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Aggregated estimating equation estimation

Nan Lin∗ and Ruibin Xi†

Motivated by the recent active research on online ana-
lytical processing (OLAP), we develop a computation and
storage efficient algorithm for estimating equation (EE) es-
timation in massive data sets using a “divide-and-conquer”
strategy. In each partition of the data set, we compress the
raw data into some low dimensional statistics and then dis-
card the raw data. Then, we obtain an approximation to the
EE estimator, the aggregated EE (AEE) estimator, by solv-
ing an equation aggregated from the saved low dimensional
statistics in all partitions. Such low dimensional statistics
are taken as the EE estimates and first-order derivatives of
the estimating equations in each partition.

We show that, under proper partitioning and some regu-
larity conditions, the AEE estimator is strongly consistent
and asymptotically equivalent to the EE estimator. A major
application of the AEE technique is to support fast OLAP
of EE estimations for data warehousing technologies such
as data cubes and data streams. It can also be used to re-
duce the computation time and conquer the memory con-
straint problem posed by massive data sets. Simulation stud-
ies show that the AEE estimator provides efficient storage
and remarkable deduction in computational time, especially
in its applications to data cubes and data streams.

Keywords and phrases: Massive data sets, Estimat-
ing equation, Data compression, Aggregation, Consistency,
Asymptotic normality, Data cube.

1. INTRODUCTION

Two major challenges in analyzing massive data sets are
storage and computational efficiency. In recent years, there
have been active researches on developing compression and
aggregation schemes to support fast online analytical pro-
cessing (OLAP) of various statistical analyses, such as linear
regression [7, 14], general multiple linear regression [6, 19],
logistic regression analysis [26], predictive filters [6], naive
Bayesian classifiers [4] and linear discriminant analysis [22].
The OLAP analysis is usually associated with data ware-
housing technologies such as data cubes [1, 12, 27] and data
streams [16, 21], where fast responses to queries are often
needed. The response time of any OLAP tool should be in
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the order of seconds, at most minutes, even if complex sta-
tistical analyses are involved.

Most of the current OLAP tools can only support simple
analyses that are essentially linear operators [7, 6, 14, 19].
However, many advanced statistical analyses are nonlinear
and thus most of the current OLAP tools cannot be used
to support these advanced analyses. In this paper, we de-
veloped a compression and aggregation strategy to support
fast OLAP analysis for estimating equation (EE) estima-
tors. The EE estimators are a very large family of esti-
mators and many statistical estimation techniques can be
unified into the framework of EE estimators, including the
ordinary least square (OLS) estimator, the quasi-likelihood
estimator (QLE) [25] and the robust M-estimator [17]. The
scheme developed in this paper can not only support fast
OLAP of EE estimation, but also can be used to reduce the
computation time of the EE estimates and solve the memory
constraint problem imposed by massive data sets.

The compression and aggregation technique developed in
this paper is based on the “divide-and-conquer” strategy. We
first partition the massive data sets into K subsets and then
compress the raw data into the EE estimates and the first-
order derivative of the estimating equation before discarding
the raw data. The saved statistics allow reconstructing an
approximation to the original estimating equation in each
subset, and hence an approximation to the equation for the
entire data set after aggregating over all subsets. We show in
theory that the proposed aggregated EE (AEE) estimator is
asymptotically equivalent to the EE estimator if the number
of partitions K does not go to infinity too fast. Simulation
studies validate the theory and show that the AEE estimator
is computationally very efficient. Our results also show that
the AEE estimator provides more accurate estimates than
estimates from a subsample of the entire data set, which is
commonly done for static massive data sets.

The remainder of the paper is organized as follows. We
first review regression cube [6] in Section 2 and then present
the AEE estimator in Section 3 with its asymptotic proper-
ties given in Section 4. In Section 5, we study the application
of the AEE estimator to QLE and provide asymptotic prop-
erties for the resulted aggregated QLE. Sections 6 and 7
study the performance of the AEE estimator and its appli-
cations to data cubes and data streams through simulation
studies. And at last, Section 8 concludes the paper and pro-
vides some discussion. All proofs are given in the Appendix.
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2. AGGREGATION FOR LINEAR

REGRESSION

In this section, we review the regression cube technique
[6] to illustrate the idea of aggregation for linear regression
analysis.

Suppose that we have N independent observations
(y1,x1), . . . , (yN ,xN ), where yi is a scalar response, xi is
a p×1 covariate vector, i = 1, . . . , N . Let y = (y1, . . . , yN )T

and X = (x1, . . . ,xN )T . A linear regression model assumes
that E(y) = Xβ. Suppose that XT X is invertible, the

OLS estimator of β is β̂N = (XT X)−1XT y. Suppose that
the entire data set is partitioned into K subsets with yk

and Xk being the values of the response and covariates,
and β̂k = (XT

k Xk)−1XT
k yk the OLS estimate in the kth

subset, k = 1, . . . , K. Then, we have y = (yT
1 , . . . ,yT

K)T

and X = (XT
1 , . . . ,XT

K)T . Since XT X =
∑K

k=1 XT
k Xk and

XT y =
∑K

k=1 XT
k yk, the regression cube technique sees that

(1)

β̂N = (XT X)−1XT y =

(

K
∑

k=1

XT
k Xk

)−1 K
∑

k=1

XT
k Xkβ̂k,

which suggests that we can compute the OLS estimate for
the entire data set without accessing the raw data after sav-
ing (XT

k Xk, β̂k) for each subset. The size of (XT
k Xk, β̂k) is

p2 + p, so we only need to save Kp(p + 1) numbers, which
achieves very efficient compression since both K and p are
far less than N in practice. The success of this technique
thanks to the linearity of the estimating equation in param-
eter β and the estimating equation of the entire data set is
a simple summation of the equations in all subsets. That is,
XT (y − Xβ) =

∑K
k=1 XT

k (yk − Xkβ) = 0.

3. THE AEE ESTIMATOR

In this section, we consider, more generally, estimating
equation estimation in massive data sets and propose our
AEE estimator to provide a computationally tractable esti-
mator by approximation and aggregation.

Given independent observations {zi, i = 1, . . . , N},
suppose that there exists β0 ∈ R

p such that
∑N

i=1 E[ψ(zi,β0)] = 0 for some score function ψ. The score
function is a vector function of the same dimension p as the
parameter in general. The EE estimator β̂N of β0 is defined

as the solution to the estimating equation
∑N

i=1 ψ(zi,β) =
0. In regression analysis, we have zi = (yi,x

T
i ) with response

variable y and predictor x and the score function is usually
given as ψ(z, β) = φ(y −xT β)x for some function φ. When
φ is the identify function, the estimating equation is linear
in β and the resulting estimator is the OLS estimator. How-
ever, the score function ψ is more often nonlinear, and this
nonlinearity imposes difficulty to find low-dimensional sum-
mary statistics based on which the EE estimate for the entire
data set can be obtained by aggregation as in (1). Therefore,

we adjust our aim to finding an estimator that accurately
approximates the EE estimator, and can still be computed
by aggregation. Our basic idea is to approximate the non-
linear estimating equation by its first-order approximation,
whose linearity then allows us to find representations sim-
ilar to (1) and hence the proper low-dimensional summary
statistics.

Again, consider partitioning the entire data set into K
subsets. To simplify our notation, we assume that all sub-
sets are of equal size n. This condition is not necessary for
our theory, though. Denote the observations in the kth sub-
set by zk1, . . . , zkn. The EE estimate β̂nk based on observa-
tions in the kth subset is then the solution to the following
estimating equation,

(2) Mk(β) =

n
∑

i=1

ψ(zki, β) = 0.

Let

(3) Ak = −
n

∑

i=1

∂ψ(zki, β̂nk)

∂β
.

Since Mk(β̂nk) = 0, we have Mk(β) = Ak(β − β̂nk) +
R2 = Fk(β) + R2 from the Taylor expansion of Mk(β) at

β̂nk, where R2 is the residual term in the Taylor expansion.

The AEE estimator β̂NK is then the solution to F(β) =
∑K

k=1 Fk(β) = 0, which leads to

(4) β̃NK =

(

K
∑

k=1

Ak

)−1 K
∑

k=1

Akβ̂nk.

This representation suggests the following algorithm to com-
pute the AEE estimator.

1. Partition. Partition the entire data set into K subsets
with each containable in the computer’s memory.

2. Compression. For the kth subset, save (β̂nk,Ak) and
discard the raw data. Repeat for k = 1, . . . , K.

3. Aggregation. Calculate the AEE estimator β̃NK us-
ing (4).

This implementation makes it feasible to process massive
data sets on regular computers as long as each partition is
manageable to the computer. It also provides a very efficient
storage solution because only K(p2 +p) numbers need to be
stored after compressing the data.

4. ASYMPTOTIC PROPERTIES

In this section, we give the consistency of the AEE esti-
mator. Theorem 4.1 gives the strong consistency the AEE
estimator for finite K. Theorem 4.2 further shows that
when K goes to infinity not too fast, the AEE estima-
tor is a consistent estimator under some regularity condi-
tions. Theorem 4.2 is very useful to prove the asymptotic
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equivalence of the AEE estimator and the EE estimator. In
the next section, we apply Theorem 4.2 to the aggregated
quasi-likelihood estimators (QLE) and show its asymptotic
equivalence to its original QLE. Let the score function be
ψ(zi, β) = (ψ1(zi,β), . . . , ψp(zi,β))T . We first specify some
technical conditions.

(C1) The score function ψ is measurable for any fixed β and
is twice continuously differentiable with respect to β.

(C2) The matrix −∂ψ(zi,β)
∂β

is semi-positive definite (s.p.d.),

and −∑n
i=1

∂ψ(zi,β)
∂β

is positive definite (p.d.) in a
neighborhood of β0 when n is large enough.

(C3) The EE estimator β̂n is strongly consistent, i.e. β̂n →
β0 almost surely (a.s.) as n → ∞.

(C4) There exists two p.d. matrices, Λ1 and Λ2 such that
Λ1 ≤ n−1Ak ≤ Λ2 for all k = 1, . . . , K, i.e. for any
v ∈ R

p, vT Λ1v ≤ n−1vT Akv ≤ vT Λ2v, where Ak is
given in (3).

(C5) In a neighborhood of β0, the norm of the second-

order derivatives
∂2ψj(zi,β)

∂β2 is bounded uniformly, i.e.

‖∂2ψj(zi,β)

∂β2 ‖ ≤ C2 for all i, j, where C2 is a constant.

(C6) There exists a real number α ∈ (1/4, 1/2) such that for

any η > 0, the EE estimator β̂n satisfies P (nα‖β̂n −
β0‖ > η) ≤ Cηn2α−1, where Cη > 0 is a constant only
depending on η.

Under Condition (C2), the matrices Ak is positive def-
inite in probability and therefore the AEE estimator β̃NK

is well-defined in probability. Condition (C3) is necessary
for the strong consistency of the AEE estimator and is sat-
isfied by almost all EE estimators in practice. Conditions
(C4) and (C5) are required to prove the strong consistency
of the AEE estimator, and are often true when each sub-
set contains enough observations. Condition (C6) is useful
in showing the consistency of the AEE estimator and the
asymptotic equivalence of the AEE and EE estimators when
the partition number K also goes to infinity as the number
of observations goes to infinity. In Section 5, we will show
that Condition (C6) is satisfied for the quasi-likelihood es-
timators considered in [5] under some regularity conditions.

Theorem 4.1. Let k0 = argmax1≤k≤K{‖β̂nk − β0‖}. Un-

der Conditions (C1)–(C3), if the partition number K is

bounded, we have ‖β̃NK − β0‖ ≤ K‖β̂nk0
− β0‖. If Condi-

tion (C4) is also true, we have ‖β̃NK−β0‖ ≤ C‖β̂nk0
−β0‖

for some constant C independent of n and K. Furthermore,

if Condition (C5) is satisfied, we have ‖β̃NK − β̂N‖ ≤
C1(‖β̂nk0

− β0‖2 + ‖β̂N − β0‖2) for some constant C1 in-

dependent of n and K.

Theorem 1 shows that if the partition number K is
bounded, then the AEE estimator is also strongly consistent.
Usually, we have ‖β̂N − β0‖ = o(‖β̂nk0

− β0‖). Therefore,

the last part of Theorem 4.1 implies that ‖β̃NK − β̂0‖ ≤
2C‖β̂nk0

− β0‖2 + ‖β̂N − β0‖.

Theorem 4.2. Let β̂N be the EE estimator based on the

entire data set. Then under Conditions (C1)–(C2), (C4)–
(C6), if the partition number K satisfies K = O(nγ) for

some 0 < γ < min{1− 2α, 4α− 1}, we have P (
√

N‖β̃NK −
β̂N‖ > δ) = o(1) for any δ > 0.

Theorem 4.2 tells us that if the EE estimator β̂N is a con-
sistent estimator and the partition number K goes to infinity
slowly, then the AEE estimator β̃NK is also a consistent es-
timator. In general, one can easily use Theorem 4.2 to show
the asymptotic normality of the AEE estimator if the EE es-
timator is asymptotically normally distributed, and further
to prove the asymptotic equivalence of the two estimators.

5. THE AGGREGATED QLE

In this section, we demonstrate the applicability of the
AEE technique to quasi-likelihood estimation and call the
resulted estimator the aggregated quasi-likelihood estima-
tor (AQLE). We consider a simplified version of the QLE
discussed in [5]. Suppose that we have N independent ob-
servations (yi,xi), i = 1, . . . , N , where y is a scalar response
and x is a p-dimensional vector of explanatory variables.
Let μ be a continuously differentiable function such that
μ̇(t) = dμ/dt > 0 for all t. Suppose that we have

(5) E(yi) = μ(βT
0 xi) i = 1, . . . , N.

for some β0 ∈ R
p. Then the QLE of β0, β̂N , is the solution

to the estimating equation

(6) Q(β) =

N
∑

i=1

[yi − μ(βT xi)]xi = 0,

Let εi = yi − μ(βT
0 xi) and σ2

i = Var(yi). The following
theorem shows that Condition (C6) is satisfied for the QLE
under some regularity conditions.

Theorem 5.1. Consider a generalized linear model specified

by (5) with fixed design. Suppose that yi’s are independent

and that λN is the minimum eigenvalue of
∑N

i=1 xix
T
i . If

there are two positive constants C and M such that λN/N >
C and supi{‖xi‖, ‖σ2

i ‖} ≤ M , then for any η > 0 and α ∈
(0, 1/2),

P (Nα‖β̂N − β‖ > η) ≤ C1(mηη)−2N2α−1,

where C1 = pM3C−3 is a constant, and mη > 0 is a con-

stant only depending on η.

Now suppose that the entire data set is partitioned into
K subsets. Let {(yki,xki)}n

i=1 be the observations in the kth
subset with n = N/K.

(B1) The link function μ is twice continuously differentiable
and the derivative of the link function is always posi-
tive, i.e. μ̇(t) > 0.
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(B2) The vectors xki are fixed and uniformly bounded, and
the minimum eigenvalue λk of

∑n
j=1 xkjx

T
kj satisfies

λk/n > C > 0 for all k and n.
(B3) The variances of yki, σ2

ki, are bounded uniformly.

Condition (B1) is needed for Conditions (C1) and (C5).
Conditions (B1)–(B2) together guarantee Conditions (C2),
(C4) and (C5). And it is easy to verify that all the conditions
assumed in Theorem 1 of [5] are satisfied under Conditions

(B1)–(B2). Hence, by Theorem 1 in [5] the QLEs β̂nk are

strongly consistent. Theorem 5.1 implies that the QLEs β̂nk

satisfy Condition (C6) under Conditions (B1)–(B3). There-
fore, the conclusions in Theorem 4.1 and Theorem 4.2 hold
for the AQLE under Conditions (B1)–(B3). Furthermore,
the AQLE β̃NK has the following asymptotic normality.

Theorem 5.2. Let ΣN =
∑N

i=1 σ2
i xix

T
i and DN (β) =

−∑N
i=1 μ̇(xT

i β)xT
i xi. Suppose that there exist a constant

c1 such that σ2
i > c2

1 for all i and supi E(|εi|r) < ∞
for some r > 2. Then under Conditions (B1)–(B3), if

K = O(nγ) for some 0 < γ < min{1− 2α, 4α− 1}, we have

Σ
−1/2
N DN (β0)(β̃NK − β0)

d−→N (0, Ip) and β̃NK is asymp-

totically equivalent to the QLE β̂N .

6. SIMULATION STUDIES AND REAL

DATA ANALYSIS

6.1 Simulation

In this section, we illustrate the computational advan-
tages of the AEE estimator by simulation studies. We con-
sider computing the maximum likelihood estimator (MLE)
of the regression coefficients in logistic regression with five
predictors x1, . . . , x5. Let yi be the binary response and
xi = (1, xi1, . . . , xi5)

T . In a logistic regression model, we
have

Pr(yi = 1) = μ(xT
i β) =

exp(xT
i β)

1 + exp(xT
i β)

, i = 1, . . . , N.

And the MLE of the regression coefficients β is a special case
of the QLE discussed in Section 5. We set the true regression
coefficients as β = (β0, β1, . . . , β5) = (1, 2, 3, 4, 5, 6) and the
sample size as N = 500, 000. The predictor values are drawn
independently from the standard normal distribution.

We then compute β̃NK , the AEE estimate
of β, with different partition numbers for K =
1, 000, 950, . . . , 100, 90, . . . , 10. In compressing the sub-
sets, we use the Newton-Raphson method to calculate the
MLE β̂nk in every subset k, k = 1, . . . , K. For comparison,

we also compute β̂N , the MLE from the entire data set,
which is equivalent to β̃NK when K = 1. All programs
are written in C and our computer has a 1.6GHz Pentium
processor and 512MB memory.

Figure 1 plots the relative bias ‖β̃NK −β0‖/‖β0‖ against
the number of partitions K. The linearly increasing trend

Figure 1. Relative bias against number of partitions.

can be well explained by our theory. In Section 4.1, we

argued that the magnitude of ‖β̃NK − β0‖ is close to

2C1‖β̂nk0
− β0‖2 + ‖β̂N − β0‖. From Theorem 1 in [5],

we have ‖β̂nk0
− β0‖2 = o([log n]1+δ/n). Since log n ≪ n,

‖β̃NK − β0‖ is close to o(1/n) = o(K/N), which increases
linearly with K when N is held fixed. Since N is fixed,
‖β̂N −β0‖ is fixed and so ‖β̃NK −β0‖ will roughly increase

linearly with K.

Figure 2 plots the computational time against the num-
ber of partitions. It takes 290 seconds to compute the MLE

(K = 1) and 128 seconds to compute the AEE estimator
when K = 10, which shows a computational time reduction
of more than 50%. As K increases, the computational time

soon stabilizes. This shows that we may choose a relatively
small K as long as the size of each subset does not exceed
the storage limit or memory constraint. On the other hand,

we see that the AEE estimator provides not only an efficient
storage solution, but also a viable way to achieve more effi-

cient computation even when the EE estimate using all the
raw data can be computed.

Next, we will show that the AEE estimator is more ac-
curate than estimates based on sub-sampling. In our study,

we can view β̂nk from each subset as estimates based on a
sub-sample of the entire data set. Table 1 presents the per-
centages of β̂nk with relative bias ‖β̂nk − β0‖/‖β0‖ above

that of the AEE estimator for different partition numbers.
It is seen that that more than 90% of β̂nk’s have a relative
bias larger than that of the β̃NK , which clearly shows that

the AEE estimator is more accurate than estimators based
on sub-sampling.
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Figure 2. Computation time against number of partition K.

Table 1. Performance of β̂nk

K 500 100 50 10

Percentage 94% 97% 94% 90%

6.2 Real data analysis

In this section, we apply our aggregation on a real data
set. In [8], Chiang et al. used next-generation sequenc-
ing (NGS) to detect copy number variation in the sample
genome. It is known that the current NGS platforms have
various biases [9], for example, GC-bias can lead to uneven
distribution of short reads on the genome. Another impor-
tant factor that can influence the read distribution is the
mappability [23] of the genomic positions. Specifically, due
to the existence of the segmental duplication and repeat se-
quences, a short sequence (e.g. 35 bp short sequence) start-
ing from a genomic position may have many copies in the ref-
erence genome, making this genomic position not uniquely
mappable. Hence, variation of the mappability across the
reference genome will also lead to uneven distribution of
uniquely mapped reads. Here, we are interested in how the
number of reads in a certain genomic window is related with
factors like GC-content and mappability.

We use the sequencing data of the matched normal
genome of the cell line H2347 in [8] to study how the num-
ber of reads relate with other factors. We first binned the
uniquely mapped reads into 1,000 bp bins and counted the
number of reads in each bin. Then, for each bin, we counted
how many nucleotides are G, C and A. Since the bin size is
known, once we know nucleotide counts for G, C and A, we
basically know how many nucleotides are T. For each bin,

Figure 3. The number of subsets K used for each

chromosome.

we also counted how many genomic positions are uniquely
mappable (35 bp short sequence). Assume that the number
of reads in the ith bin follow a Poisson distribution with
parameter λi. We consider the following model

log(λi) = β0+β1 log(G)+β2 log(C)+β3 log(A)+β4 log(M),

where G, C, A are the G, C, and A count in the ith bin, and
M is the proportion of the uniquely mappable positions. To
avoid taking logarithm of zero, we added a small number
on G, C and A count (0.1) and the mappability (0.0001).
Then, for each chromosome (chromosome 1, . . . , 22 and X),

we compared the MLE β̂ with its corresponding AEE esti-
mate β̃ of the Poisson regression model. To calculate the
AEE estimate, for each chromosome, we partitioned the
data set into K subsets such that each subset had 5,000 data
points (maybe except one subset). Figure 3 shows the num-
ber of subsets K used for each chromosome. Then, for each
chromosome, we calculated the relative bias ‖β̃ − β̂‖/‖β̂‖
(Figure 4). From Figure 4, we see that the MLE and its cor-
responding AEE estimates are very close, showing that our
aggregation performs well in this data set.

7. APPLICATIONS: DATA CUBES AND

DATA STREAMS

In this section, we discuss applications of the AEE estima-
tor in two massive data environments: data cubes and data
streams. Analysis in both environments require performing
the same analysis for different subsets while the raw data
often can not be saved permanently. Efficient compression
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Figure 4. Relative Bias of the AEE estimate for the

sequencing data.

of the raw data by the AEE method enables remarkable
computational reduction for estimating equation estimation
in these two scenarios. In both cases, the size of the com-
pressed data is independent of and far smaller than that of
the raw data for most applications.

7.1 Application to data cubes

Data cubes [12] are multidimensional extensions of two-
dimensional tables, which are common in massive business
transaction data sets. As a data warehouse tool, it has its
advantage over relational databases when fast OLAP is de-
sired. Very often, some dimensions can take values at multi-
ple levels that form a hierarchical structure. For example, a
business’s transaction location can be defined at any of the
three levels: country, state or city, and its time at any of the
four levels: year, month, week or day. Hence, a subset of the
entire data set is determined when values of these dimen-
sions are given at a certain level, and we call it a cube. The
lowest level cubes in the hierarchical structure are called
base cells. For example, data records in a particular city at
a particular day in the aforementioned example form a base
cell. Then any cube can be obtained from aggregating base
cells. Business analysts are often interested in performing
the same analysis in different cubes. Even if these dimension
attributes have only a moderate number of distinct values at
their lowest level, the total number of all cubes is enormous.
If the analysis needs to access the raw data in a cube every-
time, a huge amount of time is needed as accessing subsets
in a massive data set is time-consuming, and oftentimes the
raw data are too massive to store permanently.

Using the AEE method, we first compress the raw data
in each base cell into the EE estimate β̂nk and Ak in (3).
This only requires scanning the raw data once and then
we can discard the raw data. And the EE estimate in any
cube can be approximated by computing the AEE estimate
using the aggregation in (4). This aggregation is very fast
since only simple operations are needed. Consequently, fast
computation and efficient storage are both achieved when
EE estimation is needed for many different cubes.

7.2 Application to data streams

Data streams are data records coming rapidly along
time. Examples include phone records in large call centers,
web search activities, and network traffic. Formally, a data
stream is a sequence of data items z1, . . . , zt, . . . , zN such
that the items are read once in increasing order of the in-
dices t [16]. In reality, enormous amounts of data accumulate
quickly, which makes permanent storage of the raw data im-
possible. Meanwhile, analysis needs to be repeated from time
to time when more data are available. This demands algo-
rithms that process the raw data only once and then com-
press them into low-dimensional statistics based on which
the desired analysis can be performed exactly or approxi-
mately.

While analyses such as clustering [13, 3] and classifica-
tion [24] for data streams have been extensively studied,
parametric estimation such as EE estimation is still an un-
touched area. The AEE method provides a natural solution
to EE estimation for data streams. We first choose a se-
quence of integers {nk} such that

∑K
k=1 nk = N . Choices of

{nk} can be decided by the pyramidal time frame proposed
by Aggarwal et al. (2003) [2] to guarantee that the EE esti-
mates for any time interval can be approximated well. Let
m0 = 0, mk =

∑k
l=1 nl for k = 1, . . . , K. At each time

point mk, we calculate and store the EE estimate β̂nk and
Ak based on data items zmk−1

, . . . , zmk
in the time inter-

val [mk−1, mk]. According to the property of the pyramidal
time frame in [2], we can obtain a good approximation to
the EE estimate in any time interval by computing the AEE
estimator using (4).

7.3 Simulation studies

We again consider maximum likelihood estimation in lo-
gistic regression to demonstrate the remarkable value of
the AEE method. Since after the partitioning for the data
streams is decided, each time interval can be viewed as a
base cell in data cubes, our simulation focuses on data cubes
only. In this simulation, we use the same simulated data as in
Section 6 with two additional variables: location and time.
Location has 20 levels and time has 50 levels, so we have
1, 000 = 50 × 20 base cells in total. In reality, this data
set can be business transaction records in 50 months for 20
cities. We suppose that there are 500 records for each city
in each month. We consider the situation where a business
analyst is interested in computing the MLE in 100 different
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Table 2. Comparison of computational time

AEE estimate EE estimate

Compression 97 seconds NA

Aggregation 0.0 second 6771 seconds

cubes. We simulate each of these 100 cubes by first randomly
selecting D from {1, . . . , 1, 000} as the number of base cells
contained in a cube, and then randomly choosing D base
cells from the 1,000 base cells.

We compare the computation time of the AEE estimates
with that of computing the EE estimates directly from the
raw data. Table 2 shows that the AEE method first spent a
moderate amount of time to compress all base cells and then
finished the aggregation for all 100 queries almost timelessly,
while it took about 70 times longer to compute the 100
EE estimates from the raw data. Obviously, we can expect
even more significant time reduction when the calculation is
needed for more cubes.

7.4 Change detection

The purpose to perform the same analysis for different
cubes or for a data stream in different time intervals is often
to detect whether any change occurs [18, 10]. When changes
are detected between two cubes or two time intervals, it
becomes inappropriate to aggregate further as aggregating
inhomogeneous groups may lead to misleading conclusions
such as Simpson’s Paradox. The AEE method also provides
a way to test the non-homogeneity. Consider AEE estima-
tion in the data cube context. Suppose that each base cell
is compressed into the EE estimate β̂nk and the weight ma-

trix Ak. Let χ = (β̂k1
− β̂k2

)T (A−1
k1

+ A−1
k2

)−1(β̂k1
− β̂k2

).
Then from Theorem 5.2, if the data in the k1th cell and the
k2th cell are homogenous, the statistic χ is asymptotically
χ2

p distributed, where p is the dimension of β. Hence we can
use χ as a test statistic to test the homogeneity between the
k1th cell and the k2th cell.

8. CONCLUSIONS AND DISCUSSIONS

We develop the AEE estimator to overcome the memory
constraint or storage limit for EE estimation in massive data
sets based on first-order approximation to the estimating
equation. It accurately approximates the original EE esti-
mator with significant time reduction, especially in its ap-
plications to data cubes and data streams. The AEE method
compresses the raw data nearly losslessly as our asymptotic
theory shows the asymptotic equivalence between the orig-
inal EE estimator and the AEE estimator under mild con-
ditions. This efficient compression avoids accessing the raw
data everytime when the EE estimate needs to be computed
for different subsets, and provides remarkable value for the
AEE estimator to be used in data cubes and data stream.
Our results also show that the AEE estimator outperforms

the common practice of computing the EE estimator based
on a random sample of the entire data set.

Closely related work to our AEE method includes data
squashing (DS) [11] and its extension, likelihood-based DS
(LDS) [20]. Both methods compress the raw data lossly into
a much smaller set of “squashed” values with proper weights
attached to achieve efficient storage. The weights are taken
so that the weighted moments or the weighted likelihood of
the squashed data equate (or approximate) those of the raw
data. Despite the success of DS and LDS shown by the exam-
ples in [11, 20], no general theory guarantees EE estimators
based on the squashed data always accurately approximat-
ing the original EE estimators. In addition, while the set of
squashed values is very important to the performance of DS
and LDS, choosing squashed values properly is difficult as
the optimal set depends on the shape of the likelihood func-
tion, which is usually unavailable when an EE estimator is
needed.
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APPENDIX A. PROOFS

Definition. Let A be a d× d positive definite matrix. The

norm of A, is defined as ‖A‖ = supv∈Rd,v �=0
‖Av‖
‖v‖ .

By the definition of the above matrix norm, it is easy to
prove the following two facts.

Fact A.1. Suppose that A is a d×d positive definite matrix.

Let λ be the smallest eigenvalue of A, then we have vT Av ≥
λvT v = λ‖v‖2 for any vector v ∈ R

d. On the contrary, if

there exists a constant C > 0 such that vT Av ≥ C‖v‖2 for

any vector v ∈ R
d, then C ≤ λ.

Fact A.2. Let A be a d×d positive definite matrix and λ is

the smallest eigenvalue of A. If λ ≥ c > 0 for some constant

c, one has ‖A−1‖ ≤ c−1.

In the following, we will give the proofs for theorems in
Sections 4 and 5.

Proof of Theorem 1. From Conditions (C2) and (C5), we
know that matrix Ak is positive definite for each k =
1, . . . , K when n is sufficiently large. Hence,

∑K
k=1 Ak is a

positive definite matrix. In particular, (
∑K

k=1 Ak)−1 exists
and Equation (4) is valid. Subtracting β0 from both sides
of (4), we get

β̃NK − β0 =

(

K
∑

k=1

Ak

)−1 [

K
∑

k=1

Ak(β̂nk − β0)

]

.
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Thus,

‖β̃NK − β0‖ ≤
K

∑

k=1

∥

∥

∥

∥

( K
∑

k=1

Ak

)−1

Ak(β̂nk − β0)

∥

∥

∥

∥

(7)

≤
K

∑

k=1

‖β̂nk − β0‖.

The second inequality comes from the fact
‖(∑K

k=1 Ak)−1Ak‖ ≤ 1. Hence the first part of Theo-
rem 4.1 follows.

Now suppose that Condition (C3) is also true. Let λ1 > 0
be the smallest eigenvalue of the matrix Λ1 and λ2 be the
largest eigenvalue of the matrix Λ2. Then for any vector
v ∈ R

p, we have vT 1
nAkv ≥ vT Λ1v ≥ λ1‖v‖2. Hence,

vT 1
nK

∑K
k=1 Akv ≥ λ1‖v‖2. Then from Facts A.1 and A.2,

we have ‖( 1
nK

∑K
i=1 Ak)−1‖ ≤ λ1

−1. Then since ‖n−1Ak‖ ≤
‖Λ2‖ ≤ λ2, it follows that

∥

∥

∥

∥

∥

∥

(

K
∑

k=1

Ak

)−1

Ak

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

(

1

nK

K
∑

k=1

Ak

)−1
∥

∥

∥

∥

∥

∥

·
∥

∥

∥

∥

1

nK
Ak

∥

∥

∥

∥

≤ λ2

Kλ1
.

For C = λ2/λ1, we get

‖β̃NK − β0‖ ≤
K

∑

k=1

∥

∥

∥

∥

∥

∥

(

K
∑

k=1

Ak

)−1

Ak(β̂nk − β0)

∥

∥

∥

∥

∥

∥

≤ C‖β̂nk0
− β0‖.

Now suppose Condition (C5) is also satisfied.Let β̂N be
the EE estimate based on the entire data set. Then we have
M(β̂N ) =

∑K
k=1 Mk(β̂N ) = 0. By the Taylor expansion, we

have

(8) Mk(β̂N ) = Mk(β̂nk) + Ak(β̂N − β̂nk) + Rnk,

where the jth element of Rnk is

(β̂N − β̂nk)T
n

∑

i=1

∂2ψj(zki,β
∗
k)

∂β∂βT
(β̂N − β̂nk)

for some β∗
k between β̂N and β̂nk. Therefore, we actually

have ‖Rnk‖ ≤ Cn‖β̂N − β̂nk‖2 ≤ 2Cn(‖β̂nk − β0‖2 +

‖β̂N − β0‖2) for some constant C. Since Mk(β̂nk) = 0 and

M(β̂N ) = 0, if we take summation over k on both side of

Equation (8), we get
∑K

k=1 Ak(β̂N − β̂nk) +
∑K

k=1 Rnk =
∑K

k=1 Ak(β̂N − β̃NK) +
∑K

k=1 Rnk = 0, where the first

equation comes from the definition of β̃NK . Hence, we

have β̂N − β̃NK = (
∑K

k=1 Ak)−1
∑K

k=1 Rnk. Then simi-

lar to the first part of the proof, we get ‖β̃NK − β̂N‖ ≤
C1(‖βnk0

− β0‖2 + ‖β̂N − β0‖2) for some constant C1.

Proof of Theorem 4.2. Suppose that all the random vari-
ables are defined on a probability space (Ω,F , P ). Let
Ωn,k,η = {ω ∈ Ω : nα‖β̂nk − β0‖ ≤ η}, ΩN,η = {ω ∈
Ω : Nα‖β̂N − β0‖ ≤ η} and ΓN,K,η = ∩K

k=1Ωn,k,η ∩ ΩN,η.
From Condition (C6), for any η > 0, we have

P (Γc
N,K,η) ≤ P (Ωc

N,η) +

K
∑

k=1

P (Ωc
n,k,η)

≤ Cη(N2α−1 + Kn2α−1).

Since K = O(nγ) and γ < 1 − 2α, we have P (Γc
N,K,η) → 0

as n → ∞.
Let Rnk be as in the proof of Theorem 4.1. For all ω ∈

ΓN,K,η, we have β∗
k ∈ Bη(β0) = {β ∈ R

p : ‖β − β0‖ ≤
η} since Bη(β0) is a convex set and β̂N , β̂nk ∈ Bη(β0).
When η is small enough, the neighborhood in the Condition
(C5) contains Bη(β0). Hence, we have ‖Rnk‖ ≤ C2pn‖β̂N −
β̂nk‖2 for all ω ∈ ΓN,K,η when η is small enough. Therefore,
for all ω ∈ ΓN,K,η, we have the following inequalities,

‖β̂N − β̃NK‖

≤
∥

∥

∥

∥

∥

(

1

nK

K
∑

k=1

Ak

)−1∥
∥

∥

∥

∥

∥

∥

∥

∥

∥

1

nK

K
∑

k=1

Rnk

∥

∥

∥

∥

∥

≤ λ−1
1 C2p

K

K
∑

k=1

‖β̂N − β̂nk‖2 ≤ Cn−2αη2,

where C = 4λ−1
1 C2p and λ1 is the minimum eigenvalue of

the matrix Λ1 as in the proof of Theorem 1. For any δ > 0,
take ηδ > 0 such that Cη2

δ < δ. Then for any ω ∈ ΓN,K,ηδ

and K = O(nγ) for γ < min{1 − 2α, 4α − 1}, we have√
N‖β̃NK − β̂N‖ ≤

√
Nn−2αδ = O(n(1+γ−4α)/2)δ. There-

fore, when n is large enough, we have ΓN,K,ηδ
⊂ {ω ∈

Ω :
√

N‖β̃NK−β̂N‖ ≤ δ} and hence, P (
√

N‖β̃NK−β̂N‖ >
δ) ≤ P (Γc

N,K,ηδ
) → 0 as n → ∞.

To prove Theorem 5.1, we need the following two lemmas.
The proof of Lemma A.2 could be found in [5].

Lemma A.1. Suppose that A, B are two p × p positive

definite matrices. Then

(1) A ≥ B if and only if A−1 ≤ B−1

(2) If we have AB = BA, then A ≥ B implies A2 ≥ B2.

Lemma A.2. Let H be a smooth injection from R
p to R

p

with H(x0) = y0. Define Bδ(x0) = {x ∈ R
p, ‖x − x0‖ ≤

r} and Sδ(x0) = ∂Bδ(x0) = {x ∈ R
p, ‖x − x0‖ = δ}.

Then infx∈Sδ(x0) ‖H(x0) − y0‖ ≥ r implies (1) Br(y0) =
{y ∈ R

p, ‖y − y0‖ = δ} ⊆ H(Bδ(x0)); (2) H−1(Br(y0)) ⊆
Bδ(x0).

Proof of Theorem 5.1. Suppose that all the random vari-
ables are defined on a probability space (Ω,F , P ).

Let aN = (
∑N

i=1 xix
T
i )−1

∑N
i=1 xiεi and GN (β) =
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(
∑N

i=1 xix
T
i )−1

∑N
i=1[μ(βT xi) − μ(βT

0 xi)]xi, where εi =

yi−μ(βT
0 xi). Then, the QLE β̂N is the solution of the equa-

tion GN (β̂N ) = aN .

Take any η > 0, and let mη = inf{μ̇(βT x) : ‖x‖ ≤
M and ‖β − β0‖ ≤ η}. Obviously, mη > 0 only depends on
η for the given M . Take any β ∈ R

p with ‖β −β0‖ ≤ η, we
have by the mean-value theorem,

GN (β) =

(

N
∑

i=1

xix
T
i

)−1 N
∑

i=1

[μ(βT xi) − μ(βT
0 xi)]xi

=

(

N
∑

i=1

xix
T
i

)−1 N
∑

i=1

μ̇(βT
i xi)xix

T
i (β − β0),

where βi ∈ R
p lies on the line segment between β and β0.

Since ‖xi‖ ≤ M , we have
∑N

i=1 xix
T
i ≤ MNIp,

where Ip is the p × p identity matrix, and hence by

Lemma A.1, (
∑N

i=1 xix
T
i )−2 ≥ M−2N−2Ip. On the other

hand, since λN/N > C and ‖βi − β0‖ ≤ η, we have
∑N

i=1 μ̇(βT
i xi)xix

T
i ≥ ∑N

i=1 mηxix
T
i ≥ mηCNIp. There-

fore, the following inequality holds

‖GN (β)‖2 = (β − β0)
T

(

N
∑

i=1

μ̇(βT
i xi)xix

T
i

)

(

N
∑

i=1

xix
T
i

)−2 (

N
∑

i=1

μ̇(βT
i xi)xix

T
i

)

(β − β0)

≥ (MN)−2(β − β0)
T

(

N
∑

i=1

μ̇(βT
i xi)xix

T
i

)2

(β − β0)

≥ (MN)−2(mηCN)2‖β − β0‖2

=

(

mηC

M

)2

‖β − β0‖2,

i.e. ‖GN (β)‖ ≥ mηC‖β − β0‖/M for ‖β − β0‖ ≤ η. In
particular, ‖GN (β)‖ ≥ mηCη/M for all β ∈ Sη(β0) = {β ∈
R

p : ‖β − β0‖ = η}. Therefore, by Lemma A.2, if ‖aN‖ ≤
mηCη/M , there exists an β̂N ∈ R

p, ‖β̂N − β0‖ ≤ η, such

that GN (β̂N ) = aN .

Let α ∈ (0, 1/2), define WN,η = {ω ∈ Ω : Nα‖aN‖ ≤
mηCη/M}. Then by Chebyshev’s inequality, we have

P (W c
N,η) = P (Nα‖aN‖ > mηCη/M)

≤ M2N2αE[‖aN‖2]/(mηCη)2.

Furthermore,

E[‖aN‖2] = tr[E(aNaT
N )]

= tr

[(

N
∑

i=1

xix
T
i

)−1( N
∑

i=1

xix
T
i σ2

i

)(

N
∑

i=1

xix
T
i

)−1]

.

From σ2
i ≤ M , we have

∑N
i=1 xix

T
i σ2

i ≤ M
∑N

i=1 xix
T
i .

Therefore,

tr

[(

N
∑

i=1

xix
T
i

)−1( N
∑

i=1

xix
T
i σ2

i

)(

N
∑

i=1

xix
T
i

)−1]

≤ tr

[

M

(

N
∑

i=1

xix
T
i

)−1]

≤ pM(CN)−1.

That is, P (W c
N,η) ≤ pM3C−3(mηη)−2N2α−1.

For ω ∈ WN,η, ‖aN‖ ≤ mηCη/M . By Lemma A.2, there

exists an β̂N ∈ R
p, ‖β̂N − β‖ ≤ η, such that GN (β̂N ) =

aN . Furthermore, for ω ∈ WN,η we have Nα‖β̂N − β0‖ ≤
Nα(

mηC
M )−1‖aN‖ ≤ η. Hence,

WN,η ⊆ ΩN,η = {ω ∈ Ω : Nα‖β̂N − β0‖ ≤ η}.

At last we get

P (Nα‖β̂N − β0‖ > η) = P (Ωc
N,η)

≤ P (W c
N,η) ≤ pM3C−3(mηη)−2N2α−1.

Proof of Theorem 5.2. We first prove

Σ
−1/2
N M(β0) = Σ

−1/2
N

N
∑

i=1

xi[yi − μ(xT
i β0)](9)

d−→N (0, Ip).

Let λ be any given unit p-dimensional vector. Put ξNi =

λT Σ
−1/2
N xiεi and ξN = λT Σ

−1/2
N M(β0). Hence we have

E(ξni) = 0, i = 1, . . . , N , and Var(ξN ) = 1. From the

Cramér-Wold theorem and the Linderberg central limit the-

orem, to prove (9), we only need to prove that, for any ǫ > 0,

gN (ǫ) :=
∑N

i=1 E(|ξNi|2I(|ξNi| > ǫ)) → 0 as N → ∞. Let

aNi = λT Σ
−1/2
N xi. Then we have

|ξNi|2 = ε2
i λ

T Σ
−1/2
N xix

T
i Σ

−1/2
N λ = ε2

i a
2
Ni.

By the assumption σ2
i > c2

1, we have ΣN > c2
1

∑N
i=1 xix

T
i ,

i.e. ΣN − c2
1

∑N
i=1 xix

T
i is a positive definite matrix, and

hence,

N
∑

i=1

a2
Ni = λT Σ

−1/2
N

(

N
∑

i=1

xix
T
i

)

Σ
−1/2
N λ ≤ c−2

1 .

Then by the assumption supi E(|εi|r) < ∞ for some r > 2,
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we have

gN (ǫ) =

N
∑

i=1

|aNi|2E
[

|εi|2I(|εNi| > ǫ/|aNi|)
]

≤
N

∑

i=1

|aNi|2|aNi|r−2ǫr−2E(|εi|r)

≤ c−2
1 ǫr−2 sup

i
E(|εi|r) max

1≤i≤N
(|aNi|r−2)

→ 0 as n → ∞.

Therefore, we have proved (9). It is easy to check that all the
conditions in Corollary 2.2 in [15] are satisfied here, the QLE

β̂N has the following Badahur representation β̂N − β0 =

−D−1
N (β0)

∑N
i=1 xi[yi − μ(xT

i β0)] + O(N−3/4(log N)3) a.s.,

where DN (β) = −∑N
i=1 μ̇(xT

i β)xT
i xi. Then since Σ

−1/2
N =

O(N−1/2) and DN (β0) = O(N), we get

− Σ
−1/2
N DN (β0)(β̂N − β0)

= Σ
−1/2
N

N
∑

i=1

xi[yi − μ(xT
i β0)]

+ Σ
−1/2
N DN (β0)O(N−3/4(log N)3)

= Σ
−1/2
N

N
∑

i=1

xi[yi − μ(xT
i β0)] + O(N−1/4(log N)3)

d−→N (0, Ip).

For the AQLE, we have

− Σ
−1/2
N DN (β0)(β̃NK − β0)

= −Σ
−1/2
N DN (β0)(β̂N − β0 + β̃NK − β̂N ).

Since ‖−Σ
−1/2
N DN (β0)‖ = O(N−1/2), Theorem 4.2 and

Theorem 5.1 together implies that ‖Σ−1/2
N DN (β̃NK −

β̂N )‖ = op(1) and hence −Σ
−1/2
N DN (β0)(β̃NK −

β0)
d−→N (0, Ip) for K = O(nγ) with γ < min{1 − 2α, 4α −

1}.
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