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Abstract 
 
 
 

We propose a volatility-based threshold capital asset pricing model (V-CAPM) in which 
asset betas change discretely with respect to innovations in aggregate volatility. Using 
option-implied measures (i.e. returns on at-the-money straddles written on the S&P 500 
index and range of the VIX index) as proxies for changes in aggregate volatility, we find 
that asset sensitivity to market risk changes significantly when aggregate market volatility 
is beyond a certain threshold. More specifically, portfolios of small (big) and value 
(growth) stocks have significantly higher (lower) betas at times of high volatility. Due to 
changes in their market betas, small and value stocks are perceived riskier than their big 
and growth counterparts in bad times, when aggregate volatility is high. The proposed 
model also does a better job with pricing, especially for value and small portfolios and 
when aggregate market volatility is high. 
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1.  Introduction 

 

Capital asset pricing model (CAPM) assumes that a firm's riskiness, which is 

captured by its market beta, is constant through time. However, changes in business 

conditions, technology, and taste might induce shifts in investment opportunity set and 

investors' associated risk-return tradeoffs. For example, according to Jagannathan and 

Wang (1996), betas and expected returns vary over time because of changes in the set of 

firm-specific information available to investors and overall economic conditions. 

Although there is now considerable empirical evidence on time variation in betas, there is 

no consensus about how this variation should be modelled. Many studies model the 

variation in betas using continuous approximation and the theoretical framework of the 

conditional CAPM.1 However, Ghysels (1998) shows that this approximation fails to 

capture the true dynamics of betas because of significant structural breaks in parameter 

estimates. He argues that the actual time variation in betas is slower than assumed by 

linear factor models such as the conditional CAPM, and advocates the use of the static 

CAPM until researchers come up with a model that captures the time variation in betas 

correctly.  

In this paper, we model an asset's beta neither as static nor as a continuous 

approximation implied by conditional models; rather we assume that asset betas change 

slowly and discretely over time.2 More particularly, we assume that investors update asset 

betas with respect to changes in aggregate risk conditions, which is captured by 

innovations to aggregate volatility. There are several reasons why we assume asset betas 

should change with respect to changes in aggregate volatility. First, although a static 

CAPM assumes aggregate market risk is constant through time, it is well documented 

                                                 
1 See Harvey (1989), Ferson and Harvey (1991, 1993, 1999), Ferson and Korajczyk (1995), and 
Jagannathan and Wang (1996) for detailed explanation of conditional asset pricing models. 
 
2 This is intuitively similar to the downside-upside beta approach in Ang, Cheng, and Xing (2006) 
who show that asset betas change during downside and upside markets and that downside risk is 
priced. Our approach is also closely related to Markov chain regime switching models, as in 
Guidolin and Timmermann (2008) and Chen, Gerlach, and Lin (2011). 
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that equity and aggregate volatility are both time-varying.3 Therefore, an asset pricing 

model which incorporates time-variation in aggregate volatility would imply that asset 

betas should change accordingly. Second, economic theory suggests that if investors have 

mean-variance efficient preferences then they should not only care about market returns 

but also about innovations to aggregate market volatility. According to Campbell (1993) 

and Chen (2002), investors are reluctant to lose wealth in periods of high volatility, which 

represent a deterioration in investment opportunities, and which usually coincides with 

periods of low consumption (recessions). Thus, assets whose returns correlate positively 

with innovations in market volatility would be seen as hedges against volatility risk, and 

would be demanded by risk-averse investors, driving the prices of those assets up, 

implying lower average returns. In line with this framework, several studies have 

modelled aggregate volatility risk as a separate risk factor.4 Although our approach takes 

aggregate volatility risk as the key determinant of the investment-opportunity set, rather 

than exogenously specifying it as a separate risk factor, we model aggregate volatility as 

an endogenous parameter, which investors would take into account in determining the 

riskiness of an asset. 

More particularly, we propose a volatility-based threshold CAPM (V-CAPM), 

where asset betas change contemporaneously with respect to investors' assessment of 

aggregate risk conditions, which is proxied by changes in aggregate market volatility. 

The contribution of the proposed V-CAPM is threefold. First, it allows for a slower and 

discrete variation in betas, as suggested by Ghysels (1998). More specifically, investors 

do not update asset betas continuously, as in conditional versions of the CAPM, but re-

assess an asset's riskiness when aggregate volatility moves beyond a certain threshold. 

Second, it allows for time variation in aggregate volatility, which is not possible in a 

static CAPM. By endogenously incorporating aggregate volatility into the CAPM, our 

model allows betas to change contemporaneously with respect to innovations in 

                                                 
3 For theoretical background and empirical evidence on the stochastic volatility of equity and 
stock market returns, see French, Schwert, and Stambaugh (1987), Schwert (1989), Engle and Ng 
(1993), Canina and Figlewski (1993), Braun, Nelson, and Sunier (1995), Andersen (1996), 
Bollerslev and Mikkelsen (1999), and Bekaert and Wu (2000). 
 
4 See Ang et al. (2006), Moise (2007), and Adrien and Rosenberg (2008). 
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aggregate volatility, thus helps better represent changes in the investment opportunity set 

with respect to changes in aggregate risk conditions. The model is rich in its predictions 

and offers alternative explanations to some of the empirical failures of the CAPM. Third, 

we formally test volatility-related regime changes in beta risk, and estimate 

corresponding betas using Hansen's (2000) threshold regression methodology, which is 

intuitive and fully supported by econometric theory.5 

To test the above hypothesis and to model changes in betas with respect to 

innovations in aggregate volatility risk, one has to use observable/tradable proxies that 

best represent investors' information set on aggregate volatility. To do that, we resort to a 

measure from the options market and use returns on at-the-money (ATM) straddles 

written on the S&P 500 index as a proxy for aggregate volatility risk.6 There are three 

main reasons for using ATM straddle returns as proxy for changes in aggregate volatility. 

First, options provide us with important insights about the underlying spot market. Prices 

formed in option markets are forward looking and reveal important information about 

investors’ expectations of the price dynamics of the underlying. For example, the VIX 

index gives us information about investors’ expectations on the evolution of future 

volatility in the market, also known as investor sentiment.7 Second, and more important, 

straddles are volatility trades and their returns are very sensitive to innovations in the 

volatility of the underlying, making index straddles ideal candidates for examining the 

effect of aggregate volatility on betas.8 Third, since options themselves are tradable 

                                                 
5 See Hansen (2000) and Akdeniz, Altay-Salih, and Caner (2003) for a detailed explanation of 
threshold estimation methodology. 
 
6 Another alternative to proxy aggregate volatility would be to use statistical measures such as 
variance of historical market returns or GARCH-type volatility estimations. We performed 
similar tests using these statistical measures, however, the results were not significant, confirming 
our argument that market-based measures do a better job in capturing investors’ expectations on 
aggregate market risk. Ang et al. (2006), Arisoy et al. (2007), Arisoy (2010), and Cremers et al. 
(2011) further support the use of option-implied measures as proxies for aggregate volatility risk. 
 
7 VIX is an implied volatility index that measures the market’s expectation of 30-day S&P 500 
volatility implicit in the prices of near-term S&P 500 options. 
 
8 Another market-based measure for aggregate volatility risk is the VIX. We also perform our 
analysis based on a new measure constructed using the VIX index and obtain very similar results. 
For the construction of this new volatility measure (RVIX) and for related results, the reader is 
referred to the appendix. 
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assets, using straddle returns as a proxy for changes in aggregate volatility helps avoid the 

problem of mimicking portfolios, and helps better represent a dynamically managed 

portfolio that corresponds to investors’ actual investment opportunity set. 

Using returns on S&P 500 ATM straddles as proxy for changes in aggregate 

volatility risk and portfolios sorted with respect to market capitalizations as test assets, 

the results can be summarized as follows. First, we document significant time variation in 

betas. More specifically, nine out of ten portfolios have significant bootstrap p-values at 

the 1% level, and the modified sup LM test suggested by Hansen (1996) confirms our 

hypothesis that asset betas change slowly and discretely over time and changes in 

aggregate volatility is a key determinant in investors' assessment of market risk. Next, we 

test whether different size portfolios have different beta sensitivities with respect to 

aggregate volatility risk. Threshold aggregate volatility estimates imply that investors 

update their beta risk assessments when S&P 500 straddle returns are beyond 15.28% for 

small stocks and beyond 18.41% for big stocks. Note that index straddles earn positive 

returns when the market is highly volatile. Therefore, investors update betas depending 

on whether aggregate volatility is high or low. However, the direction of this change in 

betas is more striking. Looking at changes in portfolio betas, one can see that stocks in 

the smallest eight deciles have consistently higher betas at times of high volatility 

compared to stocks in the biggest market capitalization portfolio. More specifically, small 

stocks are perceived to be riskier and large capitalization stocks are seen as safer 

investments at times of high volatility. It is only the stocks in the biggest market 

capitalization portfolio that correlate less with the market when aggregate market 

volatility is high. Furthermore, the beta of a portfolio that longs stocks in the smallest 

decile and shorts stocks in the largest decile (SMB) changes from -0.11 to 0.23, moving 

from a low-volatility state to a high-volatility state.  

We repeat the same procedure for 10 portfolios sorted with respect to book-to-

market ratios, and further for twenty-five (5x5) and six (2x3) portfolios sorted with 

respect to both market capitalizations and book-to-market ratios. The results are similar in 

that most portfolios exhibit time-variation in betas due to aggregate volatility risk. More 

particularly, value (growth) portfolios have higher (lower) betas when aggregate volatility 
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is high, implying that the former are deemed riskier by volatility-averse investors, 

because their returns correlate more with the market when the market is highly volatile.  

French, Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992) 

empirically document that periods of high volatility usually coincide with downward 

market moves. Furthermore, risk-averse investors are reluctant to lose wealth in periods 

of high volatility because this represents a deterioration in investment opportunities, 

which usually coincides with periods of low consumption (recessions).9 Our findings 

imply that investors see small and value firms as riskier because their returns correlate 

strongly with market returns at times of high volatility. On the other hand, big and growth 

firms are seen as hedges against innovations in aggregate market volatility because their 

betas correlate less with market returns at those times, implying a higher demand, higher 

prices, and lower returns. Lettau and Ludvigson (2001) and Petkova and Zhang (2005) 

also document similar results under conditional CCAPM and CAPM settings, 

respectively. The authors find that value and small stocks correlate with consumption 

growth (or market returns) more during bad times relative to big and growth stocks, while 

the opposite holds during good times. Although similar in spirit, our results imply that 

investors view small and value stocks riskier than their big and growth counterparts 

because their returns are more sensitive to market risk at times of high volatility. 

To test the power of the above results, we next compare Jensen’s alphas and root 

mean squared pricing errors of the proposed threshold V-CAPM with those of the static 

CAPM. In low-volatility states, Jensen’s alphas implied by the V-CAPM are almost as 

good as the CAPM alphas for most portfolios. However, the biggest improvement in 

alphas is observed in high-volatility states and especially for small and value portfolios. 

While the CAPM does a poor job in pricing value and small portfolios at times of high 

volatility, the V-CAPM alphas are insignificant for small and value portfolios at those 

times. Furthermore, root mean squared pricing errors for the V-CAPM are always 

marginally better than those of the CAPM, indicating that the proposed model not only 

offers a potential explanation to the well-documented size and value anomalies but also 

does a better job in pricing than the static CAPM.  

                                                 
9 Hsu and Li (2009) document that equity market volatility is higher in bear markets and 
recessions.  
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We further test the pricing implications of the proposed model by dividing the 

sample into high- and low-volatility periods and estimating the corresponding risk 

premia. Once again, with its significant alpha and insignificant and negative risk 

premium, the static CAPM is insufficient to explain the cross-section of expected returns 

throughout the sample period. Looking at the risk premia of the V-CAPM in volatile and 

calm periods, we find that the market risk premium is still negative and insignificant in 

low-volatility regime; however, it becomes significant and negative in high volatility 

regime, implying that investors require compensation for holding stocks that correlate 

highly with the market when volatility is high. The results are robust to the inclusion of 

Fama-French factors, SMB and HML. 

In order to check the robustness of the results, we extend the sample period to 

include the recent highly volatile bear market, and introduce an alternative option-based 

measure, which is the range of the VIX index (RVIX).  Following Chou (2005), we 

define RVIX as the difference between the maximum and minimum levels of VIX in a 

given month. This results in values of RVIX from January 1986 to March 2010, covering 

a total of 291 months. We repeat the above tests, this time using RVIX as a proxy for 

changes in aggregate volatility, and find that the results are robust to the use of an 

alternative market-based measure and inclusion of the recent volatile period.  

The remainder of the paper is organized as follows. Section 2 introduces the 

threshold V-CAPM and the related econometric framework. Section 3 presents the data 

and Section 4 documents the empirical findings associated with the proposed model. The 

final section offers concluding remarks. 

 

2.  Threshold Volatility CAPM 

 

To capture the effect of changes in aggregate volatility on market beta, we start 

with the following conditional CAPM: 

 

             
 1

 

 

    ,| 11,1,   itttmtitti ZrEZrE 
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where ri,t+1 is the excess return on asset i, rm,t+1 is the excess return on the market 

portfolio, and E the expectation operator. t captures time variation in market betas, and 

Zt is the conditioning information on investors’ assessments of aggregate volatility risk. 

Using returns on S&P 500 at-the-money straddles as a proxy for investors’ information 

set for changes in aggregate volatility, we model time variation in betas as in Ferson and 

Harvey (1999). More specifically, 

 

,11 }{2}{1    
tt ZZt           

 2
 

 

where 1{} is the indicator function and  is the threshold parameter for aggregate 

volatility. Combining Equations (1) and (2), we have the following threshold volatility 

CAPM: 

 

       ,1111 1,1,}{2}{1211,   titmZZZZti rr
tttt

         
 3

 

 

where Zt is the return on at-the-money S&P 500 straddles that summarizes investors’ 

information sets on the evolution of aggregate volatility. 

 

2.1  Econometric Model 

 

The observed sample is {rt+1, rm,t+1, Zt}, t = 1, …, T-1.  The random variables rt, 

rm,t, and  Zt are real-valued. The threshold variable Zt is assumed to have a continuous 

distribution. Threshold regression has the same format as in Equation (3). 

 

We can rewrite Equation (3) in the following form, 

 

                     ,                                                            (4) 

 

,  = 2, and  = 1-  2. where xt+1 = rm,t+1,       

 

 )( 1111   tttt exxr 
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The results can further be generalized to the case where only a subset of 

parameters switches between the regimes and to the case where some regressors only 

enter in one of the two regimes. Also,  takes values in a bounded subset of the real line, 

. We assume rmt, Zt, and et are strictly stationary ergodic and -mixing, with -mixing 

coefficients satisfying m½ < . The -mixing assumption controls the degree of time-

series dependence, allows the processes to be autocorrelated and heteroskedastic, and is 

sufficiently flexible to embrace many non-linear time-series processes, including 

threshold autoregressions.10 

 

2.1.1  Testing for a Threshold 

 

We use the heteroskedasticity-consistent Lagrange Multiplier (LM) test for a 

threshold, as in Hansen (1996). We test for the null of H0:   = 0 against H1:    0. 

For all    we have the following LM statistics for the null of no threshold: 

 

where    is obtained from the restricted least squares. Unfortunately, the large sample 

limit for the sup-LM test is not nuisance-free because the threshold is not identified under 

                                                 
10  See Hansen (2000) for detailed explanations related to the assumptions. 
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the null of no-threshold effect. Because of this issue, Hansen (1996) suggests a bootstrap 

analog of the sup-LM test and shows that this method yields asymptotically correct p-

values. In this paper, we use the bootstrap analog, following the steps outlined in Hansen 

(1996). 

 

2.1.2  Estimation 

 

In this section, we estimate the unknown threshold parameter , however, we 

slightly change the model to have, 

                              

                           (5) 

 

where T is the threshold effect. We let T  0 as T    in order to have a nuisance 

parameter free asymptotic distribution.  However, confidence intervals for  can be built 

even when the threshold effect does not decrease with the sample size. We can rewrite (5) 

in a matrix form, where X and X are T  2 matrices and R is a Tx1 vector: 

 

                                .                                                                (6) 

 

We use the LS estimation: 

 

 
,)()(),,(   XXRXXRST 
                

where ST is the sum of squared errors. To estimate the slope parameters and the threshold 

parameter, we observe that first, given , Equation (5) is linear in  and T. We can have 

the conditional LS estimates                           by regressing Y on [X X].  Then, set  

 

 
.)),(ˆ),(ˆ()(  TT SS 
       

 

The estimate of threshold parameter,   , can be uniquely defined as, 
 

 
  ,minargˆ  TS

     
 

where  is minimized over the set T =   {Z1,……,ZT}. Therefore,  can be derived by 

fewer than T function evaluations. The asymptotic distribution for the threshold estimate  

follows from Hansen’s (2000) Theorem 1. 

)(ˆ and )(ˆ T 

,1-T,1,  t,  )( 1111   ttTtt exxr 

eXXR T   
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 3.  Data  

 

The market-return data is from Center for Research in Security Prices (CRSP) 

value-weighted market index for all NYSE, AMEX, and NASDAQ stocks. The risk-free 

rate is the one-month T-Bill rate obtained from Ibbotson Associates. S&P 500 index 

(SPX) option data is obtained from Chicago Board Options Exchange’s (CBOE) Market 

Data Express (MDX). The sample covers the period from January 1987 to March 2007, 

with a total of 243 months. 

The test portfolios consist of stocks sorted according to their market 

capitalizations and book-to-market ratios. More precisely, we use 10 portfolios sorted 

according to their market capitalizations, 10 portfolios sorted according to their book-to-

market ratios, 10 portfolios sorted according to their dividend yield-to-price ratios, 25 

portfolios (5x5) sorted according to size and book-to-market ratios, and six portfolios 

(2x3) sorted according to size and book-to-market ratios, all of which are downloaded 

from Kenneth French’s data library. 

For proxying aggregate volatility risk, we use the returns on at-the-money 

straddles written on the S&P 500 index. We construct the ATM straddles as in Coval and 

Shumway (2001). However, we use standard ATM straddles rather than zero-beta 

straddles, as those are the volatility trades used by the investors. Before computing the 

returns on ATM straddles, the following filtering criteria are applied. First, we eliminate 

all options that violate arbitrage pricing bounds, and the put-call parity by more than 1%. 

Then, options that expire during the following calendar month are identified, and the 

options that expire during the next calendar month are used, because they represent the 

most liquid options among various maturities.11 Options that expire within 10 days are 

also excluded from the sample because they show large deviations in trading volumes, 

which casts doubt on the reliability of their pricing.12 Next, each option is checked to 

determine whether it is traded the next trading day or not. If no option is found in the 

                                                 
11 According to Buraschi and Jackwerth (2001), most trading activity in S&P 500 options is 
concentrated in the nearest (0–30 days to expiry) and second-nearest (30–60 days to expiry) 
contracts. 
 
12 Stoll and Whaley (1987) report abnormal trading volumes for options close to expiry. 
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nearest expiry contracts, then options in the second-nearest expiry contracts (expiring in 

two calendar months) are used.  

After applying these criteria, we compute daily ATM returns using raw net 

returns. More specifically, an ATM straddle return is the equally weighted average return 

on one long call and one put option with strike prices just above the S&P 500 index level, 

-5 < S-K < 0, and one long call and one put option with strike prices just below the spot 

price,  0 < S-K < 5. Finally, we cumulate daily ATM returns to monthly returns that form 

the basis of our tests. 

 

<< Insert Table 1 about here >> 

 

Table 1 reports the summary statistics for the monthly returns on S&P 500 at-the-

money straddles (STR), and the market portfolio. For the sample period, S&P 500 ATM 

straddles on average lost 8.65% per month, which is in line with previous studies. For 

example, Coval and Shumway (2001) report weekly returns of -3.15% for ATM 

straddles. Driessen and Maenhout (2006) document weekly returns of -1.67% for the 

returns on crash-neutral ATM straddles. Broadie, Chernov, and Johannes (2007) report 

monthly returns of -15.7% for ATM straddles. The correlation between market returns 

and ATM returns is -0.31.  

 

3.1 Some Stylized Facts 

 

 Before moving on to tests of the proposed V-CAPM, this section documents some 

stylized facts about the chosen threshold parameter, market returns, and the empirically 

documented size and value vs. growth anomalies.  

 First, looking at Figure 1, one can see that ATM straddles are indeed volatility 

trades and they earn huge profits, especially when markets experience significant drops. 

Second, looking at Table 2, one can observe that size and book-to-market (B/M) 

portfolios lose more when aggregate market volatility is high. This is in line with Hsu and 

Liu (2009), who document that volatile periods coincide with bear markets. Third, Table 

2 also documents the typical size and value vs. growth anomalies. On average, small 
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(value) stocks tend to earn higher returns then big (growth) stocks, which is not justified 

by their CAPM betas. When the sample is divided into calm and volatile periods, one can 

observe a similar pattern for calm periods. On the other hand, small and value stocks are 

the worst-performing stocks in volatile markets. Despite their higher average returns, 

small and value stocks lose considerably at times of high volatility, when the market is 

doing badly. Furthermore, by losing less than the market portfolio, big and growth stocks 

offer a partial hedge against volatile market conditions.  

 

<< Insert Figure 1 about here >> 

 

<< Insert Table 2 about here >> 

 

4.  Empirical Findings 

 

We begin empirical tests by examining whether there are statistically significant 

discrete regime shifts in betas due to changes in aggregate volatility risk. Tables 3, 4, and 

5 report the associated bootstrap p-values for the sup-LM test. The null hypothesis is that 

there is no regime shift in portfolio betas. According to Table 3, there have been 

significant regime changes in betas of most portfolios. For example, for portfolios sorted 

with respect to market capitalizations, nine out of ten experienced significant changes in 

their betas during high- and low-volatility periods. On the other hand, for portfolios 

sorted with respect to book-to-market ratios, the evidence indicates a regime shift in betas 

of seven out of ten portfolios at the statistical signifance level of 10%. The highest book-

to-market portfolio does not exhibit a statistically significant regime shift in betas.  

This finding could be due to concentration of high market capitalization firms 

within the high book-to-market portfolios. The potential existence of big market 

capitalization stocks in the value portfolios might be driving out the value effect in those 

portfolios. In order to eliminate this effect and have a clearer understanding of the 

interaction between size and book-to-market portfolios, we next perform the sup-LM test 

for 25 portfolios (5x5), sorted with respect to their market capitalizations and book-to-

market ratios. As can be seen in Table 4, within the three smallest size quintiles, value 
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portfolios exhibit significant shifts in their betas between high- and low-volatility 

regimes. On the contrary, for the two biggest size quintiles, it is only the growth 

portfolios that exhibit statistically significant p-values. This finding might indicate new 

evidence and provide an alternative explanation to the empirically observed size and 

value vs. growth anomalies.  

Finally, we refine the sample to six portfolios (2x3) sorted with respect to their 

market capitalizations and book-to-market ratios. The results for the associated sup-LM 

tests are reported in Table 5. Consistent with our previous findings, the null hypothesis of 

no regime shift is rejected for the small-value portfolio. Similarly, the beta of big-growth 

portfolio exhibits significant regime shifts between high- and low-volatility periods. 

 

<< Insert Table 3 about here >> 

 

<< Insert Table 4 about here >> 

 

<< Insert Table 5 about here >> 

 

The above findings suggest that betas might be stable for size and B/M portfolios 

during tranquil periods, however, investors seem to update their beta estimates during 

volatile periods. This is in line with Ghysels (1998), who argues that betas change 

through time very slowly and the conditional CAPM models may overstate the time 

variation, and as a result, continuous approximations of the CAPM will produce highly 

volatile beta estimates. This argument is confirmed with the evidence reported in Braun, 

Nelson, and Sunier (1995), who use a bivariate EGARCH model to estimate conditional 

betas and document weak evidence of time variation in conditional betas. According to 

the V-CAPM introduced here, we document that betas change discretely in time, and this 

change is determined by changes in aggregate volatility conditions, captured by monthly 

returns on ATM S&P 500 index straddles in our model. 
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4.1  The Relationship Between Aggregate Volatility and Beta 

 

Having detected significant regime shifts in betas for most of the portfolios, we 

proceed to test the magnitude of this change, and estimate market betas and their 

associated threshold parameters under high and low aggregate volatility regimes. Tables 

6 and 7 report the static CAPM betas, betas in low (regime 1) and high (regime 2) 

volatility regimes, and the threshold estimate for ATM straddle returns, which determines 

the level of aggregate volatility, above (or below) which investors re-assess a stock’s 

riskiness.  

 Panel A of Table 6 documents significant changes in portfolio betas. In 

particular, betas of stocks in the smallest eight portfolios increase significantly at times of 

high volatility, whereas the opposite holds for stocks in the biggest decile. This implies 

that investors re-assess the riskiness of the small market capitalization portfolios when at-

the-money straddle returns are above (or below) the threshold of 15.28%. For example, 

when straddle returns are above 15.28%, investors re-estimate the beta for the smallest 

portfolio, and update it from 0.87 in low-volatility periods to 1.24 in high-volatility 

periods. Similarly, the riskiness of the biggest portfolio changes when the ATM straddle 

returns are above (or below) 18.41%. More specifically, the beta for the biggest portfolio 

drops from 0.98 in low-volatility periods to 0.93 in high-volatility periods. Furthermore, 

the beta differential between the smallest and biggest portfolios (SMB) increases from -

0.11 in a low-volatility regime to 0.30 in a high-volatility regime. The above results 

support Campbell (1993) and Chen (2002) findings that investors care not only about 

market returns but also about innovations to aggregate volatility. Our findings imply that 

the sensitivity of an asset’s return to changes in aggregate volatility is an important 

determinant of an asset’s riskiness. This has clear implications for pricing and portfolio 

allocation. For example, big stocks offer a hedge against innovations to volatility. By 

having a lower covariance with the market at times of high volatility, which is usually 

associated with downward market moves and recessions, the biggest portfolio offers a 

hedge to risk-averse investors, who are reluctant to lose wealth during those times. This 

implies a demand for big stocks from investors who are averse to innovations in 

aggregate market volatility, thus pushing their prices up and resulting in lower returns. 
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Similarly, investors require a premium for holding stocks in small portfolios because they 

lose much more when aggregate volatility increases. Because increases in aggregate 

volatility are mostly associated with bad market conditions and deteriorations in investor 

wealth, by correlating highly with the market at those times, small stocks become much 

riskier at times when an extra dollar of loss is much more important.  

Panel B of Table 6 offers similar results. Five of the portfolios consistently have 

higher betas at times of high volatility. On the other hand, the two growth portfolios 

exhibit lower betas during those periods. Although the results are not as strong as those of 

the size portfolios, the evidence indicates significant time variation in the risk 

assessments of value and growth portfolios with respect to their sensitivity to changes in 

aggregate volatility. To better understand the sensitivity of portfolio returns to changes in 

aggregate volatility, we disentangle the size effect from the value effect by refining the 

sample in a similar fashion as in the previous section. 

 

<< Insert Table 6 about here >> 

 

<< Insert Table 7 about here >> 

 

Finally, Table 7 reports the beta estimates in low and high volatility regimes, and 

the threshold parameter estimate for 25 portfolios (5x5) and six portfolios (2x3), sorted 

with respect to their market capitalizations and book-to-market ratios, respectively. 

Looking at Panel A, one can see that it is only the two growth portfolios (4-L and B-L) 

that have lower betas at times of high volatility. Furthermore, it is only the big-growth 

portfolio which has a beta less than 1 in volatile markets. The remaining portfolios have 

consistently higher betas in a high-volatility regime, regardless of their book-to-market 

ratios. Panel B offers similar results. Regardless of being value or growth, small 

portfolios are riskier in times of high aggregate volatility. However, the increase in risk is 

most pronounced for the two value portfolios (S-M and S-H). On the contrary, by 

covarying less with the market in high volatility periods, it is only the growth portfolio 

among the big market capitalization stocks (B-L) that offers a hedge to investors who are 

averse to innovations in aggregate volatility. The results are in line with Lettau and 
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Ludvigson (2001) and Petkova and Zhang (2005), and confirm our previous findings that 

growth stocks are perceived to be less risky at times of high volatility, whereas value 

stocks are associated with higher risk at those times. 

 

4.2.  Pricing Errors 

 

 The documented evidence indicates that asset betas change significantly between 

volatility regimes. Furthermore, the proposed V-CAPM implies a distinctive pattern in 

changes in beta risk among different asset classes. More particularly, small market 

capitalization stocks become riskier at times of high aggregate volatility. The increase in 

risk is more pronounced for value stocks, and big market capitalization stocks become 

less risky at those times. A detailed analysis reveals that it is only growth portfolios 

among big market capitalization stocks that drive this effect. The documented evidence 

offers an alternative explanation of the well-documented size and value vs. growth 

anomalies. However, apart from being able to present a relationship between risk and 

return for different asset classes, a successful asset pricing model should also exhibit 

lower pricing errors. In order to formally test the improvement gained over the CAPM, 

we next compare Jensen’s alphas and pricing errors between the static CAPM and the V-

CAPM in low- and high-volatility regimes separately.  

 

4.2.1  Comparison of Jensen’s Alphas 

 

 Tables 8 and 9 present Jensen’s alphas for different asset classes. Although it 

performs almost as well as the CAPM, the V-CAPM does not bring any improvement to 

alphas in the low-volatility regime, regardless of size or book-to-market portfolios. The 

biggest improvement in alphas comes in the high-volatility regime, especially for value 

and small stock portfolios. Looking at Panel A of Table 8, one can see that CAPM is 

unable to explain the returns of the size portfolios in the high volatility regime. On the 

other hand, the proposed V-CAPM yields insignificant alphas for the 5 smallest decile 

portfolios and the SMB portfolio. The results are relatively weaker for the book-to-

market portfolios, with the only improvement coming for the HML portfolio in volatile 
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periods. Table 9 reveals similar findings for the refined 25 and 6 portfolios. Regardless of 

asset class, Jensen’s alphas are mostly significant for the proposed V-CAPM, with no 

improvement over the CAPM during low-volatility periods. However, when the market is 

highly volatile, Jensen’s alphas for the V-CAPM are insignificant, especially for small-

value and big-growth portfolios.  

 

<< Insert Table 8 about here >> 

 

<< Insert Table 9 about here >> 

 

4.2.2   Comparison of Root Mean Squared Errors 

 

In order to check the robustness of the above results, we also calculate the pricing 

errors of the proposed threshold V-CAPM, as described by Equation (7), and compare 

them with the pricing errors of the unconditional CAPM and with the Fama and French 

(1992) three-factor model. The following root mean square error formula (RMSE) is used 

to calculate the pricing errors of each model: 

  

(7) 

 

In-sample root mean squared pricing errors for each model are reported in Tables 

10 and 11, respectively. For the threshold volatility CAPM, we document pricing errors 

only for portfolios where a significant threshold effect was found. For those portfolios, 

one can see that the threshold volatility CAPM performs better than the unconditional 

CAPM in producing lower pricing errors in all portfolios. However, the benchmark 3-

factor model yields lower pricing errors compared to the unconditional CAPM and the V-

CAPM among all portfolios.  

 

<< Insert Table 10 about here >> 

 

<< Insert Table 11 about here >> 
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4.3  Risk Premia 

 

There is now considerable evidence about possible time variation in betas, and the 

conditional CAPM is an attempt to capture this variation. However, Ghysels (1998) 

shows that the conditional CAPM is unable to specify time variation accurately, leading 

to higher pricing errors compared to the unconditional CAPM. In view of these findings, 

we believe that it is crucial to understand the dynamics of time variation in market risk 

and incorporate this dynamic in the pricing model. Our previous findings establish that 

market risk exhibits discrete shifts triggered by significant changes in the level of 

aggregate volatility. Next, we test whether this risk is priced in the cross-section. 

We employ standard Fama and MacBeth (1973) two-pass regressions. The full 

model to be tested is, 

 

)8(2,1,0,,,,,,,  jr
i
tjHML

i
jHMLjSMB

i
jSMBjMKT

i
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t 

 

 

where λ’s represent unconditional prices of risk for various factors, and j=0, 1, and 2 

represent the full sample, regime 1 (low volatility), and regime 2 (high volatility), 

respectively. 

More specifically, in the first pass, portfolio betas are estimated from a single 

multiple time-series using the full sample. In the second pass, a cross-sectional regression 

is run at each time period, with full-sample betas obtained from the first pass regressions. 

The associated estimates for the intercept term, αi, and the risk premia, λ’s, are given by 

the average of those cross-sectional regression estimates. Table 12 summarizes the risk 

premium estimates of the model given by Equation (8), or subsets of it. 

 

<< Insert Table 12 about here >> 

 

We test five specifications of Equation (8). The first row represents the market 

model. Consistent with earlier findings, the CAPM is not a true representation of the 

pricing kernel of the economy. The market risk premium is negative and insignificant, 
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and a single factor market model poorly explains the cross-section of returns with an 

adjusted R2 of 26%. The second row estimates the price of market risk in low volatility 

regime. Consistent with previous findings, the proposed V-CAPM is not successful in 

establishing a significant relationship for the price of market risk when market volatility 

is low. Row 3 estimates the price of market risk in a high-volatility regime. We document 

a negative and significant market risk premium when the market exhibits high volatility. 

Previous studies argue that market risk factor is not sufficient to capture sensitivity of 

stock returns to innovations in volatility.  By including volatility risk as a separate risk 

factor, Ang et al. (2006) and Moise (2007) document a negative price for volatility risk. 

We show that when markets are divided into low- and high-volatility regimes using our 

threshold parameter, market risk is able to capture this negative price of volatility risk 

successfully. Furthermore, an adjusted R2 of 0.40 indicates that the proposed V-CAPM 

performs much better than the static CAPM in explaining the cross-section of returns in 

volatile markets.  

To see whether the above result is robust we test the proposed V-CAPM in high- 

and low-volatility regimes with the inclusion of SMB and HML factors, which have been 

documented as important factors in the literature. Consistent with previous findings the 

market risk premium of the proposed V-CAPM is still insignificant in calm markets, 

indicating no improvement over the CAPM at those times. However, Row 5 indicates that 

negative price for market risk in volatile markets is robust to the addition of SMB and 

HML factors. Furthermore, Shanken (1992) corrected t-statistics for the intercept term are 

insignificant, which confirms our previous findings that the proposed model does a good 

job in pricing, especially at volatile times.  

A negative price for market risk at volatile times implies that stocks are expected 

to have lower returns at those times. Assuming that market is going down at times of high 

aggregate volatility, stocks with higher betas are expected to lose even more at those 

times. Thus, agents who are averse to innovations in volatility will demand additional 

compensation for holding stocks that have high sensitivities to market risk at volatile 

periods. In other words, a stock whose return correlates highly with market returns at 

times of high aggregate volatility will be deemed as riskier. To give an example, because 

of their high betas at volatile times, small stocks are expected to lose 3.13% [4.66 + 
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1.24*(-6.28)] when the market experiences high volatility. Again, due to differences in 

their sensitivities to aggregate volatility, a portfolio which longs the smallest decile firms 

and shorts the biggest decile firms will be expected to lose an additional 1.64% per month 

[(1.24 - 0.98)*(-6.28)]. Overall, the results imply that the cross-section of stock returns 

exhibits a negative market risk premium when the market is highly volatile 

 

4.4  Robustness Tests 

 

 To test whether the results are sensitive to alternative measures of threshold 

parameter, we use several statistical and option-based measures as proxies for aggregate 

volatility. These include the standard deviation of market returns, range of market index 

(given by the maximum and minimum level of the market index in a given month), 

GARCH (1, 1) volatility, change in VIX index (ΔVIX), and range of VIX index (RVIX). 

Among these alternative measures, only RVIX yields significant results and therefore the 

results of other measures are not reported here.13 Using RVIX defined as the maximum 

and minimum level of the VIX index in a given month as our threshold parameter, we 

obtain very similar results to that of S&P 500 ATM straddle returns.14 The results can be 

summarized as follows. 

 First, most portfolios exhibit significant bootstrap p-values, indicating a 

significant change in beta risk due to changes in the range of VIX index, our threshold 

parameter for aggregate volatility risk. Second, the direction of change is also striking. 

Similar to previous results, we observe an increase in beta risk for small and value 

portfolios and a decrease in the risk of big and growth portfolios, confirming our 

explanation that investors see small and value stocks much riskier at times of high 

volatility, which usually coincides in deteriorations in investment opportunities and 

reductions in wealth.  

                                                 
13 This confirms our argument that market-based volatility measures do a better job at capturing 
investors’ expectations on aggregate market risk compared to statistical measures. Furthermore, 
Cremers et al. (2011) document that ΔVIX does not capture the volatility risk premium, but ATM 
straddle returns successfully does. 
 
14 The reader is referred to the Appendix for detailed results.  
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 Next, we look at the pricing performance of the proposed V-CAPM and find that 

it does almost as well as the CAPM, and especially performs much better at times of high 

volatility and for small and value stocks. Finally, looking at the cross-sectional price of 

risk, we find that market risk is priced in the cross-section at times of high volatility and 

is negative.  

 

5.  Conclusion 

 

We propose an asset pricing model where the covariance of an asset’s return with 

the market return changes discretely at different points in time. This change is due to 

investors’ assessment of aggregate volatility risk. We argue that risk-averse investors care 

not only about market returns but also about aggregate market volatility while pricing and 

assessing risk. Proxying aggregate volatility risk first with returns on at-the-money 

straddles of the S&P 500 index and then with the range of the VIX index, we document 

the following.  

First, we find that there is significant time variation in market betas with respect 

to changes in aggregate market volatility. In particular, small market capitalization 

portfolios have consistently higher betas at times of high volatility compared to big 

market capitalization portfolios. Moreover, the beta dispersion between small and big 

portfolios is negative during low-volatility periods and positive during high-volatility 

periods. Because they correlate more with the market, especially at times of high 

aggregate volatility, small stocks are riskier than big stocks in bad times, when aggregate 

market volatility is high. Similarly, value portfolios have considerably higher betas 

significantly at times of high aggregate volatility, indicating that investors perceive value 

stocks as riskier than growth stocks at those times.  

When compared with alternative pricing models, the pricing errors for the 

proposed threshold V-CAPM are lower than the static CAPM but still higher than those 

of Fama-French three-factor model. In terms of Jensen’s alphas, the proposed V-CAPM 

brings the most significant improvement in alphas at times of high volatility and 

especially for small and value portfolios. 
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Finally, the proposed V-CAPM cannot establish a significant market risk 

premium and still suffers from the problems of the static CAPM at times of low market 

volatility. However, it successfully identifies a negative market price of risk at times of 

high volatility. The negative price of market risk is robust to the inclusion of SMB and 

HML factors. 

High-volatility periods are usually associated with downward market moves and 

recessions, i.e. periods when investors are more averse to losing their wealth. Due to their 

significantly lower betas at times of high aggregate volatility, big and growth stocks offer 

a potential hedge to investors in bad times. On the other hand, small and value stocks are 

expected to experience far worse returns when volatility is high. Thus, investors demand 

big and growth stocks to protect themselves against innovations in volatility. This “flight-

to-quality” phenomenon explains why big and growth stocks are generally priced higher 

and have lower returns, and are seen as less risky compared to their small and value 

counterparts. The results support the view of a risk-based rational asset pricing theory and 

offers a volatility-based CAPM where asset return sensitivities to market risk change 

discretely over time with respect to levels of aggregate volatility. 
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Table 1 
Descriptive Statistics 

 
  MKT STR 

Mean 1.01 -8.65 

Median 1.52 -14.85 

Maximum 12.85 251.38 

Minimum -22.54 -54.95 

Std.Dev. 4.33 31.82 

Skewness -1.06 3.44 

Kurtosis 6.76 24.05 

Correlation -0.31 
 

Note: This table reports the descriptive statistics for monthly returns on the market 
portfolio (MKT) and S&P 500 at-the-money straddles (STR). The market portfolio is the 
CRSP value-weighted index for all NYSE, AMEX, and NASDAQ stocks. Monthly 
returns on S&P 500 ATM straddles are the cumulated daily returns on two equally 
weighted ATM straddles - one right above and one right below the spot index level. The 
sample covers the period from January 1987 to March 2007 (243 months). All return 
figures are given in percentages.  
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Figure 1  
Time-series of S&P 500 ATM straddle returns and market returns 

 
 

 
 
Note: This figure plots the monthly time-series of  S&P 500 at-the-money straddle returns (red line, left 
axis) and market returns (blue line, right axis) from January 1987 through March 2007 (243 months).  The 
monthly ATM straddle return is the cumulated equally weighted return of call and put options with strike 
prices just above and below the S&P 500 index and which mature during the next calendar month. The 
market portfolio is the CRSP value-weighted index for all NYSE, AMEX, and NASDAQ stocks. 
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Table 2  
Stylized facts about portfolio returns 

 

Panel A: Portfolios sorted with respect to market capitalizations 
Size Beta Full 

sample 
Regime1 
(Calm) 

Regime2 
(Volatile) 

Small 0.9705 0.0122 0.0178 -0.0295 
Decile2 1.1508 0.0116 0.0176 -0.0330 
Decile3 1.1258 0.0119 0.0175 -0.0292 
Decile4 1.1241 0.0105 0.0158 -0.0280 
Decile5 1.1306 0.0116 0.0165 -0.0248 
Decile6 1.0642 0.0108 0.0150 -0.0205 
Decile7 1.0486 0.0123 0.0164 -0.0181 
Decile8 1.0790 0.0115 0.0154 -0.0169 
Decile9 0.9882 0.0115 0.0144 -0.0099 
Big 0.9583 0.0099 0.0113 -0.0067 
SMB  0.0011 0.0043 -0.0232 
Market  0.0101 0.0126 -0.0085 
Panel B: Portfolios sorted with respect to book-to-market ratios 
B/M Beta Full 

sample 
Regime1 
(Calm) 

Regime2 
(Volatile) 

High 0.8690 0.0133 0.0166 -0.0109 
Decile2 0.8239 0.0120 0.0141 -0.0034 
Decile3 0.7375 0.0112 0.0140 -0.0098 
Decile4 0.7754 0.0125 0.0142 -0.0042 
Decile5 0.8739 0.0110 0.0136 -0.0081 
Decile6 0.8669 0.0114 0.0147 -0.0127 
Decile7 0.9239 0.0113 0.0142 -0.0094 
Decile8 1.0043 0.0113 0.0138 -0.0077 
Decile9 1.0170 0.0102 0.0124 -0.0062 
Low 1.0964 0.0098 0.0119 -0.0055 
HML  0.0037 0.0034  0.0059 
Market  0.0101 0.0126 -0.0085 

 

Note: This table presents the returns on several portfolios that have been used as test assets in this study 
and the returns on the market portfolio during the full sample period from January 1987 through March 
2007 (243 months) and in two volatility regimes. Size represents portfolios that contain stocks sorted with 
respect to their market capitalizations. B/M represents portfolios that contain stocks sorted with respect to 
their book-to-market ratios. SMB is a portfolio that is long in stocks in the smallest decile and short in 
stocks in the biggest decile. HML is a portfolio that is long in stocks in the highest B/M decile and short in 
stocks in the lowest B/M decile.    
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Table 3 
Bootstrap p-values for 10 size and 10 book-to-market portfolios  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. STR and RVIX are the threshold 
parameters. Size represents portfolios that contain stocks sorted with respect to their 
market capitalizations. B/M represents portfolios that contain stocks sorted with respect 
to their book-to-market ratios. SMB is a portfolio that is long in stocks in the smallest 
decile and short in stocks in the biggest decile. HML is a portfolio that is long in stocks 
that are in the highest B/M decile and short in stocks that are in the lowest B/M decile. 
Each test is estimated with monthly data from January 1987 through December 2007 (243 
months) for the straddle threshold parameter, and from January 1986 to March 2010 (291 
months) for the RVIX threshold parameter. *, **, and *** denote significance levels at 
10%, 5%, and 1%, respectively.  

 

Size STR B/M STR 

Small 0.001*** High 0.342 
Decile2 0.001*** Decile2 0.246 
Decile3 0.000*** Decile3 0.067* 
Decile4 0.000*** Decile4 0.313 
Decile5 0.000*** Decile5 0.048** 
Decile6 0.008*** Decile6 0.005*** 
Decile7 0.001*** Decile7 0.095* 
Decile8 0.007*** Decile8 0.093* 
Decile9 0.253 Decile9 0.057* 
Big 0.000*** Low 0.092* 
SMB 0.000*** HML 0.091* 
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Table 4 
Bootstrap p-values for 25 (5x5) size and book-to-market portfolios 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. STR and RVIX are the threshold 
parameters. Size represents portfolios that contain stocks sorted with respect to their 
market capitalizations and B/M represents portfolios that contain stocks sorted with 
respect to their book-to-market ratios. HMLs is a portfolio that is long in stocks in the 
smallest size and highest B/M quintile and short in stocks in the smallest size and lowest 
B/M quintile. SMBh is a portfolio that is long in stocks in the smallest size and highest 
B/M quintile and short in stocks in the biggest size and highest B/M quintile. Each test is 
estimated with monthly data from January 1987 through December 2007 (243 months) 
for the straddle threshold parameter, and from January 1986 to March 2010 (291 months) 
for the RVIX threshold parameter. *, **, and *** denote significance levels at 10%, 5%, 
and 1%, respectively. 

Size B/M STR 
S L 0.019** 
S 2 0.000*** 
S 3 0.000*** 
S 4 0.000*** 
S H 0.000*** 
2 L 0.154 
2 2 0.000*** 
2 3 0.000*** 
2 4 0.000*** 
2 H 0.001*** 
3 L 0.331 
3 2 0.002*** 
3 3 0.019** 
3 4 0.025** 
3 H 0.042** 
4 L 0.030** 
4 2 0.010** 
4 3 0.020** 
4 4 0.188 
4 H 0.294 
B L 0.025** 
B 2 0.248 
B 3 0.292 
B 4 0.108 
B H 0.628 

HMLs 0.068* 
SMBh 0.007*** 
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Table 5 
Bootstrap p-values for 6 (2x3) size and book-to-market portfolios 

 
Size B/M STR 

S L 0.015** 
S M 0.000*** 
S H 0.000*** 
B L 0.029** 
B M 0.228 
B H 0.335 

HMLs 0.063*** 
SMBh 0.001*** 

 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. STR and RVIX are the threshold 
parameters. Size represents portfolios that contain stocks sorted with respect to their 
market capitalizations and B/M represents portfolios that contain stocks sorted with 
respect to their book-to-market ratios. HMLs is a portfolio that is long in small-value and 
short in small-growth stocks. SMBh is a portfolio that is long in small-value and short in 
big-value stocks. Each test is estimated with monthly data from January 1987 through 
December 2007 (243 months) for the straddle threshold parameter, and from January 
1986 to March 2010 (291 months) for the RVIX threshold parameter. *, **, and *** denote 
significance levels at 10%, 5%, and 1%, respectively. 
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Table 6 
Threshold estimates for 10 size and 10 book-to-market portfolios 

 
Panel A: 10 size portfolios 

 CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

Small 0.9705 0.8716 1.2439 0.1528 
Decile2 1.1508 1.0682 1.1959 0.1528 
Decile3 1.1258 1.0323 1.2117 0.1528 
Decile4 1.1241 1.0299 1.2232 0.1528 
Decile5 1.1306 1.0546 1.2055 0.1528 
Decile6 1.0642 1.0001 1.1374 0.1528 
Decile7 1.0486 1.0001 1.1052 0.1841 
Decile8 1.0790 1.0517 1.1001 0.1841 
Decile9 0.9882 - - - 
Big 0.9583 0.9817 0.9396 0.1841 
SMB 0.0122 -0.1101 0.3035 0.1528 

Panel B: 10 B/M portfolios 

 CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

High 0.8690 - - - 
Decile2 0.8239 - - - 
Decile3 0.7375 0.6261 0.9850 0.0467 
Decile4 0.7754 - - - 
Decile5 0.8739 0.7565 0.9754 -0.0515 
Decile6 0.8669 0.7850 1.0020 0.3444 
Decile7 0.9239 0.8137 1.0398 -0.0111 
Decile8 1.0043 0.9358 1.1332 0.1344 
Decile9 1.0170 1.1055 0.9852 -0.1842 
Low 1.0964 1.1307 0.9572 0.5553 
HML -0.2274 -0.3195 0.0667 0.7956 

 
Note: This table reports the unconditional CAPM betas, the threshold beta estimates with respect to low- 
and high-volatility regimes, and their associated threshold volatility estimates, proxied by S&P 500 at-the-
money straddle returns. Panels A and B present results for portfolios sorted with respect to market 
capitalizations, and book-to-market ratios, respectively. SMB is a portfolio that is long in stocks in the 
smallest decile and short in stocks in the biggest decile. HML is a portfolio that is long in stocks in the 
highest B/M decile and short in stocks in the lowest B/M decile. The sample covers the period from 
January 1987 to December 2007 (243 months). Regime 1 (2) corresponds to low- (high-) volatility regimes 
where monthly S&P 500 ATM straddle returns are lower (higher) than the estimated threshold. Threshold 
betas and their associated threshold volatility estimates are not reported for portfolios that do not exhibit 
significant regime shifts.  
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Table 7 
Threshold estimates for 25 (5x5) and 6 (2x3) size and book-to-market portfolios 

 

Panel A: 25 (5x5)  portfolios 

Size B/M CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

S L 1.4372 1.4187 1.4525 0.1528 
S 2 1.1566 1.1136 1.1655 0.1528 
S 3 0.9521 0.8024 1.0944 0.0197 
S 4 0.8770 0.7580 1.0160 0.1528 
S H 0.9044 0.7993 1.0051 0.5553 
2 L 1.4339 - - - 
2 2 1.1062 0.9871 1.2433 0.1528 
2 3 0.9223 0.7901 1.0852 0.1528 
2 4 0.8812 0.7383 1.0537 0.1080 
2 H 0.9697 0.9520 1.0180 0.7956 
3 L 1.3500 - - - 
3 2 1.0717 0.9667 1.2212 0.1398 
3 3 0.8880 0.7736 1.0403 0.1080 
3 4 0.8276 0.6988 1.0035 0.1080 
3 H 0.8879 0.7866 0.9807 0.7956 
4 L 1.2735 1.2904 1.2374 -0.0261 
4 2 1.0038 0.8886 1.1618 0.1001 
4 3 0.9325 0.8408 1.0641 0.1398 
4 4 0.8280 - - - 
4 H 0.8453 - - - 
B L 1.0307 1.0606 0.9624 0.5553 
B 2 0.9412 - - - 
B 3 0.8477 - - - 
B 4 0.7067 - - - 
B H 0.7987 - - - 

HMLs -0.5328 -0.6421 -0.2521 0.5029 
SMBh 0.1057 -0.0143 0.2046 0.0367 

Panel B: 6 (2x3)  portfolios 

Size B/M CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

S L 1.3565 1.3110 1.3522 0.1537 
S M 0.9540 0.8292 1.1100 0.1537 
S H 0.9031 0.7648 1.0691 0.1119 
B L 1.0518 1.1066 0.9417 0.5591 
B M 0.8504 - - - 
B H 0.7781 - - - 

HMLs -0.4534 -0.5502 -0.2177 0.5029 
SMBh 0.1250 -0.0415 0.1948 0.0367 

Note: This table reports the unconditional CAPM betas, the threshold beta estimates with respect to low- and 
high-volatility regimes, and their associated threshold volatility estimates, proxied by S&P 500 at-the-money 
straddle returns. Panels A and B present results for 25 (5x5) and six (2x3) portfolios sorted with respect to 
market capitalizations and book-to-market ratios, respectively. HMLs is a portfolio that is long in small-value 
and short in small-growth stocks. SMBh is a portfolio that is long in small-value and short in big-value stocks. 
The sample covers the period from January 1987 to December 2007 (243 months). Regime 1 (2) corresponds to 
low- (high-) volatility regimes where monthly S&P 500 ATM straddle returns are lower (higher) than the 
estimated threshold. Threshold betas and their associated threshold volatility estimates are not reported for 
portfolios that do not exhibit significant regime shifts.  
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Table 8 
Comparison of Jensen’s alphas 

 

Panel A: 10 Size portfolios 
 α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

Small 0.0054* (0.0030) -0.0214*** (0.0058) 0.0067 (0.0028) -0.0237 (0.0166) 
Decile2 0.0036 (0.0027) -0.0225*** (0.0055) 0.0047* (0.0024) -0.0249 (0.0176) 
Decile3 0.0037* (0.0021) -0.0191*** (0.0049) 0.0047** (0.0021) -0.0199 (0.0158) 
Decile4 0.0020 (0.0019) -0.0179*** (0.0048) 0.0031* (0.0018) -0.0185 (0.0162) 
Decile5 0.0027 (0.0017) -0.0146*** (0.0039) 0.0035** (0.0016) -0.0151*** (0.0052) 
Decile6 0.0018 (0.0013) -0.0111*** (0.0035) 0.0025* (0.0013) -0.0108*** (0.0037) 
Decile7 0.0035*** (0.0011) -0.0104*** (0.0025) 0.0039*** (0.0011) -0.0099*** (0.0027) 
Decile8 0.0022** (0.0010) -0.0085*** (0.0011) 0.0024** (0.0010) -0.0085*** (0.0025) 
Decile9 0.0015** (0.0007)   0.0015**  (0.0007) - - 
Big -0.0010 (0.0007)   0.0080*** (0.0016) -0.0012 (0.0008) 0.0080*** (0.0018) 
SMB 0.0042* (0.0024) -0.0245*** (0.0047) 0.0079  (0.0052) -0.0315 (0.0201) 

Panel B: 10 B/M portfolios 
 α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

High 0.0041** (0.0020) 0.0041** (0.0020) - - 
Decile2 0.0030** (0.0014) 0.0030** (0.0014) - - 
Decile3 0.0031** (0.0015) 0.0015 (0.0033) 0.0041*** (0.0015) 0.0016 (0.0020) 
Decile4 0.0038** (0.0015) 0.0038** (0.0015) - - 
Decile5 0.0018 (0.0015) 0.0015 (0.0019) 0.0027** (00013) 0.0019 (0.0062) 
Decile6 0.0034** (0.0014) -0.0145*** (0.0039) 0.0041*** (0.0014) 0.0012 (0.0019) 
Decile7 0.0012 (0.0016) 0.0030 (0.0023) 0.0022 (0.0014) 0.0025 (0.0082) 
Decile8 0.0004 (0.0016) 0.0012 (0.0025) 0.0017 (0.0011) 0.0025 (0.0020) 
Decile9 -0.0024** (0.0012) 0.0018 (0.0014) -0.0033*** (0.0011) 0.0021 (0.0031) 
Low -0.0018** (0.0009) 0.0252*** (0.0057) -0.0021* (0.0012) 0.0034 (0.0020) 
HML 0.0056*** (0.0018) -0.0204** (0.0091) 0.0069* (0.0038) -0.0018 (0.0030) 

 
Note: This table reports Jensen’s alphas for unconditional CAPM and for the threshold model with respect 
to low- and high-volatility regimes. Panels A and B present results for portfolios sorted with respect to 
market capitalizations and book-to-market ratios, respectively. SMB is a portfolio that is long in stocks in 
the smallest decile and short in stocks in the biggest decile. HML is a portfolio that is long in stocks in the 
highest B/M decile and short in stocks in the lowest B/M decile. The sample covers the period from 
January 1987 to December 2007 (243 months). Regime 1 (2) corresponds to low- (high-) volatility regimes 
where monthly S&P 500 ATM straddle returns are lower (higher) than the estimated threshold. The 
numbers in parentheses denote the associated standard errors. 
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Table 9 
Comparison of Jensen’s alphas 

 

Panel A: 25 (5x5) portfolios 
Size B/M α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

S L -0.0057* (0.0029) -0.0294***  (0.0078)
 

-0.0050 (0.0035) -0.0356*** (0.0128) 
S 2 0.0050* (0.0030) -0.0244***  (0.0059)     0.0059* (0.0030) -0.0280** (0.0106) 
S 3 0.0078*** (0.0028) -0.0073* (0.0039)     

 
0.0093*** (0.0023) -0.0088 (0.0084) 

S 4 0.0092*** (0.0023) -0.0159*** (0.0053)     0.0105*** (0.0022) -0.0159 (0.0093) 
S H 0.0083*** (0.0023) -0.0464*** (0.0103)     0.0093*** (0.0023) -0.0526 (0.0446) 
2 L -0.0048* (0.0027)     -0.0048*   (0.0027)    

 
- - 

2 2 -0.0044* (0.0023) -0.0201***   (0.0055)    0.0039* (0.0021) -0.0204 (0.0123) 
2 3 0.0055*** (0.0018) -0.0164***  (0.0049)     0.0082*** (0.0018) -0.0162 (0.0119) 
2 4 0.0077*** (0.0020) -0.0147***  (0.0043)     0.0090*** (0.0020) -0.0151 (0.0146) 
2 H 0.0050** (0.0021) -0.0635***  (0.0220)     0.0059*** (0.0021) -0.0787** (0.0307) 
3 L -0.0034   (0.0024)    -0.0034   (0.0024)    

 
- - 

3 2 0.0027* (0.0016) -0.0115***  (0.0040)     0.0037** (0.0017) -0.0107*** (0.0037) 
3 3   0.0045*** (0.0017) 

 
-0.0091  (0.0039)     

 
0.0055*** (0.0016) -0.0087*** (0.0018) 

3 4 0.0054*** (0.0019) -0.0072*  (0.0042)     0.0067*** (0.0018) -0.0076 (0.0163) 
3 H 0.0065*** (0.0018) -0.0581***  (0.0189)     0.0073*** (0.0021) -0.0604* (0.0310) 
4 L 0.0027 (0.0022) -0.0072**   (0.0027)    0.0028 (0.0017) -0.0079 (0.0197) 
4 2 0.0035** (0.0015) -0.0074**  (0.0032)     0.0046*** (0.0014)  -0.0074 (0.0082) 
4 3 0.0040** (0.0017) -0.0079**  (0.0038)     0.0049*** (0.0017) -0.0073 (0.0120) 
4 4 0.0043***  (0.0015)     0.0043***  (0.0015)     - - 
4 H 0.0042**  (0.0019)     0.0042**  (0.0019)     - - 
B L -0.0008 (0.0010) 0.0249***  (0.0057)     -0.0011 (0.0010) 0.0345*** (0.0124) 
B 2 0.0015  (0.0012)     

 
0.0015  (0.0012)     

 
- - 

B 3 0.0016  (0.0014)     
 

0.0016  (0.0014)     
 

- - 
B 4 0.0025  (0.0017)     

 
0.0025  (0.0017)     

 
- - 

B H 0.0023  (0.0022)
 

0.0023  (0.0022)
 

- - 
HMLs 
SMBh 

0.0152***  (0.0028)     0.0117 (0.0120) 0.0143*** (0.0028) -0.0163 (0.0160) 
0.0099*** (0.0035)     -0.0144** (0.0062) 0.0070 (0.0056) -0.0553 (0.0452) 

Panel B: 6 (2x53) portfolios 
Size B/M α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

S L -0.0019 (0.0027) -0.0224***  (0.0060)   
 

-0.0013 (0.0024) -0.0249** (0.0112) 
S M 0.0062*** (0.0019) -0.0151*** (0.0036)     0.0075*** (0.0018) -0.0149*** (0.0037) 
S H 0.0085*** (0.0020) -0.0135*** (0.0043)     0.0097*** (0.0019) -0.0139 (0.0087) 
B L -0.0008 (0.0007) 0.0109*** (0.0029)    

 
-0.0009 (0.0007) 0.0238** (0.0117) 

B M 0.0020* (0.0012)     0.0020* (0.0012)     
 

- - 
B H 0.0025 (0.0016)     

 
0.0025 (0.0016)     

 
- - 

HMLs 
SMBh 

0.0097***  (0.0021)     0.0029 ( 0.0113) 0.0107*** (0.0026) 0.0038 (0.0089) 
0.0065** (0.0025)      -0.0106*** (0.0035) 0.0074 (0.0058) -0.0164 (0.0161) 

 
Note: This table reports Jensen’s alphas for unconditional CAPM and for the threshold model with respect 
to low and high volatility regimes. Panels A and B presents results for portfolios sorted with respect to 
market capitalizations and book-to-market ratios, respectively. HMLs is a portfolio that is long in small-
value and short in small-growth stocks. SMBh is a portfolio that is long in small-value and short in big-
value stocks. The sample covers the period from January 1987 to December 2007 (243 months). Regime 1 
(2) corresponds to low (high) volatility regimes where monthly S&P 500 ATM straddle returns are lower 
(higher) than the estimated threshold. The numbers in parantheses denote the associated standard errors.  
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Table 10 
Root mean squared pricing errors for unconditional CAPM, FF three-factor model, and 

threshold CAPM  
 

Panel A: 10 size portfolios 

 Unconditional CAPM FF 3-Factor Model Threshold CAPM 

Small 0.0432 0.0209 0.0381 
Decile2 0.0386 0.0128 0.0379 
Decile3 0.0312 0.0100 0.0309 
Decile4 0.0288 0.0113 0.0284 
Decile5 0.0249 0.0118 0.0236 
Decile6 0.0195 0.0130 0.0188 
Decile7 0.0169 0.0118 0.0167 
Decile8 0.0151 0.0112 0.0141 
Decile9 0.0110 0.0098 - 
Big 0.0110 0.0055 0.0109 

Panel B: 10 B/M portfolios 

 Unconditional CAPM FF 3-Factor Model Threshold CAPM 

High 0.0308 0.0208 - 
Decile2 0.0233 0.0146 - 
Decile3 0.0221 0.0123 0.0218 
Decile4 0.0230 0.0154 - 
Decile5 0.0185 0.0148 0.0181 
Decile6 0.0213 0.0155 0.0208 
Decile7 0.0205 0.0172 0.0201 
Decile8 0.0169 0.0151 0.0164 
Decile9 0.0150 0.0148 0.0148 
Low 0.0181 0.0144 0.0180 

 
Note: This table reports the root mean squared pricing errors (RMSE) for unconditional CAPM, the 
proposed threshold volatility CAPM, and the Fama-French (1992) three-factor model for the period 
covering January 1987 to March 2007. The pricing errors are computed according to Equation (7) in 
Section 4. Panels A and B present results for portfolios sorted with respect to market capitalizations and 
book-to-market ratios, respectively. Pricing errors for the threshold volatility CAPM are not reported for 
portfolios that do not exhibit significant regime shifts. 
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Table 11 
Root mean squared pricing errors for unconditional CAPM, FF three-factor model, and 

threshold CAPM  
 

Panel A: 25 (5x5)  portfolios 

Size B/M Unconditional CAPM FF 3-Factor Model Threshold CAPM 

S L 0.0570 0.0328 0.0569 
S 2 0.0487 0.0272 0.0484 
S 3 0.0362 0.0192 0.0359 
S 4 0.0346 0.0144 0.0341 
S H 0.0364 0.0156 0.0361 
2 L 0.0417 0.0157 - 
2 2 0.0317 0.0161 0.0310 
2 3 0.0279 0.0159 0.0271 
2 4 0.0294 0.0138 0.0288 
2 H 0.0337 0.0139 0.0332 
3 L 0.0369 0.0140 - 
3 2 0.0241 0.0163 0.0235 
3 3 0.0243 0.0185 0.0238 
3 4 0.0273 0.0166 0.0267 
3 H 0.0301 0.0167 - 
4 L 0.0271 0.0182 0.0268 
4 2 0.0211 0.0163 0.0205 
4 3 0.0248 0.0172 0.0244 
4 4 0.0242 0.0180 - 
4 H 0.0294 0.0170 - 
B L 0.0163 0.0202 0.0159 
B 2 0.0192 0.0111 - 
B 3 0.0217 0.0146 - 
B 4 0.0270 0.0157 - 
B H 0.0331 0.0152 - 

Panel B: 6 (2x3)  portfolios 

Size B/M Unconditional CAPM FF 3-Factor Model Threshold CAPM 

S L 0.0390 0.0107 0.0384 
S M 0.0272 0.0088 0.0262 
S H 0.0292 0.0063 0.0277 
B L 0.0113 0.0077 0.0108 
B M 0.0190 0.0116 - 
B H 0.0241 0.0107 - 

 
Note: This table reports the root mean squared pricing errors (RMSE) for unconditional CAPM, the 
proposed threshold volatility CAPM, and the Fama-French (1992) three-factor model for the period 
covering January 1987 to March 2007. The pricing errors are computed according to Equation (7) in 
Section 4. Panels A, B, and C present results for portfolios sorted with respect to market capitalizations, 
dividend yields, and book-to-market ratios, respectively. Pricing errors for the threshold volatility CAPM 
are not reported for portfolios that do not exhibit significant regime shifts. 
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Table 12 
Fama-MacBeth Risk Premium Estimates  

 

 
i
 MKT

 1REGIME
 2REGIME

 SMB
 HML

 
Adj. R2 

Row1 1.61 
(3.08***) 
(3.06***) 

-0.80 
(-1.31) 
(-1.30) 

    0.26 
 

Row2 1.51 
(3.66***) 
(3.64***) 

 -0.30 
(-0.63) 
(-0.63) 

   0.20 

Row3 4.66 
(3.11***) 
(2.30**) 

  -6.28 
(-3.20***) 
(-2.45**) 

  0.40 

Row4 2.03 
(8.31***) 
(7.85***) 

 -0.88 
(-1.56) 
(-1.50) 

 0.37 
(1.51) 
(1.49) 

0.37 
(1.66*) 
(1.57) 

0.52 
 

Row5 1.10 
(2.05**) 
(1.24) 

  -2.10 
(-2.33**) 
(-2.07**) 

-2.26 
(-4.19***) 
(-3.60*** ) 

0.54 
(0.89) 
(0.58) 

0.64 

 
Note: This table reports the estimates for the cross-sectional Fama-MacBeth (1973) regressions 
specified by Equation (8), or subsets of it, using the excess returns on 25 (5x5) portfolios sorted with 
respect to market capitalization and book-to-market ratios, as test portfolios. The sample period is from 
January 1987 to March 2007 (243 months). Regime 1 (Regime 2) corresponds to months where 
aggregate volatility is below (above) the threshold parameter. The numbers in parentheses are the t-
statistics for each coefficient estimate. The top statistic uses uncorrected Fama-MacBeth standard errors; 
the bottom statistic uses Shanken’s (1992) correction. The term adjusted R2 denotes the cross-sectional 
R

2 statistic adjusted for the degrees of freedom. 
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Appendix. RVIX as a threshold parameter  
 
Similar to Chou (2005), we define the range of the VIX index in a given month as 
 
RVIXt = Max{VIXτ} – Min{VIXτ}, 
 
where τ denotes trading days in a given month and t denotes months.  
 
The sample covers the period from January 1986 to March 2010, for a total of 291 
months. Figure A.1 plots the time-series characteristics of RVIX with respect to market 
returns. 
 
 

Figure A.1  
Time-series of RVIX and market returns 

 

 
 

Note: This figure plots the monthly time-series of RVIX (red line, left axis) and market returns (blue line, 
right axis) from January 1986 through March 2010 (291 months). RVIX is the difference between the 
maximum and minimum levels of the VIX index in a given month. Market portfolio is the CRSP value-
weighted index for all NYSE, AMEX, and NASDAQ stocks. 
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Table A.1 
Stylized facts about portfolio returns 

 

Size Beta Full 
sample 

Regime1 
(Calm) 

Regime2 
(Volatile) 

B/M Beta Full 
sample 

Regime1 
(Calm) 

Regime2 
(Volatile) 

Small  0.0122 0.0182 -0.0414 High  0.0133 0.0190 -0.0288 
Decile2  0.0116 0.0174 -0.0390 Decile2  0.0120 0.0161 -0.0212 
Decile3  0.0119 0.0173 -0.0340 Decile3  0.0112 0.0152 -0.0271 
Decile4  0.0105 0.0157 -0.0299 Decile4  0.0125 0.0146 -0.0229 
Decile5  0.0116 0.0162 -0.0263 Decile5  0.0110 0.0137 -0.0199 
Decile6  0.0108 0.0153 -0.0218 Decile6  0.0114 0.0142 -0.0197 
Decile7  0.0123 0.0162 -0.0226 Decile7  0.0113 0.0152 -0.0176 
Decile8  0.0115 0.0154 -0.0225 Decile8  0.0113 0.0139 -0.0132 
Decile9  0.0115 0.0147 -0.0179 Decile9  0.0102 0.0131 -0.0123 
Big  0.0099 0.0120 -0.0124 Low  0.0098 0.0117 -0.0104 
SMB  0.0009 0.0034 -0.0146 HML  0.0032 0.0048 -0.0074 
Market  0.0089 0.0132 -0.0180 Market  0.0089 0.0132 -0.0180 
 
Note: This table presents the returns on several portfolios that have been used as test assets in this study 
and the market portfolio during the full sample period from January 1986 through March 2010 (243 
months) and in two volatility regimes. Size represents portfolios that contain stocks sorted with respect to 
their market capitalizations. B/M represents portfolios that contain stocks sorted with respect to their book-
to-market ratios. SMB is a portfolio that is long in stocks in the smallest decile and short in stocks in the 
biggest decile. HML is a portfolio that is long in stocks in the highest B/M decile and short in stocks in the 
lowest B/M decile.    
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Table A.2 
Bootstrap p-values for 10 size and 10 book-to-market portfolios  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. RVIX is the threshold parameter 
for aggregate volatility and is defined as the difference between the maximum and 
minimum levels of the VIX index in a given month. Size represents portfolios that 
contain stocks sorted with respect to their market capitalizations. B/M represents 
portfolios that contain stocks sorted with respect to their book-to-market ratios. SMB is a 
portfolio that is long in stocks in the smallest decile and short in stocks in the biggest 
decile. HML is a portfolio that is long in stocks in the highest B/M decile and short in 
stocks in the lowest B/M decile. Each test is estimated with monthly data from January 
1986 to March 2010 (291 months). *, **, and *** denote significance levels at 10%, 5%, 
and 1%, respectively.  

 

Size RVIX B/M RVIX 

Small 0.000*** High 0.056* 
Decile2 0.000*** Decile2 0.063* 
Decile3 0.004*** Decile3 0.035** 
Decile4 0.066* Decile4 0.134 
Decile5 0.079* Decile5 0.214 
Decile6 0.094* Decile6 0.145 
Decile7 0.185 Decile7 0.013** 
Decile8 0.227 Decile8 0.178 
Decile9 0.291 Decile9 0.088* 
Big 0.012** Low 0.002*** 
SMB 
 

0.000*** HML 0.016** 
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Table A.3 
Bootstrap p-values for 25 (5x5) size and book-to-market portfolios 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. RVIX is the threshold parameter 
for aggregate volatility and is defined as the difference between the maximum and 
minimum levels of the VIX index in a given month. Size represents portfolios that 
contain stocks sorted with respect to their market capitalizations, and B/M represents 
portfolios that contain stocks sorted with respect to their book-to-market ratios, 
respectively. HMLs is a portfolio that is long in stocks in the smallest size and highest 
B/M quintile and short in stocks in the smallest size and lowest B/M quintile. SMBh is a 
portfolio that is long in stocks in the smallest size and highest B/M quintile and short in 
stocks in the biggest size and highest B/M quintile. Each test is estimated with monthly 
data from January 1986 to March 2010 (291 months). *, **, and *** denote significance 
levels at 10%, 5%, and 1%, respectively. 

Size B/M RVIX 
S L 0.038** 
S 2 0.005*** 
S 3 0.000*** 
S 4 0.000*** 
S H 0.000*** 
2 L 0.687 
2 2 0.054** 
2 3 0.009*** 
2 4 0.001*** 
2 H 0.001*** 
3 L 0.605 
3 2 0.371 
3 3 0.025** 
3 4 0.006*** 
3 H 0.021** 
4 L 0.558 
4 2 0.067* 
4 3 0.055* 
4 4 0.001*** 
4 H 0.057* 
B L 0.001*** 
B 2 0.710 
B 3 0.520 
B 4 0.366 
B H 0.436 

HMLs 0.072* 
SMBh 0.003*** 
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Table A.4 
Bootstrap p-values for 6 (2x3) size and book-to-market portfolios 

 
Size B/M RVIX 

S L 0.571 
S M 0.002*** 
S H 0.000*** 
B L 0.001*** 
B M 0.072* 
B H 0.126 

HMLs 0.003*** 
SMBh 0.000*** 

 
Note: This table reports the bootstrap p-values of the modified sup-LM test suggested by 
Hansen (1996). We test the null hypothesis of no significant regime shifts in portfolio 
betas due to changes in the level of aggregate volatility. RVIX is the threshold parameter 
for aggregate volatility and is defined as the difference between the maximum and 
minimum levels of the VIX index in a given month. Size represents portfolios that 
contain stocks sorted with respect to their market capitalizations, and B/M represents 
portfolios that contain stocks sorted with respect to their book-to-market ratios, 
respectively. HMLs is a portfolio that is long in small-value and short in small-growth 
stocks. SMBh is a portfolio that is long in small-value and short in big-value stocks. Each 
test is estimated with monthly data from January 1986 to March 2010 (291 months). *, **, 
and *** denote significance levels at 10%, 5%, and 1%, respectively. 
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Table A.5 
Threshold estimates for 10 size and 10 book-to-market portfolios 

 
Panel A: 10 size portfolios 

 CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

Small 1.0026 0.9110 1.0145 8.80 
Decile2 1.1440 1.0881 1.1359 8.80 
Decile3 1.1265 1.0432 1.1737 9.33 
Decile4 1.1128 1.0442 1.1599 9.33 
Decile5 1.1262 1.0742 1.1725 9.76 
Decile6 1.0598 1.0205 1.2436 17.69 
Decile7 1.0614 - - - 
Decile8 1.0826 - - - 
Decile9 1.0085 - - - 
Big 0.9403 0.9727 0.9158 9.33 
SMB 0.0623 -0.0557 0.0882 8.80 

Panel B: 10 B/M portfolios 

 CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

High 1.0281 0.9588 1.0637 9.46 
Decile2 0.8876 0.8188 0.9404 9.46 
Decile3 0.8509 0.7505 0.9285 9.46 
Decile4 0.8295 - - - 
Decile5 0.9231 - - - 
Decile6 0.8941 - - - 
Decile7 0.9656 0.8962 1.0346 10.92 
Decile8 0.9457 - - - 
Decile9 0.9860 0.9825 1.0168 8.42 
Low 1.0518 1.1132 1.0130 9.33 
HML -0.0237 -0.1536 0.0425 9.33 

 
Note: This table reports the unconditional CAPM betas, the threshold beta estimates with respect to low- 
and high-volatility regimes, and their associated threshold volatility estimates, proxied by the range of the 
VIX index in a given month (RVIX). Panels A and B present results for portfolios sorted with respect to 
market capitalizations and book-to-market ratios, respectively. SMB is a portfolio that is long in stocks in 
the smallest decile and short in stocks in the biggest decile. HML is a portfolio that is long in stocks in the 
highest B/M decile and short in stocks in the lowest B/M decile. The sample covers the period from 
January 1986 to March 2010 (291 months). Regime 1 (2) corresponds to low- (high-) volatility regimes 
where the monthly range of the VIX index is lower (higher) than the estimated threshold. Threshold betas 
and their associated threshold volatility estimates are not reported for portfolios that do not exhibit 
significant regime shifts.  
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Table A.6 
Threshold estimates for 25 (5x5) and 6 (2x3) size and book-to-market portfolios 

Panel A: 25 (5x5)  portfolios 

Size B/M CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

S L 1.3614 1.3689 1.2726 8.42 
S 2 1.1430 1.2299 1.0666 5.07 
S 3 0.9776 0.8838 1.0137 8.80 
S 4 0.9051 0.7844 0.9616 8.80 
S H 0.9917 0.8509 1.0661 9.08 
2 L 1.3332 - - - 
2 2 1.0924 0.9973 1.1731 9.33 
2 3 0.9530 0.8383 1.0577 9.33 
2 4 0.9310 0.7991 1.0496 9.46 
2 H 1.0572 0.9169 1.1338 9.33 
3 L 12875 - - - 
3 2 1.0661 - - - 
3 3 0.9193 0.8347 1.0039 9.46 
3 4 0.8865 0.7997 0.9527 9.46 
3 H 0.9352 0.8325 1.0044 9.46 
4 L 1.2044 - - - 
4 2 1.0285 0.9328 1.3172 15.29 
4 3 1.0071 0.9156 1.1013 9.46 
4 4 0.9005 0.8309 0.9299 9.46 
4 H 0.9579 0.8862 0.9921 9.46 
B L 0.9924 1.0396 0.9217 9.33 
B 2 0.9183 - - - 
B 3 0.8815 - - - 
B 4 0.8038 - - - 
B H 0.8733 - - - 

HMLs -0.3696 -0.5122 -0.2176 9.46 
SMBh 0.1184 -0.0239 0.1131 8.42 

Panel B: 6 (2x3)  portfolios 

Size B/M CAPM Beta Beta for Regime 1 Beta for Regime 2 Threshold Estimate 

S L 1.2815 - - - 
S M 0.9797 0.8292 1.1100 9.33 
S H 0.9778 0.8429 1.0593 9.33 
B L 1.0016 1.0411 0.9829 9.33 
B M 0.8950 0.8453 0.9458 10.92 
B H 0.8809 - - - 

HMLs -0.3037 -0.4173 -0.2150 9.46 
SMBh 0.1250 -0.0239 0.1948 8.80 

Note: This table reports the unconditional CAPM betas, the threshold beta estimates with respect to low- and 
high-volatility regimes, and their associated threshold volatility estimates, proxied by the range of the VIX index 
in a given month (RVIX). Panels A and B present results for 25 (5x5) and six (2x3) portfolios sorted with respect 
to market capitalizations and book-to-market ratios, respectively. HMLs is a portfolio long in small-value and 
short in small-growth stocks. SMBh is a portfolio long in small-value and short in big-value stocks. The sample 
covers the period from January 1986 to March 2010 (291 months). Regime 1 (2) corresponds to low- (high-) 
volatility regimes where the monthly range of the VIX index is lower (higher) than the estimated threshold. 
Threshold betas and their associated threshold volatility estimates are not reported for portfolios that do not 
exhibit significant regime shifts.  
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Table A.7 
Comparison of Jensen’s alphas 

 

Panel A: 10 Size portfolios 
 α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

Small 0.0055 (0.0027) -0.0223 (0.0050) 0.0063 (0.0025) -0.0229 (0.0159) 
Decile2 0.0033 (0.0024) -0.0179 (0.0039) 0.0038 (0.0022) -0.0186 (0.0156) 
Decile3 0.0030 (0.0019) -0.0132 (0.0042) 0.0039 (0.0019) -0.0137 (0.0147) 
Decile4 0.0015 (0.0017) -0.0095 (0.0045) 0.0024 (0.0017) -0.0101 (0.0109) 
Decile5 0.0019 (0.0015) -0.0079 (0.0035) 0.0024 (0.0014) -0.0073 (0.0112) 
Decile6 0.0012 (0.0011) -0.0045 (0.0068) 0.0025 (0.0011) -0.0099 (0.0061) 
Decile7 0.0017 (0.0010) 0.0017 (0.0010) - - 
Decile8 0.0008 (0.0009) 0.0008 (0.0009) - - 
Decile9 0.0012 (0.0007) 0.0012 (0.0007) - - 
Big -0.0006 (0.0007) 0.0043 (0.0018) -0.0009 (0.0006) 0.0044 (0.0064) 
SMB 0.0026 (0.0032) -0.0300 (0.0060) 0.0073  (0.0030) -0.0272 (0.0167) 

Panel B: 10 B/M portfolios 
 α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

High 0.0055 (0.0022) -0.0111 (0.0063) 0.0063 (0.0021) -0.0116 (0.0288) 
Decile2 0.0041 (0.0014) -0.0066 (0.0050) 0.0051 (0.0016) -0.0082 (0.0164) 
Decile3 0.0036 (0.0013) -0.0140 (0.0062) 0.0048 (0.0016) -0.0145 (0.0225) 
Decile4 0.0023 (0.0014) 0.0023 (0.0014) - - 
Decile5 0.0006 (0.0011) 0.0006 (0.0011) - - 
Decile6 0.0012 (0.0013) 0.0012 (0.0013) - - 
Decile7 0.0025 (0.0012) -0.0113 (0.0040) 0.0031 (0.0013) -0.0103 (0.0058) 
Decile8 0.0016 (0.0010) 0.0016 (0.0010) - - 
Decile9 -0.0004 (0.0009) 0.0061 (0.0023) -0.0004 (0.0009) 0.0072 (0.0044) 
Low -0.0020 (0.0011) 0.0087 (0.0031) -0.0027 (0.0011) 0.0063(0.0045) 
HML 0.0040 (0.0030) -0.0221 (0.0081) 0.0090 (0.0028) -0.0171 (0.0121) 

 
Note: This table reports Jensen’s alphas for the unconditional CAPM and for the threshold model with 
respect to low- and high-volatility regimes. Panels A and B presents results for portfolios sorted with 
respect to market capitalizations and book-to-market ratios, respectively. SMB is a portfolio long in stocks 
in the smallest decile and short in stocks in the biggest decile. HML is a portfolio long in stocks in the 
highest B/M decile and short in stocks in the lowest B/M decile. The sample covers the period from 
January 1986 to March 2010 (291 months). Regime 1 (2) corresponds to low- (high-) volatility regimes 
where the monthly range of the VIX index is lower (higher) than the estimated threshold. Threshold alphas 
are not reported for portfolios that do not exhibit significant regime shifts.  



 47 

Table A.8 
Comparison of Jensen’s alphas 

 

Panel A: 25 (5x5) portfolios 
Size B/M α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

S L -0.0091 (0.0036) -0.0275  (0.0085)
 

-0.0044 (0.0031) -0.0271 (0.0129) 
S 2 0.0243 (0.0048) -0.0126  (0.0066)     0.0068 (0.0026) -0.0078 (0.0102) 
S 3 0.0146 (0.0030) -0.0294 (0.0125)     0.0067 (0.0021) -0.0160 (0.0157) 
S 4 0.0167 (0.0028) -0.0292 (0.0120)     0.0097 (0.0021) -0.0165 (0.0152) 
S H 0.0190 (0.0030) -0.0417 (0.0137)     0.0108 (0.0022) -0.0214 (0.0166) 
2 L -0.0038 (0.0023)     -0.0038 (0.0023)    - - 
2 2 0.0126 (0.0031) -0.0336   (0.0151)    0.0032 (0.0019) -0.0105 (0.0106) 
2 3 0.0145 (0.0026) -0.0273  (0.0141)     0.0069 (0.0017) -0.0079 (0.0155) 
2 4 0.0146 (0.0026) -0.0348 (0.0141)     0.0071 (0.0018) -0.0139 (0.0169) 
2 H 0.0165 (0.0030) -0.0434  (0.0160)     0.0080 (0.0021) -0.0222 (0.0180) 
3 L -0.0024   (0.0020)    -0.0024   (0.0020)    - - 
3 2 0.0010 (0.0014) 0.0010 (0.0014) - - 
3 3   0.0052 (0.0015) 

 
-0.0094  (0.0042)     0.0050 (0.0015) -0.0064(0.0093) 

3 4 0.0135 (0.0025) -0.0286 (0.0129)     0.0062 (0.0017) -0.0106 (0.0067) 
3 H 0.0171(0.0027) -0.0328 (0.0142)     0.0094 (0.0019) -0.0129 (0.0080) 
4 L 0.0004 (0.0015) 0.0004 (0.0015)

 
- - 

4 2 0.0035 (0.0012) -0.0173  (0.0101)     0.0029 (0.0013)  0.0134 (0.0095) 
4 3 0.0118 (0.0027) -0.0296 (0.0145)     0.0034 (0.0015) -0.0081 (0.0058) 
4 4 0.0141  (0.0024)     0.0314  (0.0124)     0.0064 (0.0016) -0.0133 (0.0137) 
4 H 0.0138  (0.0028)     0.0328  (0.0138)     0.0057 (0.0020) -0.0135 (0.0142) 
B L 0.0087 (0.0027) -0.0117  (0.0120)     -0.0014 (0.0010) 0.0099 (0.0065) 
B 2 0.0017  (0.0011)     0.0017  (0.0011)     - - 
B 3 0.0005  (0.0013)     0.0005  (0.0013)     - - 
B 4 0.0009  (0.0017)     0.0009  (0.0017)     - - 
B H 0.0019  (0.0020)

 
0.0019  (0.0020)

 
- - 

HMLs 
SMBh 

0.0113  (0.0029)     0.0078 (0.0072) 0.0165 (0.0026) -0.0001 (0.0205) 
0.0084 (0.0029)     -0.0191 (0.0077) 0.0088 (0.0029) -0.0207 (0.0181) 

Panel B: 6 (2x53) portfolios 
Size B/M α CAPM, Regime1 α CAPM, Regime2 α Regime1 α Regime2 

S L -0.0036 (0.0021) -0.0036 (0.0021)
 

- - 
S M 0.0050 (0.0016) -0.0101 (0.0044)     

 
0.0063 (0.0016) -0.0102 (0.0073) 

S H 0.0083 (0.0010) -0.0152 (0.0027)     
 

0.0090 (0.0018) -0.0182 (0.0158) 
B L -0.0007 (0.0007) 0.0076 (0.0022)    

 
-0.0011 (0.0007) 0.0080 (0.0030) 

B M 0.0019 (0.0011)     -0.0081 (0.0032)     
 

0.0023 (0.0012) -0.0070 (0.0064) 
B H 0.0015 (0.0016)     0.0015 (0.0016)     

 
- - 

HMLs 
SMBh 

0.0102  (0.0020)     -0.0095 ( 0.0058) 0.0115 (0.0020) 0.0101 (0.0087) 
0.0047 (0.0020)       -0.0101 (0.0044) 0.0059 (0.0018) -0.0071 (0.0151) 

Note: This table reports Jensen’s alphas for the unconditional CAPM and for the threshold model with 
respect to low- and high-volatility regimes where RVIX is the threshold parameter. Panels A and B present 
results for portfolios sorted with respect to market capitalizations and book-to-market ratios, respectively. 
HMLs is a portfolio long in small-value and short in small-growth stocks. SMBh is a portfolio long in 
small-value and short in big-value stocks. The sample covers the period from January 1986 to March 2010 
(291 months). Regime 1 (2) corresponds to low- (high-) volatility regimes where the monthly range of the 
VIX index is lower (higher) than the estimated threshold. Threshold alphas are not reported for portfolios 
that do not exhibit significant regime shifts.  
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Table A.9 
Root mean squared pricing errors for unconditional CAPM, FF three-factor model, and 

threshold CAPM  
 

Panel A: 10 size portfolios 

 Unconditional CAPM FF 3-Factor Model Threshold CAPM 

Small 0.0413 0.0207 0.0411 
Decile2 0.0373 0.0128 0.0372 
Decile3 0.0304 0.0098 0.0302 
Decile4 0.0280 0.0111 0.0278 
Decile5 0.0242 0.0115 0.0241 
Decile6 0.0191 0.0128 0.0188 
Decile7 0.0163 0.0118 - 
Decile8 0.0151 0.0112 - 
Decile9 0.0111 0.0102 - 
Big 0.0109 0.0057 0.0108 

Panel B: 10 B/M portfolios 

 Unconditional CAPM FF 3-Factor Model Threshold CAPM 

High 0.0360 0.0235 0.0359 
Decile2 0.0242 0.0157 0.0241 
Decile3 0.0249 0.0135 0.0245 
Decile4 0.0229 0.0171 - 
Decile5 0.0186 0.0151 - 
Decile6 0.0208 0.0165 - 
Decile7 0.0197 0.0166 0.0194 
Decile8 0.0174 0.0168 - 
Decile9 0.0146 0.0143 0.0144 
Low 0.0186 0.0146 0.0184 

 
Note: This table reports the root mean squared pricing errors (RMSE) for the unconditional CAPM, the 
proposed threshold volatility CAPM with RVIX as the threshold parameter, and the Fama-French (1992) 
three-factor model for the period covering January 1986 to March 2010. The pricing errors are computed 
according to Equation (7) in Section 4. Panels A and B present results for portfolios sorted with respect to 
market capitalizations and book-to-market ratios, respectively. Pricing errors for the threshold volatility 
CAPM are not reported for portfolios that do not exhibit significant regime shifts. 
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Table A.10 
Root mean squared pricing errors for unconditional CAPM, FF three-factor model, and 

threshold CAPM  
 

Panel A: 25 (5x5)  portfolios 

Size B/M Unconditional CAPM FF 3-Factor Model Threshold CAPM 

S L 0.0540 0.0263 0.0540 
S 2 0.0461 0.0188 0.0459 
S 3 0.0348 0.0143 0.0347 
S 4 0.0342 0.0154 0.0341 
S H 0.0373 0.0157 0.0371 
2 L 0.0402 0.0160 - 
2 2 0.0306 0.0158 0.0303 
2 3 0.0278 0.0141 0.0274 
2 4 0.0295 0.0145 0.0291 
2 H 0.0362 0.0150 0.0359 
3 L 0.0349 0.0160 - 
3 2 0.0236 0.0185 - 
3 3 0.0239 0.0173 0.0236 
3 4 0.0269 0.0181 0.0268 
3 H 0.0312 0.0200 0.0311 
4 L 0.0262 0.0155 - 
4 2 0.0205 0.0177 0.0197 
4 3 0.0247 0.0194 0.0243 
4 4 0.0238 0.0172 0.0237 
4 H 0.0310 0.0201 0.0309 
B L 0.0163 0.0112 0.0161 
B 2 0.0189 0.0155 - 
B 3 0.0213 0.0161 - 
B 4 0.0269 0.0149 - 
B H 0.0332 0.0237 - 

Panel B: 6 (2x3)  portfolios 

Size B/M Unconditional CAPM FF 3-Factor Model Threshold CAPM 

S L 0.0372 0.0105 - 
S M 0.0266 0.0093 0.0264 
S H 0.0304 0.0067 0.0301 
B L 0.0121 0.0080 0.0119 
B M 0.0183 0.0118 0.0181 
B H 0.0255 0.0108 - 

 
Note: This table reports the root mean squared pricing errors (RMSE) for the unconditional CAPM, the 
proposed threshold volatility CAPM with RVIX as the threshold parameter, and the Fama-French (1992) 
three-factor model for the period covering January 1986 to March 2010. The pricing errors are computed 
according to Equation (7) in Section 4. Panels A, B, and C present results for portfolios sorted with respect 
to market capitalizations, dividend yields, and book-to-market ratios, respectively. Pricing errors for the 
threshold volatility CAPM are not reported for portfolios that do not exhibit significant regime shifts. 
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Table A.11 

Fama-MacBeth Risk Premium Estimates (RVIX) 
 

 
i
 MKT

 1REGIME
 2REGIME

 SMB
 HML

 
Adj. R2 

Row1 1.65 
(2.64**) 
(2.62**) 

-0.94 
(-1.37) 
(-1.36) 

    0.26 
 

Row2 2.12 
(4.36***) 
(4.32***) 

 -0.89 
(-1.55) 
(-1.53) 

   0.44 

Row3 0.88 
(0.52) 
(0.48) 

  -3.59 
(-1.84*) 
(-1.71*) 

  0.40 

Row4 1.85 
(5.73***) 
(5.39***) 

 -0.87 
(-1.16) 
(-1.14) 

 0.31 
(1.42) 
(1.40) 

0.48 
(2.45**) 
(2.31**) 

0.53 
 

Row5 0.89 
(-1.39) 
(-1.04) 

  -1.73 
(-2.09**) 
(-1.78*) 

-1.62 
(-3.36***) 
(-3.11*** ) 

-0.26 
(-0.38) 
(-0.28) 

0.62 

Note: This table reports the estimates for the cross-sectional Fama-MacBeth (1973) regressions 
specified by Equation (8), or subsets of it, using the excess returns on 25 (5x5) portfolios, sorted with 
respect to market capitalization and book-to-market ratios, as test portfolios. The sample period is from 
January 1986 to March 2010 (291 months). Regime 1 (Regime 2) corresponds to months where 
aggregate volatility is below (above) the threshold parameter. The numbers in parentheses are the t-
statistics for each coefficient estimate. The top statistic uses uncorrected Fama-MacBeth standard errors; 
the bottom statistic uses Shanken’s (1992) correction. The term adjusted R2 denotes the cross-sectional 
R

2 statistic adjusted for the degrees of freedom. 
 




