <5, [1, *)>

<13, [1, *)>
<25, [1, *)>
<27, [1, *)>

<8, [1, *)>

<39, [1, *)>

<43, [5, *)>

<52, [5, *)>
<48, [5, *)>

A BRoot

<72, [10, *)>

<83, [10, *)>
<78, [10, *)>

C

<43, [5, 15), 3, B>

<72, [10, *), 3,  C> 
<43, [15, *), 4, B>

<55, [15, *)>

 
Fig. 9. Duplicating intermediate entry 

Since no logical deletion is performed, all the entries in a leaf node must be alive 
when the node overflows. Therefore, a strong version overflow will always occur after 
version copies at the leaf level. Figure 10 illustrates a leaf overflow caused by the 
insertion of <40,[15,*)> (in the tree of Figure 9). Node A overflows and is version 
copied to node D, which generates a strong version overflow, and is finally split into 
itself and node E. Corresponding parent entries are added into the root node to reflect 
the changes. Notice that, due to the absence of logical deletions, the xend fields of leaf 
entries are never modified. As an optimization method, they are not stored on the disk 
and this knowledge is inferred.  

<5, [1, 15), 6, A> <5, [1, *)>

<13, [1, *)>
<25, [1, *)>
<27, [1, *)>

<8, [1, *)>

<39, [1, *)>

<43, [5, *)>

<52, [5, *)>
<48, [5, *)>

A BRoot

<72, [10, *)>

<83, [10, *)>
<78, [10, *)>

C

<43, [5, 15), 3, B>

<72, [10, *), 3,  C> 
<43, [15, *), 4, B>

<55, [15, *)>

<5, [15, *)>

<13, [15, *)>
<8, [15, *)>

D

<25, [15, *)>
<27, [15, *)>
<39, [15, *)>

E

<5, [15, *), 3, D>
<25, [15, *), 4, E>

<40, [15, *)>

a
b
c
d
e
f  

Fig. 10. Overflow of leaf node 

3.2 Vertical Range Aggregate (VRA) query processing 

As discussed before, a WA query in aP-trees is reduced to two VRA queries q1 and q0. 
The processing of a VRA query x:[y0, y1] starts by locating the corresponding root for 
x, after which search is guided by the keys and lifespans of intermediate entries. For 



example, in Figure 10, to answer the VRA query 15:[25, 75] we only consider those 
entries whose lifespans include 15; thus, entries a and d are eliminated immediately. 
Next, we purge the ones whose y-ranges do not intersect with [25, 75] (e.g., entry b). 
Among the remaining entries, some are totally inside the range [25, 75]  (i.e., c and e), 
and for these entries, it suffices to simply add their aggregate numbers (i.e., 4 and 4). 
Only if the y-range of an entry partially intersects [25, 75], we have to access its child 
node. Continuing the example, only one leaf node C is visited (from entry f), in which 
one object <72,10,*> is counted. Therefore, the final answer to the query is 4 + 4 + 1 
= 9.  

The processing of query →x:[y0, y1] is the same, except that intervals starting at x 
should be  excluded. As an example, consider the query →15:[25, 75]. After retriev-
ing the corresponding root node, we eliminate those entries whose intervals start at or 
after 15. So entries b, c, and e are discarded from further consideration. Then the 
processing proceeds as in the previous case by examining the y-ranges of the entries. 
Finally the result 8 is returned by visiting leaf nodes A and C.  

An important observation is that, in the worst case, processing a VRA query only 
needs to visit two paths from the root to the leaf level of a B-tree. This is because, at 
each non-leaf level, the y-ranges of the entries alive at any x-coordinate (e.g., x=15 in 
the query example above) are continuous and disjoint. As a result, there can be at most 
two y-ranges partially intersecting the y-range of the query (at the start, or the end 
point). The y-ranges of the other entries are either contained by (in which cases their 
agg fields are simply added) or disjoint with the query y-range. Therefore, the query 
cost (number of node accesses) of a WA query is at most four times the height of the 
B-tree (two times for each q1 and q0). Since we only care about the aggregate number, 
it suffices to return the arithmetic difference of the two VRA queries VRA(q1)-
VRA(q0), without computing the set difference of their results (which would require 
cost up to nlogn, where n is the number of intervals).  

3.3 Asymptotical Performance 

We first analyze the asymptotical space consumption of the aP-tree. Recall that a node 
is created from a version split, and dies by generating another version split, which 
spawns a new node. When a node is created, it is ensured that it contains fewer than 
PSVO·b entries; otherwise, a strong version overflow is generated and a key split is 
performed. It follows that a node will generate the next version split by receiving at 
least (b−PSVO·b) insertions after its creation. Let N0 be the number of leaf nodes. Since 
each insertion will create only one entry in a leaf node, we have: 

N0 · (b−PSVO·b) ≤ n ⇒ )(
)1(0 b
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where n is the total number of insertions (i.e., points). For a node at higher levels, the 
number of new entries incurred from an insertion is at most 2. This corresponds to the 
2 parent entries for new nodes created at the next level (through strong version over-
flows). Hence, a non-leaf node dies after at least (b−PSVO·b)/2 insertions. Assuming 
that the number of nodes at level i is Ni, we have: 
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Since every node contains at least PSVO·b/2=O(b) entries at each point during its life-
span, the height of any B-tree is O(logbn). Therefore, the space complexity of the aP-
tree is O(n/b logbn) nodes in the worst case1. Furthermore, since, as with conventional 
B-trees, each insertion incurs at most 2logbn node accesses, the aP-tree can be con-
structed with O(nlogbn) node accesses, which also dominates the cost of the preproc-
essing sorting step. 

Answering a VRA query involves visiting at most 2 paths from the root of a B-tree 
to the leaf level, i.e., 2logbn node accesses in the worst case. Since there are at most 
O(n) logical B-trees (as shown later the number is very small in practice because each 
B-tree includes many data points), the corresponding B-tree can be located in logbn 
node accesses as well, for example, by looking up a separate B-tree built on the root 
table. Therefore, a VRA query takes at most O(logbn) node accesses. Given that, a 
WA query is transformed into 2 VRA queries, a WA query can be answered in 
O(logbn) node accesses in the worst case. The following theorem summarizes the 
discussion above. 
Theorem 3.1: A WA query for spatial points can be answered in O(logbn) node ac-
cesses by building an aP-tree that consumes O(n/b logbn) nodes and can be con-
structed with O(nlogbn) node accesses.     ■ 

4. Cost Models for aP-trees 

In the last section, we have shown theoretically that any WA query can be answered in 
logarithmic worst case time by introducing the aP-tree. In this section, we analyze the 
practical performance of the structure. This is motivated by the following facts: (i) 
asymptotical performance gives only limited indication towards the actual perform-
ance in practice; and (ii) the crucial factors that a database administrator needs to 
consider usually include the tradeoff between the size of the structure and the query 
response time provided. Therefore, it is important to derive accurate cost models that 
estimate the number of disk pages occupied by a structure, and the number of page 
accesses in answering a WA query.  

We start by estimating the size of the aP-tree, considering, for simplicity, the case 
that all points have different x-coordinates. Let the live fanout fl of a leaf node be the 
average number of entries in the node alive at an x-coordinate during the node’s life-
span. Similarly fnl represents the live fanout of a non-leaf node. For example, in node 
B of Figure 10, there are 3 entries alive at x=5, and 4 at x=15. So the live fanouts of 
node B are 3 and 4 respectively at these two x-coordinates. Note that leaf and non-leaf 
nodes are distinguished because their structural changes are different.  

The live nodes at some x- coordinate increase due to key splits. Recall that when an 
overflow occurs at the leaf level, the new leaf node will always be key split, while, for 

                                                           
1 The space consumption of aP-trees is higher than that of MVB-trees (O(n/b)) due to the entry 

duplication that occurs in the aP-tree when the xstart of an intermediate entry is smaller than 
the xstart of the interval being inserted. 



non-leaf levels, key splits will happen only when the number of entries in the new 
node exceeds the strong version overflow threshold. To distinguish this, we define 
split points as follows. The split point SPl of a leaf node denotes the number of entries 
in a leaf node before it is key split. Similarly SPnl corresponds to the split point of a 
non-leaf node. Let bl and bnl represent the block capacities of leaf and non-leaf nodes 
respectively. Then we have: 

SPl = bl and SPnl = bnl · PSVO     (4.1) 
As shown in [Yao78], the fanout of a B-tree is ln2 times the split point of a node. 
Hence in our case, the relation between live fanouts and split points is as follows: 

fl = SPl · ln2 and fnl = SPnl · ln2     (4.2) 
An aP-tree consists of multiple logical B-trees, where more recent trees have larger 
heights as more insertions are performed. The height h of the last logical B-tree is: 
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If Ni is the total number of nodes at level i, the size of an aP-tree is: 
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The estimation for N0, the total number of leaf nodes, is relatively straightforward, 
observing that the only type of structural change at the leaf level is a version split 
followed by a key split. Therefore, each version split (i) increases the total number of 
nodes by 2, and (ii) the number of live nodes by 1. Notice that after all the insertions 
are complete, the number of live nodes is n/fl; thus, the total number of leaf-level ver-
sion splits is Vl=n/fl −1. Hence we have: 

1/2120 −=+= ll fnVN      (4.5) 
A similar analysis, however, does not apply to the estimation for Ni of non-leaf levels 
because key splits do not always happen after version splits. Furthermore, note that 
higher levels will appear only after a sufficient number of insertions. In the sequel, we 
say that the level-up point (LuP) for level i is Li, if this level appears after Li inser-
tions. Since a new level appears when the previous root at the lower level strong ver-
sion overflows, the estimation for Li (i≥1) is as follows. 

L1 = SPl 
Li = fl · fnl

i-2 · SPnl     (1<i≤h–1)     (4.6) 
where SPl, SPnl and fl, fnl are split points and live fanouts for leaf and non-leaf nodes 
respectively as defined earlier. Next we focus on N1 before generalizing to higher 
levels. Since no two points have the same x-coordinate, an entry will be duplicated in 
every intermediate node along the insertion path. Therefore, the total number of entry 
insertions at each level is also n. Notice, however, that this estimation excludes strong 
version overflows because: (i) the number of strong version overflows is considerably 
lower than n; so omitting it will not bias the results significantly, and (ii) although 
capturing strong version overflows is straightforward, it would lead to excessively 
complicated equations. 

Recall that a node already contains a number of entries (version copied from the 
previous node) when it is created. Another observation is that this number equals the 
number of live entries in the previous node. Since the average live fanout of non-leaf 
nodes is fnl, it follows that a node contains fnl initial entries on average. Therefore, a 



node will, on the average, take (bnl−fnl) entries before it dies. Note that, however, the 
live fanout applies only to nodes other than roots of logical trees (i.e., for N1, it applies 
after level 2 has appeared). Hence the number of level 1 nodes created after the LuP 
L2 can be estimated as (n−L2)/(bnl−fnl).  

At any time between LuPs L1 and L2, there is only one live node at level 1, which is 
the root of the logical tree. The live entries in the root increase gradually from 2 (when 
level 1 appears) to SPnl (when level 2 appears). It follows that on the average (L2–L1 
)/(SPnl–2) insertions are performed before the live entries in the root increase. For 
each value of j, by the same analysis as above, the number of newly created nodes 
is
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Similar analysis also applies to higher levels except level h−1. In general we have: 
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Now it remains to clarify the estimation of Nh-1, which is different from the other non-
leaf levels on two aspects: (i) there is no LuP for the higher level; (ii) the number of 
live entries in the root node increases up to n/(fl·fnl

h-2). Following the analysis of Ni, 
we have: 
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Replacing variables in equation (4.4) correspondingly with results in equations (4.1 to 
4.9), we obtain the cost model that predicts the structure size of the aP-tree. Note that 
this estimation does not include the size of the root table, which stores one entry for 
each root node. As will be shown in the experimental section, however, the size of the 
root table is negligible. Furthermore in this paper we assume that each disk page cor-
responds to one structure node; hence the model also gives the number of disk pages 
required by an aP-tree. It is straightforward to extend the equation to the general case 
where a node corresponds to multiple disk pages. 

The estimation for query costs is relatively simple. As discussed in the previous 
section, processing a VRA query involves visiting at most 2 paths from the root to the 
leaf level of a B-tree. Since the 2 paths start from the root node of the same logical B-
tree, the number of node accesses in answering a VRA query is at most: 
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Thus the cost of answering a WA query, which involves two VRA queries, is given by 
equation 4.11. Notice that the query costs involve a very low constant value irrespec-
tive of the sizes and positions of the queries. 
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5. Experiments 

In this section, we evaluate the sizes and query performance of aP- and aR-trees with 
synthetic and real datasets. All queries are quadratic, i.e., both sides of each query 
window have the same length, which is represented as a percentage of the unit axis. In 
our implementation, we optimize the performance of both structures by storing only 
necessary information in leaf and non-leaf entries. For example, for aR-trees, points 
are stored in leaf entries while MBRs are stored in non-leaf entries. For aP-trees, on 
the other hand, the xend field of each entry does not need to be stored (see section 3.1). 
The page size is set to 4,096 bytes, for which the leaf and non-leaf node capacities of 
aP-trees are 255 and 204 respectively, while the corresponding figures for aR-trees are 
255 and 170 (more information is needed in an intermediate aR-entry to store its 
MBR). The Psvo parameter of the aP-tree is set to 0.5 in all cases. 

5.1 Uniform datasets 

In the first set of experiments, datasets are generated uniformly in a unit square uni-
verse, ensuring that no two points have the same x-coordinate. Query performance is 
measured by the average number of node accesses in answering a workload consisting 
of 500 queries. Each query in the same workload has the same side length, ranging 
from 10% to 60% of the universe axis, resulting in query areas from 1% to 36%. The 
position of a query is randomly generated in the universe. Figure 11a demonstrates the 
number of node accesses as a function of the query side for the aP- and aR-tree index-
ing a uniform dataset with 150K points. It is clear that the aR-tree is comparable to the 
aP-tree only for very small query windows, and its performance keeps increasing 
linearly with the query side. On the other hand, the performance of the aP-tree stabi-
lizes around 10 accesses irrespective of the query side, which makes it considerably 
more efficient than its competitor. Further, since the height of the aP-tree is 3, the cost 
(10 accesses) is exactly our estimation given by equation (4.11).  
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Fig. 11. Query costs of WA queries 

Figure 11b demonstrates the query cost (using the workload with side length 50%) as 
a function of the cardinality for uniform datasets with 50K, 100K, 150K, 200K, and 
250K points. The performance of the aR-tree deteriorates quickly when the cardinality 
increases, while that of the aP-tree remains constant (at 10 node accesses), as there is 



no change in the height. Notice that our estimation (by equation 2.1) of the aR-tree 
performance is very accurate in all cases, producing error less than 5%. 

As discussed in the analysis, the excellent performance of aP-trees comes at the ex-
pense of extra space consumption. Figure 12 shows the sizes of aP- and aR-trees as a 
function of the data cardinality. aP-trees consume more space than the corresponding 
aR-trees, because each insertion must create a new entry in each node on the insertion 
path, while, for aR-trees, new non-leaf entries are needed only when new nodes at the 
lower level are spawned. Furthermore, despite the fact that the size complexity of the 
aP-tree is O(n/b logbn), its growth is quite linear with the cardinality. This is expected 
because the factor logbn in the complexity actually corresponds to the height of the 
tree. Therefore, the size of the aP-tree grows linearly as long as its height remains 
unchanged, which is true for the 5 cardinality values in the figure. Note that the esti-
mated values (by equation 4.4) capture the actual behavior of the aP-tree very well, 
producing error below 5% in all cases. It is worth mentioning that the sizes of the root 
tables of the aP-trees are about 0.1% of the total tree sizes. 
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Fig. 12. Size comparison of aP- and aR-trees 

5.2 Non-uniform datasets 

In this section we compare the two structures using 6 non-uniform datasets described 
as follows: (i) gauss contains 100K points distributed following the gaussian distribu-
tion; (ii) skewed has the same cardinality but the distribution is skewed (gauss and 
skewed were generated using the GSTD utility [TSN99]); (iii) CFD1  (52K points) 
and CFD (200K points) are vertex data from various Computation Fluid Dynamic 
models measured for a cross section of a Boeing 737 wing with flaps out in landing 
configuration [Web1]; (iv) SCG contains 62K points representing gravity data for 
South California [Web2]; (v) SCP contains 46K points describing places in South 
California [Web3]. The datasets are shown in Figure 13. 

Gauss Skewed CFD1 CFD2 SCG SCP 
Fig. 13. Visualization of non-uniform datasets 



To study query performance, we generated workloads specifically for each dataset 
such that the queries in a workload distribute similarly to the corresponding dataset in 
order to avoid queries falling into empty areas. Figure 14 illustrates, for each dataset, 
the number of node accesses as a function of the query length. It is clear that aP-trees 
outperform aR-trees in all cases, and the difference is up to an order of magnitude. An 
interesting observation is that, when data is skewed, the processing cost of aR-trees 
usually drops when the query length exceeds a threshold. This happens because 
skewed data lead to skewed MBRs of the nodes. Hence when the query rectangle is 
large enough, many MBRs tend to assemble inside the query window, so fewer MBRs 
intersect the window sides. Note that this phenomenon does not exist for uniform 
datasets, where the MBRs of nodes are also uniformly distributed.  
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Fig. 14. Query performance for non-uniform datasets 

Finally, Figure 15 demonstrates the sizes of corresponding aP- and aR-trees for the 
datasets above, as well as the estimated values from our model (equation 4.4). The 
difference between the two structures is similar to that of the uniform case, and our 
cost models again predict the performance very accurately. 
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Fig. 15. Sizes of both structures for non-uniform datasets 

6. Conclusions and Future Work 

This paper addresses the problem of processing WA queries on planar points, propos-
ing a new indexing structure, the aP-tree, that answers any WA query in logarithmic 
worst case time. Extensive experiments have shown that the aP-tree outperforms its 
most significant competitor, the aR-tree, by up to an order of magnitude. Its main 
advantage compared to any R-tree based method, is that the query cost is independent 
of the window size. We believe that, given the significant performance benefits and 
the dropping cost of secondary memory, the extra space requirements of the aP-tree do 
not constitute a serious shortcoming, especially for applications that require fast, real-
time query processing. In addition, we present efficient cost models (with less than 5% 
error) that predict the structure size of the aP-tree and, consequently query perform-
ance.  

An interesting direction for future work is to investigate whether it is possible to 
improve the space requirements of the aP-tree, or to prove a theoretical bound for any 
indexing structure that answers WA queries in logarithmic worst case time. A chal-
lenging extension is to apply the same approach to support more general spatial ob-
jects (such as rectangles, spheres, etc), possibly in multiple dimensions. 
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