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Abstract

Expanding credit access in developing contexts could help some households
while harming others. Microcredit studies show different effects at different
quantiles of household profit, including some negative effects; yet these find-
ings also differ across studies. I develop new Bayesian hierarchical models
to aggregate the evidence on these distributional effects for mixture-type out-
comes such as household profit. Applying them to microcredit, I find a precise
zero effect from the 5th to 75th quantiles, and uncertain yet large effects on
the upper tails, particularly for households with business experience. These
quantile estimates are more reliable than averages because the data is fat-
tailed.
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1 Introduction

Financial market expansions in the developing world have the potential to create
winners and losers. Increasing access to credit in particular may have heteroge-
neous effects, both because borrowers differ in their investment opportunities and
because of general equilibrium dynamics (Banerjee 2013, Kaboski and Townsend
2011). Proponents of financial interventions such as microcredit claim that the pos-
itive impact on high-productivity borrowers justifies continued market expansion;
detractors claim that the resulting market "saturation" leads to exploitative lending
practices which systematically harm the most vulnerable borrowers (Ahmad 2003,
Roodman 2012). Although recent studies have estimated sets of quantile treatment
effects to address this concern, existing meta-analyses of microcredit ignored these
sets of quantile effects due to a lack of methodology to aggregate them (Meager 2019,
Vivalt 2016, Banerjee et al 2015a). In this paper I develop new models to aggregate
evidence on distributional treatment effects, and apply them to randomized trials
of expanding access to microcredit.

Microcredit institutions reached 140 million low-income clients with a global loan
portfolio worth 124 billion dollars in 2019, and the figure is growing yearly (Micro-
finance Barometer, 2020). At this scale, negative impacts for even a small subset
of borrowers would be concerning, and several governments have curtailed micro-
finance operations ostensibly for this reason (Microfinance Focus 2011, Banerjee
2013, Breza and Kinnan 2018). Even if microcredit benefits all households, an un-
equal distribution of gains may affect social and political institutions (Acemoglu and
Robinson 2008, Acemoglu et al 2015). Several randomized trials find evidence of
negative effects at lower quantiles of household business profits, but others find zero
or positive impact there and on higher quantiles of the distribution (Augsburg et al.
2015, Attanasio et al. 2015, Banerjee et al. 2015b, Crepon et al. 2015, Angelucci et
al. 2015, Tarozzi et al. 2015, Karlan and Zinman 2011). Forming a broad consensus
on the distributional impact of microcredit is difficult given the lack of power to
estimate these effects (Leon and Heo 2009) and the possibility of substantial differ-
ences in effects across studies, often referred to as concerns about generalizability or
"external validity". Yet despite these concerns, academics and policymakers need to
understand the typical impact of microcredit, especially given this the potential for
harm (Schicks 2013).

The main contribution of this paper is a method to aggregate the distributional
impact of microcredit that addresses concerns about generalizability even in the
presence of certain data features which – though widespread in economics – sub-
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stantially complicate the use of existing econometric approaches. I work within
the Bayesian hierarchical modelling framework because it specifies the potential for
treatment effect heterogeneity as a parameter of interest in its own right, and uses
that parameter to adjust the uncertainty about the typical impact across settings
and likely impact in new settings (Rubin 1981, Gelman et al 2004, Gelman and Par-
doe 2006). This approach is well-established in statistics and is increasingly used for
evidence aggregation in economics (Chib and Greenberg 1995, Dehejia 2003, Hsiang,
Burke and Miguel 2013, Vivalt 2016, Bandiera et al 2017, Meager 2019). Partial
pooling models such as Empirical Bayes have also been used to borrow power across
regions or sub-units when studying large geographic areas, or to combine multiple
estimates within a study (Hull 2018, Chetty and Hendren 2018, Chetty, Friedman
and Rockoff 2014). Yet within the hierarchical framework there are no established
tools to aggregate distributional effects.1

In applying the Bayesian hierarchical framework to the distributional effects of
microcredit, I confront several challenges that require a substantially new, tailored
modelling approach. The first issue is that for the microcredit data, even the esti-
mation of quantiles themselves is not straightforward because the business outcomes
– profit, revenues and expenditures – have large spikes at zero which invalidate the
quantile estimator’s classical asymptotics (Mosteller, 1946). The sampling variance
of the quantiles is no longer Gaussian, and more troublingly, is often estimated to be
zero in the sample due to the large number of ties. Obtaining zero standard errors
causes practical problems for evidence aggregation because the general treatment
effect is typically estimated using a weighted average of the effects from each study,
where the inverse standard error enters the weight. Yet even if one does not face
this problem, there is a second challenge: aggregating using potentially quite dif-
ferent weights at different quantiles can introduce quantile crossing – the situation
in which the point estimate of, say, the 50th quantile lies above the point estimate
of the 60th quantile – in the aggregate quantile effects. Thus, the inherent mono-
tonicity constraint on the quantile function can be violated during the aggregation
exercise even if it holds in the individual studies.

My approach addresses both of these problems by directly modelling the distri-
butions of household outcomes using a flexible set of parametric mixture models.

1Even outside of the hierarchical framework, the economics literature on external validity and
generalizability has focused on inference across different types of average effects, such as extrapo-
lating the LATE to the ATE within similar settings, or adjustments based on correlations between
observable and unobservable covariates (Heckman, Tobias, and Vytlacil 2001, Angrist 2004, An-
grist and Fernandez-Val 2010, Bertanha and Imbens 2014, Allcott 2015, Dehejia, Pop-Eleches and
Samii 2015, Gechter 2015, Athey and Imbens 2016, Andrews and Oster 2018).
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I specify treatment effects on the parameters of the tailored density function and
partially pool information on these effects across studies by placing a hierarchical
structure on these treatment effects. Building these models relies on contextual
economic knowledge of the variables at hand. For example, when we sample house-
holds in rural villages in India or Mexico and ask about their business profit, we
ought to expect a spike at zero because not all households own businesses and nor
do they necessarily operate their businesses in every period, often being engaged in
seasonal agricultural labour for months at a time. In this context, household busi-
ness variables are produced by an extensive-margin decision (to operate a business
or not) followed by an intensive margin decision (how much to spend or invest once
in operation) – the spikes at zero are part of the data-generating process that can
and should be modelled explicitly.

To capture these data features, I develop a set of mixture probability density
function (PDF) models, each of which has a point mass or "spike" of households at
zero and a continuous tail distribution or "slab" on the rest of the real line. I specify
potential treatment effects on the probabilities that households find themselves in the
tails versus the spike, and effects on features of the tails such as means and variances.
Economic theory and prior data suggests that profits, expenditures, revenues and
even consumer durables spending outcomes tend to have fatter tails than Normal
distributions, so I consider models with either lognormal, Pareto, or a mixture of
these two distributions for the continuous portions of these variables (Piketty 2015,
Gabaix 2008, Roy 1950). I analytically compute and report the quantile treatment
effects implied by the underlying parameters of the tailored PDFs by employing the
method of Castellaci (2012); the posterior uncertainty on these transformed effects
is automatically provided within the Bayesian framework.

Applying these models to seven randomized trials of expanding access to mi-
crocredit, I find a precise zero effect on household outcomes from the 5th to 75th
percentiles. Above the 75th percentile, there is substantial probability of a large
positive impact on most outcomes, but there is greater uncertainty around this
effect due to heterogeneity within and across studies. There are no generalizable
negative quantile treatment effects. These patterns hold regardless of whether one
uses lognormal or Pareto tails, although the lognormal fits this data best. Moreover,
my analysis shows that the tails of profit, revenues and business expenditures are so
heavy that estimated average treatment effects and use of Gaussian asymptotics for
averages are unreliable (Koenker and Basset 1978, Mosteller 1946). The majority
of the right tail impact of microcredit and the heterogeneity across studies occurs
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within the group of households who had previous business experience.2 The result-
ing potential increase economic inequality even within the group of households who
previously operated businesses implies that the social welfare effects of microcredit
are likely to be complex.

The models presented in this paper have broad applicability in economics be-
yond the microcredit literature. As a complement to the traditional approach in
economics of writing review articles to summarize literatures, formal exercises to
synthesize evidence improve power and prevent undue focus on the most extreme
effects (Rubin 1981). Yet in economics, as in social science more broadly, contextual
heterogeneity across study settings often makes it difficult to combine the evidence
because the generalizability of the evidence is unknown (Allcott 2015, Bisbee et
al 2016, Pritchett and Sandefur 2015). The hierarchical approach is broadly ap-
propriate as it incorporates uncertainty about the heterogeneity in effects across
studies, and provides some indication of the extent to which extrapolation across
settings is appropriate. Moreover, there are many policy settings in which quantiles
are implicated in policy directly, often because welfare or tax policies are explicitly
concerned with distributional effects. My models are especially relevant when the
data contains discrete point masses due to extensive margin decisions, and studies
for which the outcome data is likely to be fat-tailed.

2 Data and Context

To aggregate the evidence on the quantile treatment effects of microcredit, I use data
from seven studies which meet the following inclusion criteria: the main intervention
must be an expansion of access to microcredit either at the community or individual
level, the assignment of access must be randomized, and the study must be published
before February 2015 (the period of my literature search). The selected studies are:
Angelucci et al. 2015, Attanasio et al. 2015, Augsburg et al. 2015, Banerjee et al.
2015b, Crepon et al. 2015, Karlan and Zinman 2011, and Tarozzi et al. 2015, six of
which were published in a special issue of the American Economics Journal: Applied
Economics.3 I restrict the sample to randomized controlled trials (RCTs) because

2In Appendix D I pursue a bounding exercise to show that the precise and generalizable impact
at zero is unlikely to be due to low take-up of loans.

3I focus on expanding access to microcredit because this is the intervention closest to the policy
of subsidizing microfinance institutions (MFIs) or promoting interventions under the general um-
brella of "microcredit". Other RCTs of microfinance tend to randomly vary certain characteristics
of the loans themselves, which allows researchers to understand the impact of these features of the
loans but complicates the inference on the general impact of the standard microcredit model (Field
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they typically have high internal validity for estimating causal effects, and they all
consider a reasonably uniform and simple "expansion" treatment in this case.4

I analyse six outcomes linked to the claim that offering households more credit
on more favourable terms should stimulate entrepreneurship (Morduch 1999, Yunus
2006, Roodman 2012). Because microfinance insitutions (MFIs) offer lower interest
rates relative to informal moneylenders, poor entrepreneurs may be able to start new
businesses or grow their existing businesses, increasing their business expenditures,
revenues and ultimately profits (Yunus 2006). Households could then increase their
consumption in the medium and long run. Yet even households without business in-
vestment opportunities may use microloans to shift spending away from "temptation
goods" (pleasurable yet harmful expenditures) and towards durable goods (Rood-
man 2012, Banerjee 2013). This could happen if microcredit increases a house-
hold’s expectation of escaping poverty in the future, or solves a self-control problem
(Banerjee and Mullainathan 2010, Banerjee 2013). In all cases I analyze the effect
of expanding access itself, called the Intention to Treat Effect in the original stud-
ies (Banerjee et al 2015b). I do not pursue an instrumental variables strategy as
network links and potential general equilibrium effects within villages means the
Stable Unit Treatment Value Assumption (SUTVA) is likely to be violated at the
household level (Banerjee 2013, Kinnan and Townsend 2012, Breza 2012).5

Despite the restrictive inclusion criteria, the selected studies still differ substan-
tially in their implementations and local contexts. They cover seven different coun-
tries, they have different partner NGOs, offering similar but not identical loan con-
tract structures with different interest rates and loan sizes, and they differ in terms
of their randomization units - five randomized at the community level and two at the
individual level - with various encouragement and sampling designs (see Appendix
C for details). Given this heterogeneity across studies, heterogeneity in the resulting
effects seems likely. However, the 95% confidence intervals of the quantile effects do

et al 2013). Karlan and Zinman 2009 expands access to consumer credit, but microcredit is often
considered categorically different to consumer credit; see Banerjee 2013 for a deeper discussion of
this.

4While the set of studies here may not be a representative sample of all possible microcredit
interventions, there is little reason to suspect publication bias in this literature. The papers
here published a variety of results most of which were null. This leads to less risk of classical
publication bias in which only "significant" results appear in the literature. However, it is still
possible that these studies are not representative of the world. To address this issue requires
substantially more structure and has thus far been ignored in the meta-analysis literature. This
may be because such an exercise requires the development of aggregation techniques that can
account for differential types of studies in a more complex way than a simple meta-regression,
which fails to share information across the study types.

5To investigate the role of take-up in this context, I pursue a bounds analysis explained further
in Appendix D.
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overlap across most of the studies, suggesting meaningful similarities across settings.
In this context, where the generalizability of the evidence across settings is unclear
ex-ante, the Bayesian hierarchical framework is an appropriately cautious way to
proceed with evidence aggregation.

The open data policies of the American Economics Journal: Applied Economics
and Science allow me access to the microdata from all of these experiments, such that
I can standardize which quantiles I compute across studies and can construct each
underlying variable in a uniform manner across studies. The variables were measured
in different currencies, in different years, and over different time periods (this matters
because these are all flow variables). I standardize all measurements to be USD
PPP in 2009 dollars over a two-week period. Business variables require further
standardization: to capture the potential for microcredit to allow individuals to open
new businesses or to switch to operating any existing seasonal businesses throughout
the year, households with no business or missing business data have profits imputed
as zero. This was the decision made by the original authors of many of the seven
studies, because the business creation channel is closely tied to the central claims
of Yunus (2006), and dropping the missing values can lead to underestimating the
business creation effects of microcredit if there are any. I employ this strategy
throughout to business expenditures and revenues as well.6 I also construct all
profit variables in my analysis using reported revenues and expenditures data to
minimize recall bias or rounding biases. Other than standardizing the construction
of variables as much as possible, I have conformed to the decisions made by the
original authors. 78

Household and study-level covariates may play some role in determining hetero-
geneity in the quantile treatment effects, but there are limitations to pursuing a
covariates analysis in this literature. Only three of the microcredit RCTs collected
comprehensive individual-level baseline surveys. One pre-treatment variable was
recorded at endline in all studies due to its theoretical importance: a binary in-

6While it would be ideal to examine effects on other variables such as income and assets, the
measurement and definition of those variables differed across the studies to such an extent that it is
unclear how to aggregate them. This issue was noted in Meager (2019) and in my pre-registration:
https://osf.io/tdvc8/ .

7I have used the entire sample available in the online data sets except in Ethiopia: this study
contained a cross-randomized family planning treatment. I use only the pure control and the pure
microcredit samples, which is the conservative choice given that we do not know how microcredit
interacts with family planning (the study estimates a very imprecise interaction).

8I do not winsorize any of the variables because most of the original studies did not winsorize
themselves. However Augsburg et al (2015) found that winsorizing outliers sometimes made results
statistically significant when they were not significant in the full sample. If the extreme values do
not change the point estimate but increase the uncertainty, winsorising them may underestimate
the true uncertainty.

7



dicator that a household had previous experience operating a business (Banerjee
et al 2015b). Although covariates at the study level may also predict variation in
effects across context, there at least seven such covariates and only seven studies, so
conventional regression analysis will be overfitted and misleading. It is still useful
to aggregate the evidence without conditioning on covariates, as this permits an
understanding how much unconditional heterogeneity there is; if there is little or no
variation across settings, further analysis is a less pressing concern for future work.

The main analysis that follows is therefore accounting for all sources of hetero-
geneity including differences in MFI policies, study design, measurement protocols,
and contextual factors in the local economies. I do not attempt to separate out
these different kinds of heterogeneity both because it is substantially challenging
with 7 data points and because it is unclear if they can or should be separated. MFI
policies, study design and even measurement protocols may all be endogenously de-
termined by the MFI and researchers in response to the different contextual factors.
Indeed, a team of researchers and a single MFI applying the exact same decision
rules in which they optimally determine say interest rates or measurement proto-
cols conditional on contextual factors would generically make different decisions in
different contexts. Adjusting for the "measurement protocol" before applying the
Bayesian model could therefore create differences across settings where none exist
in the raw data. I therefore refrain from adjusting for any sources of heterogeneity
a priori in the analysis that follows.

3 Methodology

3.1 Bayesian Hierarchical Models

3.1.1 Hierarchical Models

Consider a body of evidence consisting of K studies indexed by k, each of which
provides some k-specific data Yk about a given policy intervention. The K data
sets taken together form one large data set, denoted Y = {Yk}Kk=1. Each study
setting has a site-specific parameter of interest θk ∈ Θk, which could be univariate
(e.g. the average treatment effect), or multivariate (e.g. the entire set of quantile
treatment effects). The full data in each site k consists of Nk households, summing
to N households in the total combined sample of all settings.

Suppose that the analyst wishes to learn about the expected value of these {θk}Kk=1
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parameters across different settings, and to learn about the uncertainty she should
have due to unobserved differences across settings. This implies a need for inference
on the average value of these parameters, sometimes called the "hypermean" and
denoted θ = E[θk] with the expectation taken across the study settings. Accounting
for uncertainty across settings permits inference not just to unobserved households
in the existing sites but to unobserved study sites themselves, and thus, such a
procedure could generate inference applicable beyond the current set of studies to
future policy settings if such extrapolation is warranted.

One can learn about θ using the evidence on {θk}Kk=1, but the optimal learning
procedure depends on the heterogeneity or dispersion of {θk}Kk=1 around θ, denoted
Σθ (Rubin 1981, Gelman et al. 2004). This Σθ describes the strength or weakness
of the relationship between any θk and the general parameter θ: if the dispersion
Σθ is small, then θk is close to θ and provides a strong signal of the value of θ.
By the same logic, when Σθ is small then θ is a strong predictor of θK+1 for some
future setting.9 Here Σθ parameterizes a notion of generalizability of the evidence
contained in Y to external settings, which captures the definition of external validity
in Allcott (2015) and Dehejia, Pop-Eleches and Samii (2015). If Σθ = 0, then θ is a
perfect predictor of θK+1; if not, there will be some extrapolation error which grows
large as the parameter Σθ grows large.

Joint estimation of θ and Σθ is the core challenge of aggregation across studies.
Hierarchical models approach this problem by defining a set of parameters at the
site level, {θk}Kk=1, a set of parameters at the population level, θ, and a relationship
between them (Efron and Morris 1975, Rubin 1981, Gelman et al. 2004). The "lower
level" of the model describes the dependence between the data and local parameters
in site k:

Yk ∼ f(·|θk) ∀ k. (3.1)

The "upper level" of the model describes the potential for statistical dependence
between local parameters and general parameters (also called "hyperparameters") via
some likelihood function ψ(·), which contains the hypervariance Σθ either implicitly
or explicitly depending on the specific model. While ψ(·|θ,Σθ), this second argument
is often implicit and thus notationally suppressed. This upper level "general" or
"parent" distribution is then denoted:

θk ∼ ψ(·|θ) ∀ k. (3.2)

9Technically the sites must be "exchangeable", this condition is discussed in the final paragraph
of this section.
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A hierarchical likelihood contains both levels:

L(Y|θ) =
K∏
k=1

f(Yk|θk)ψ(θk|θ). (3.3)

This likelihood structure nests both the "no pooling" case in which no information
is shared across settings, and the "full pooling" aggregation case in which all infor-
mation is shared fully across settings as if they are indistinguishable. This nesting
is possible because the hyperparameters that govern the ψ(·) function, including
Σθ, are estimated rather than imposed. For example, the model may estimate that
θk ≈ θk′ ∀ k, k′, and hence that Σθ = 0, if that is supported by the data. This
result would recover the full-pooling model’s solution, up to a degrees of freedom
correction.10 Of course, the model could detect large dispersion in {θk}Kk=1; in that
case it recovers the no-pooling model’s solution. In fact, this model can recover a
solution anywhere on the spectrum between these two extremes if that intermediate
or "partial pooling" solution is most supported by the data. Inference on {θk}Kk=1,
θ and Σθ is influenced by the extent of this partial pooling, which is also called
"shrinkage" because the {θk}Kk=1 estimates are somewhat "shrunk" together when
information is shared across settings.

Hierarchical models require that {θk}Kk=1 be “exchangeable”, such that their joint
distribution is invariant to permutation of the indices (Diaconis, 1977). This means
the analyst must be ignorant of any definite ordering, dependence or sub-clustering
of the parameters a priori; this is the case for the microcredit effects as in most
applications to social science. Knowledge of contextual differences typically does
not inform us ex ante of how θk parameters differ (Rubin 1981).11 The extensive
theoretical literature on microcredit markets does not dictate a specific ordering of
effects in this case, which makes exchangeability a reasonable structure (Gelman
et al. 2004). Any future site for which θK+1 is used to predict the effect must be
exchangeable with the sites in the sample; this is a general requirement for any
out-of-sample prediction (see for example Allcott 2015).

10This discussion is in reference to models for estimating the average effects across the different
settings, with uncertainty intervals referring to extrapolation to an unobserved setting. The full
pooling model has another function: it can serve to estimate the average effect across all the
individuals in the existing settings, with uncertainty intervals referring to an extrapolation to an
unobserved individual within these given settings. This distinction is discussed further in the
results section.

11If an established and verified economic theory dictates that a particular covariate can only
be correlated in a certain way with the treatment effects, that can be translated into conditional
exchangeability by introducing this covariate into the model. It is also possible to build a more
complex structure that allows "partial exchangeability" if this is desired; see Albert and Chib (1997)
for a discussion of this approach.
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3.1.2 Bayesian Implementation

Bayesian inference offers several advantages for the analysis of hierarchical models,
particularly when aggregating across a relatively small number of studies, as is
typically the case in economics. With seven microcredit studies, estimation of the
variation in effects across settings is performed off only seven contexts. Given this
low-data environment, incorporating informative Bayesian priors can substantially
improve the performance of the hierarchical model by "regularizing" the likelihood
problem in the classical sense: introducing new information that constrains the fit
of the model, typically trading off bias for variance to reduce overall mean squared
error and out-of-sample prediction (Hastie, Tibshirani and Friedman 2009, section
10.2; Chung et al. 2013, 2015).

By specifying a prior on the unknowns at the highest level, P(θ), and combining
it with the likelihood via Bayes’ rule to generate the the joint posterior distribution
f(θ|Y). The specification of a proper prior distribution ensures that f(θ|Y) is a
proper probability distribution with desirable decision-theoretic properties such as
consistency and admissibility (Berger 2013, Van der Vaart 1998, Efron 1982).

The Bayesian approach also automatically delivers the correct marginal distri-
bution of the treatment effect in a hypothetical future site θK+1. This is often the
object of most interest for policymakers, but the distribution of this object must
account for the full joint posterior uncertainty on the hyperparameters rather than
conditioning on a particular point estimate.12The Bayesian approach delivers the
correct uncertainty interval conditional on the model in the form of posterior pre-
dictive inference (Gelman et al. 2004), which averages over the posterior uncertainty
on the unknowns (θ,Σθ). Formally, the posterior predictive distribution is:

f(θK+1|Y) =
∫
ψ(θK+1|θ)f(θ|Y)dθ (3.4)

The characterization of the full joint posterior distribution on all parameters
is not without costs: it can exacerbate the already-formidable tractability issues
inherent in hierarchical models. The relationships between θ, Σθ and {θk}Kk=1 are
highly nonlinear, leading to challenges optimizing and even characterizing the shape
of the likelihood function. Common maximum likelihood approaches estimate the

12The full joint posterior uncertainty accounts perfectly for the uncertainty about how well the
new location matches the old location, if the new site is exchangeable with the old sites, and the
model structures are correct. If these conditions do not hold, we have modeling uncertainty, which
is not accounted for in any meta-analytic methods at present (nor in any of the popular analytic
methods used in empirical economics).
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upper level first and then condition on the point estimates using the "empirical
Bayesian" approach from Efron and Morris (1975). This ignores the uncertainty
about the upper level parameters, θ and Σθ, when computing uncertainty intervals on
the lower level parameters, and thereby systematically underestimates uncertainty
(Rubin 1981).13 To surmount these tractability issues in the Bayesian setting I turn
to Markov-Chain Monte Carlo methods; in particular, I use Hamiltonian Monte
Carlo (HMC) methods which are well-suited to the peculiar geometry introduced
by hierarchical structure (Betancourt and Girolami, 2013).14

3.2 Tailored Mixture PDF Models for Distributional Effects

3.2.1 Challenges of Distributional Effect Aggregation

Applying the Bayesian hierarchical framework to distributional effects aggregation
poses additional challenges which demand new modelling approaches. If one were
interested in only a single quantile treatment effect, such as the median, one could
directly apply a Rubin-style model to the quantile as long as the data meets the
condition for the Mosteller (1946) theorem providing consistency and asymptotic
Normality of the sample quantile estimate. However, for the microcredit data, even
the estimation of quantiles themselves is not straightforward because many house-
holds outcomes are not continuously distributed (as required by the theorem), but
instead have point masses of households at zero. The sampling variance of the quan-
tiles is no longer Gaussian, and may even be estimated as zero in the finite sample
(as in Angelucci et al 2015). Even if researchers are willing to accept zero estimated
sampling error, this causes difficulties for a Rubin-style approach, which constructs
weighted averages of estimated effects in which the inverse standard error enters the
weight.15

Moreover, aggregating sets of quantiles requires facing the constraint that the
true quantiles must be monotonically increasing, because CDFs are monotonically
increasing by definition. Violating this constraint leads to the "quantile crossing"

13While MLE methods that do not condition on point estimates of unknowns are theoretically
available, they seem to be largely unused in practice.

14HMC uses discretized Hamiltonian dynamics to sample from the posterior, which can be com-
bined with the No-U-Turn sampling method (NUTS) to auto-tune the step sizes in the chain
(Hoffman and Gelman, 2014). This algorithm is automated in the software package Stan, a free
statistical library which calls C++ to fit Bayesian models from R or Python (Stan Development
Team, 2017).

15It might be possible to overcome this problem by investigating CDF effects rather than quan-
tiles, but applied researchers are directly interested in quantiles, and the transformation between
CDFs and quantiles is not straightforward in the partially discrete data case.
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problem, which can arise even in simple analyses (see for example Chernozhukov,
Fernandez-Val and Galichon 2010). Aggregation exacerbates this problem because
most methods both estimate the aggregate effect and revise the site-specific effect
estimates by incorporating information on the local variation or sampling uncer-
tainty, and this can be different at different quantiles across the different sites.
But differentially-weighted averages of monotonic functions need not themselves be
monotonic, so the aggregation procedure could introduce quantile crossing where
none was present in the original studies.16

3.2.2 Tailored Mixture PDF Approach

I address both of these problems by directly modelling the distributions of these out-
come variables using a flexible set of mixture probability density functions (PDFs).
These models specify treatment effects on the parameters of the tailored density
function and partially pool information on these effects across studies by placing a
hierarchical structure on these treatment effects. The conceptual approach is here
is quite general, and even the specific models below are likely to apply beyond the
microcredit application. In every case, however, building these parametric models
relies on contextual economic knowledge of the variables at hand, and researchers
must understand the data generating process well enough to know when it ought
to exhibit, say, discreteness, skewness or kurtosis. The incorporation of this specific
contextual knowledge is critical to the modelling process, as follows.

Consider the household business variables in the microcredit data, generated by
surveying a random sample of households. In most contexts, not all households will
choose to own businesses, nor will they necessarily operate businesses they do have
at all times, as they often do seasonal agricultural or manual labour for part of the
year (Macours and Vakis 2010, Gibson and McKenzie 2014, Fink, Jack and Masiye,
2014). So measured business variables should be mixture of a discrete mass at zero
and continuous tails, because these variables are the output of a partially discrete
decision process. First, a household has an extensive margin decision to make about
whether to start a business, and then they face a secondary extensive margin decision

16While it is possible to derive an aggregation model for sets of quantiles based on the Mosteller
approximation that respects the logical properties of the estimands via variable transformation
(see Appendix A), even this model would only be applicable to data for which the asymptotic
theorem applies. In some cases of discrete data, such as with count data, it is possible to "dither"
or "jitter" the discrete data to produce a new, continuous distribution for which the quantiles have
a one-to-one relationship with the discrete distribution (Machado and Santos Silva, 2005). This
does not work in the case of a partially discrete "spike and slab" distribution because the dithered
data points from the spike generally leapfrog some of the data in the slab, destroying the one-to-one
relationship between the quantiles.
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about whether to operate that business in a given season. Only those households
who decide to open and operate their businesses go on to make an intensive margin
decision, the result of which manifests some continuous expenditures, revenues and
profit. In fact, this pattern also arises in consumer durables spending and temptation
goods spending, to a lesser extent.

I therefore use a set of mixture models to model this partially-discrete data,
each of which has a point mass or "spike" of households at zero and a continuous
distribution or "slab" on the rest of the real line. Economic theory and prior research
further suggest that the continuous portions of business variables such as revenues
and profit will tend to follow power laws or other fat-tailed laws (Roy 1950, Stiglitz
1969, Gabaix 2008, Allen 2014, Piketty 2015, Bazzi 2016). Hence, the outcome PDF
can be modeled as a mixture of three distributions: a lower tail, a spike at zero,
and an upper tail. Modeling the two tails separately allows for skewness as well as
differential kurtosis or variance. As the binary treatment indicator variable Tnk may
affect the mass in the components and the shape of the tail components, I specify
treatment effects on all aspects of this mixture PDF. The model can then aggregate
the effect of the treatment on each of the parameters that govern the distribution,
as well as the implied quantile treatment effects. Because these particular mixture
models have components with disjoint supports, I can further analytically compute
and report the quantile treatment effects employing the method of Castellaci (2012).

Yet the risk in specifying any parametric structure based on contextual and prior
information is that our knowledge may be insufficient or incorrect in a manner that
leads to poor inference. It is advisable therefore to assess the sensitivity to the choice
of functional form, as well as to assess model fit and avoid reliance on models that
fail to approximate the data well. In the case of business variables the distribution of
the tails could reasonably be modeled by a Pareto distribution, as in Piketty 2015 or
Bazzi 2016. However, a lognormal distribution would allow for more mass near the
lower bound of the distribution per Roy 1950 and is analogous to log transforming
the positive values in the sample, a common practice in applied microeconomics (see
for example Banerjee et al 2015b). The lognormal model both fits the data better
in this case and is more tractable to use, as it always has all moments (see figure ??
and Appendix C for more details ).17

17While a nonparametric model such as an infinite mixture of Gaussians implemented via a
Dirichlet Process prior would be maximally flexible, the parameters of such models are not identi-
fied when the outcome data are univariate (Compiani and Kitamura 2016, Kasahara and Shimotsu
2014). Even for a bivariate outcome, on which one can put a lower bound on the number of compo-
nents, the component distributions themselves are not identifiable (Hall and Zhou 2003). Indeed,
the Dirichlet Process mixture model cannot even consistently identify the number of components
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3.2.3 Mixture Lognormal and Pareto Models for Microcredit Data

The above discussion leads to the following tailored hierarchical PDF model to
aggregate the quantile effects on household business profit. Denote the probability
mass in the jth mixture component for a household n with treatment status Tnk to be
Λj(Tnk) for j = 1, 2, 3. This dependence can be modelled using a multinomial logit
specification, denoting the intercept in site k for mixture component j as αjk and the
treatment effect as πjk. For the spike at zero, the Dirac delta function can be used as
a distribution, denoted δ(x) for a point mass at x. If using the lognormal distribution
for the tails, then each are governed by a location parameter and a scale parameter.
The latter can only be positive valued so I employ the exponential transform to
ensure the support constraint is satisfied. I model the location parameter using
a linear regression format in which the value for the control group in site k is µk
and the value for the treatment group is µk + τk. The scale parameter is modeled
with the control group’s value being exp(σck) and the treatment group’s value being
exp(σck + σtk).

The lower level of the likelihood f(Yk|θk) is specified according to this mixture
distribution. Let j = 1 denote the negative tail of the household profit distribution,
let j = 2 denote the spike at zero, and let j = 3 denote the positive tail. Then the
household’s business profit is distributed as follows:

ynk|Tnk ∼ Λ1k(Tnk)Lognormal(−ynk|µ1k + τ1kTnk, exp(σc1k + σt1kTnk))

+Λ2k(Tn)δ(0)

+Λ3k(Tn)Lognormal(ynk|µ3k + τ3kTnk, exp(σc3k + σt3kTnk) ∀ k

where Λjk(Tnk) = exp(αjk + πjkTnk)∑
j=1,2,3 exp(αjk + πjkTnk))

(3.5)

The upper level ψ(θk|θ) is:

(α1k, α2k, α3k, π1k, ...)′ ≡ ζk ∼ N(ζ,Υ) ∀ k (3.6)

The Gaussian at the upper level aligns with Rubin (1981) and Meager (2019),
and can provide good estimates of the hypermean and hypervariance even if it
is misspecified (McCulloch and Neuhaus, 2011). For tractability and simplicity I

when it is itself the ground truth model (Miller and Harrison, 2013). The lack of identification
does not impede curve-fitting, yet creates challenges for shrinkage on treatment effects when one
conceives of these effects as operating on the underlying parameters, since they are not identified
in this case. As shrinkage is a nonlinear operation in the hypervariances, the hierarchy must be
applied directly to the object of interest (see Appendix B for a short proof).

15



enforce diagonal Υ for the microcredit analysis. This prevents the model from using
correlations in the distribution of say {α1k}Kk=1 and {α2k}Kk=1, a restriction which has
practical value because the correlations are hard to estimate with seven sites and
this can introduce substantial additional variance into the estimation procedure.
This independence restriction can be thought of as a form of particularly strong
discrete or dogmatic regularization on these correlations. While strong continuous
regularization is generally preferable to discrete or dogmatic regularization, the latter
in this case is necessary to ensure tractability given the limitations of computational
power I face (and is aligned with econometric tradition, as frequentist models in
economics rarely exploit correlations in parameters). The remaining priors P(θ) as
follows:

ζ ∼ N(0, 10)

Υ ≡ diag(νΥ)ΩΥdiag(νΥ)′

νΥ ∼ halfCauchy(0, 5)

ΩΥ = I|ζ|

αmk ∼ N(0, 5).

(3.7)

The model above uses contextual information and balances concerns about flex-
ibility and tractability. It may be desirable to fit a fatter tail model such as the
Pareto, or a more flexible tail such as the double-Pareto-lognormal likelihood model
of Reed and Jorgensen (2004). I do both in the remainder of this paper; one needs
only substitute these densities for the Lognormal in the equations above and then
fit the resulting model. However, as I discuss in my results section, the Lognormal
fits best. Indeed, the more flexible joint tail model can face substantial convergence
issues: Reed and Jorgenson (2004) notes that if there is power law behavior only
in one tail, the EM algorithm is "unlikely to converge". Keeping this issue in mind,
I report results of a version of the above model using a Pareto-lognormal tail only
out of interest.18 19 To fully avoid convergence issues while benefitting from the
flexibility of two functional forms, I also fit a version of this model which manually
separates the tail data at 80th extremal percentile, treating the data before this

18In practice I found this to be because the simple lognormal case is nested by this model only
when certain parameters are infinity, which leads to wandering behavior: even a single Pareto-
lognormal tail may have convergence issues if the power law behavior is sufficiently similar to the
lognormal’s tail behavior. The convergence issues in this case can be somewhat mitigated by strong
priors, in particular by placing a strong prior on the α parameter from Reed and Jorgensen (2004)
to force it to take a moderately sized value and mitigate the "wandering" behavior noted in the
paper, and by replacing the half Cauchy on νΥ with a half Gaussian.

19I thank Dr Michael Betancourt in particular, as well as Dr Ben Goodrich
and Professor Aki Vehtari, for their advice and assistance with this problem. A
public record of our work can be found here https://discourse.mc-stan.org/t/
double-Pareto-lognormal-distribution-in-stan/10097/20 .
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point as lognormal and the data beyond it as Pareto.20 See Appendix C, section
2.1, for the full models and technical details of these two alternative approaches as
well as several caveats on their use.

3.2.4 Recovering quantile effects from mixture distribution models

Quantile recovery is nontrivial in this setting because mixture distributions in gen-
eral do not have analytical quantile functions. However, because the mixture dis-
tribution in this particular model has components with disjoint supports, one can
apply the method of Castellacci (2012) to compute the quantiles analytically in this
case.

Castellacci’s method is based on the observation that mixture distribution with
disjoint components are decomposable functions, and that thus one can invert such
functions by piecing the component inverses together. Thus, while in general the
quantiles of mixtures would need to be estimated numerically, when the mixture
components have disjoint supports the CDF is decomposable and thus it is possible
to analytically derive the quantiles. In fact, in my case the supports are not just
disjoint but ordered, making the calculation relatively straightforward.

Thus Castellacci (2012) derives the key result (equation 2.3 of his Proposition 2.1)
for the CDF of the mixture distribution Fw(x) = w1G1(x)+w2G2(x)+ ...+wnGn(x)
when the component distributions Gi(x) have disjoint, ordered supports:

F−1
w (p) = G−1

1

(
p

w1

)
1B1 +G−1

2

(
p− w1

w2

)
1B2 + ...+G−1

n

(
p−∑n−1

i=1 wi
wn

)
1Bn

where Bi :=
i−1∑
j=0

wj,
i∑

j=0
wj

 for i = 1, ....n− 1

Bn :=
n−1∑
j=0

wj, 1


(3.8)

Proceeding with this general formula, I make only one adjustment to it: because
the negative tail of profits is always modeled using a "reverse" of a distribution with
positive support, if one wishes to compute the uth quantile of the lower tail one
needs the negative value of the (1 − u)th quantile of the positive version of the
distribution.

Given the lognormal profit model above I derive the following parametric quantile
function using the method above, noting that the only difference from the general

20I thank Ulrich Müller and Andriy Norets for this suggestion.
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Castellacci (2012) formula is the use of the reverse quantile for the first component
due to it being a reverse distribution:

Q(u) = −Lognormal−1
(

1− u

Λ1(Tn) | µ1k + τ1kTnk, exp(σc1k + σt1kTnk)
)
∗ 1{u < Λ1(Tn)}

+ 0 ∗ 1{Λ1(Tn) < u < (Λ1(Tn) + Λ2(Tn))}

+Lognormal−1
(
u− (1− Λ3(Tn))

Λ3(Tn) | µ3k + τ3kTnk, exp(σc3k + σt3kTnk)
)
∗ 1{u > (1− Λ3(Tn))}

(3.9)

Any disjoint mixture model’s quantiles can be computed analogously. The poste-
rior distribution of the entire set of quantiles and thus the implied quantile treatment
effects is easily computed from the posterior distribution of the unknown parameters
by applying the computation above to every MCMC draw from the joint posterior
distribution. This method ensures that the uncertainty on the quantiles implied by
the uncertainty on the parameters that govern the model is translated exactly.

4 Results

4.1 Main Results

The expected effects of access to microcredit on the quantiles of each of the six
outcomes produced by fitting the tailored hierarchical mixture model with lognormal
tails are shown in figure ??. I focus on profit and consumption as the key outcomes of
interest, recalling that while profit is recorded in all studies, consumption is recorded
in only five. The full details of the site-specific results for household consumption
and profits are shown in tables ?? and ?? respectively. The pattern across all
variables is similar: there is a reasonably precise zero impact from the 5th quantile
to the 75th quantile, after which point there is a large and highly uncertain effect
in a "desirable" direction (business variables and consumption increase, temptation
spending decreases). The posterior probability that the quantile treatment effects
are equal across the quantiles is extremely small; in the case of profit, for example,
the formal posterior probability that the quantile effects are within 50 US cents
(PPP) of each other is less than 1%. There is no evidence of harm on average at
any quantile, contrary to the fears that microcredit systematically causes harm to
communities which receive it.

To understand why this pattern emerges, it is useful to consult the detailed results
in tables ?? and ?? respectively. As well as the country-specific results from the
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partial pooling Bayesian model, I also show the results of running a "no pooling"
analysis country by country, and of performing a full pooling analysis (as in Banerjee
et al 2015c). In the case of consumption, the no pooling and full pooling models can
be computed simply using the canonical Koenker and Basset 1978 estimator, while
the partial pooling results are generated by the tailored parametric model; they are
nevertheless remarkably similar and tell a coherent story of zero effects along most
of the distribution with noisy positive effects on the right tail. For profit, all results
are generated via the lognormal model, but in this case full pooling makes quite
a difference – it reports a much larger and more significant effect than the partial
pooling models. This is driven largely by Mexico and the Philippines with their
large samples; as they nevertheless provide quite imprecise estimates, the partial
pooling model puts less weight on them than the full pooling model.

To some extent, one should expect the results of the full pooling model to differ
from the partial pooling model because in general they are concerned with different
estimands. The partial pooling model estimates the average effects across the differ-
ent settings, with uncertainty intervals referring to extrapolation to an unobserved
setting. The full pooling model estimates the average effect across all the individuals
in the existing settings, with uncertainty intervals referring to an extrapolation to
an unobserved individual within these given settings. These estimands will differ
except in the case that the full pooling model is literally correct.21

Conceptually, to gain a general understanding of what a particular intervention
will do across settings rather than across individuals within settings, the relevant
exercise is not to quantify the average effect but to predict the differences in the
distributions in a new setting and report the associated uncertainty. To answer
this question, I now turn to the posterior predicted quantile results, which provide
inference on the effects in the next comparable study location. The results are
shown in figure ??. The predicted effect for the majority of the distribution remains
a precise zero, but above the 75th percentile there is even greater uncertainty about
the exact impact microcredit will be likely to have on the right tail of the next
distribution to which it is applied. The estimates in the upper tails are so imprecise
that the estimates look as if they are zero when they are graphed at this scale, even
though they are generally quite large (as tables tables ?? and ?? show). Essentially,
the models decline to make any generalizable prediction for these effects across
settings.

21If there is no heterogeneity across settings, or "external validity problem", the full pooling
model also estimates the average effect across settings and the correct uncertainty, because an
unseen individual in an unseen setting is no different from an unseen individual in a setting we do
see.
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This analysis further reveals that the business variables in this sample exhibit
extreme kurtosis; the tails of these distributions are very heavy. The positive tail
of profit, which is less heavy than that of revenues and expenditures, has a log
scale parameter of 1.25, indicating an excess kurtosis of approximately 811 in the
lognormal model (see calculations in Appendix C). Figure ?? shows that the model’s
predicted tails are actually somewhat thinner than the real data, so if anything this is
an underestimate of the true kurtosis. As shown in figure ?? this is further supported
by the results of the more flexible models, incorporating either the Pareto-lognormal
likelihood in the tails or a composite tail model in which the lognormal is fit below the
80th percentile and the Pareto beyond this point, which show even more uncertainty
in the tails. Consumption, by comparison, has a log scale parameter of 0.65, and
thus an excess kurtosis of 14 in the model. For reference, the standard Laplace
distribution has an excess kurtosis of 3, yet even in that case the sample median
is more efficient than the sample mean as an estimator of the location parameter
(Koenker and Bassett 1978).22 This suggests that the average treatment effects
estimated via OLS regression in the original studies and thus the analysis in Meager
(2019) may be unreliable for these variables, both because they invoke Gaussian
asymptotics which do not hold, and because in this case the sample mean is not a
reliable indicator of the underlying distribution’s location parameter (Koenker and
Basset 1978, Koenker and Hallock 2001).

4.2 The role of business experience

Previous studies including Banerjee et al (2015b) suggested that a household’s pre-
vious business experience may explain some of the evident variation in treatment
effects. Meager (2019) investigated the role of this covariate across all the studies,
and found that there were notable differences in impacts between this group and
the other households without business experience, although there was still no strong
evidence of a generalizably positive average impact for any group. However, as the
main results above indicate that these means are composed of precise zeroes and
noisy positive results in the tails, a quantile analysis may be able to shed further
light on this question.

To assess the role of previous business experience in determining the distribu-
tional treatment effects, I split the entire sample by a binary indicator of prior

22The Pareto models fit to the business data find scale parameters close to zero, indicating that
the kurtosis is undefined or infinite. It seems likely that the tails of these business variables are
heavy enough to impede the functioning of the central limit theorem and even the law of large
numbers (see Appendix C).
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business ownership, denoted PB = 1 if the household does have such experience
and 0 otherwise, and separately analyze the two subsamples. Fitting the Bayesian
hierarchical quantile aggregation models to each group shows that the impact of
microcredit differs somewhat across the two types of households, but to a lesser
extent than was suggested in Meager (2019) and Banerjee et al (2015b). Figures ??
and ?? show the general distributional impact of microcredit on the six household
outcomes of interest for each of the household types.

There does seem to be a general pattern of larger impacts in the tails of the
group which does have previous business experience, as well as greater uncertainty
surrounding these estimates. The posterior probability that the impact for the two
groups is the same at each quantile is reasonably high for the middle quantiles, but
fall below 2% at the 95th percentile even at high tolerances, as shown in table ??.
The probability that the two groups’ quantile effects are within 5 USD PPP of each
other are only 10% at the 95th quantile. However, as there is substantial overlap in
the posterior inference for the two groups and particularly in the posterior predictive
effects, these results do not necessarily provide a rationale for targeting those with
prior business experience in future settings.

5 Discussion

The aggregated distributional effects show no evidence that access to microcredit
causes any negative shifts in the distribution of household outcomes. While mod-
erately negative impacts are within the 95% posterior interval of the effects on the
upper tails of most of the distributions, the point estimate and vast majority of the
posterior mass is positive in those cases. The only variable with larger uncertainty
at the lower tail is profit, but the point estimate is zero and the uncertainty is sym-
metric around that point. This provides evidence against the notion articulated by
some critics that microcredit causes substantially worse outcomes for some group of
households than they would have experienced in its absence (Schicks 2013). While
a lack of negative quantile effects does not imply that no household experiences
any harm from microcredit, it does imply that any households who do experience
harm are approximately canceled out by other types of households who experience
benefits, such that these two types of households are swapping ranks in the outcome
distribution rather than contributing to any change in the shape of that distribution.
Each population in each of the studies taken as a whole however does not experience
any systematic worsening of its economic outcomes.
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The precise zero effect from the 5th to 75th percentile of most of the household
outcomes appears to be a true zero and not a mechanical artifact of the spike
at zero nor an economic consequence of the low takeup. Consumption does not
exhibit a spike of households who record an outcome equal to zero yet microcredit
still has a precisely estimated zero effect for most of the distribution. Even for
profit, revenues and consumption the spike only accounts for at most 50% of the
outcome distribution, yet the zero effect applies to 75% of the distribution. Similarly,
regarding concerns about takeup: Bosnia and the Philippines had over 90% takeup
and yet still exhibited zero effects from the 5th to 75th percentile in consumption and
profit (see tables ?? and ?? respectively). Concerns that the small scale of profits
in Mongolia, or lack of negative profits in Bosnia, may be affecting the results are
addressed in Appendix C by re-running the models without these sites, which largely
confirms the main results. The bounding exercise in Appendix D aggregates all the
data on the question of takeup and shows that even the effects on the outcome
distribution for those who take up microloans are likely to be zero along most of the
distribution.

What are the economic consequences of potentially increasing the right tail of
consumption and business outcomes while leaving the rest of the distribution un-
changed? This pattern means that expanding access to microcredit is likely to cause
an ex-post increase in economic inequality across households, which may be impor-
tant if inequality leads to capture of local political institutions or other adverse social
consequences (Acemoglu and Robinson 2008). A rightward expansion of the upper
tail does not means that the richer households are getting richer, because quantile
effects cannot be localized to any particular households without invoking a rank
invariance assumption or some comparable structure (which is unrealistic for credit
market interventions). More detailed baseline data may have permitted an explo-
ration of this question, although such households may well look identical to others
along all the covariates we can measure (as suggested in Kaboski and Townsend
2011).

This pattern of probable expansion in the right tail, combined with the inability to
localize the effects to particular households in these data sets, highlights the potential
value of locating and studying these highly productive individuals. Studies such as
Hussam, Rigol and Roth 2017, which leverages local knowledge to lend to borrowers
with high marginal returns to capital, are valuable both because these individuals
seem to be the only households positively benefiting and because the benefits are
large. My analysis suggests that we cannot necessarily expect the results observed
in such papers to replicate elsewhere, and there may well be contexts in which these
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positive tail effects will not materialize. However, my analysis also demonstrates the
challenges of inference on these highly productive households because their returns
follow heavy-tailed distributions. Under such circumstances, studies that appear to
be well-powered may be underpowered to detect these effects, giving further reason
to emphasize aggregated results rather than individual studies.

The presence of heavy tails also has econometric implications: in these pop-
ulations, certain individual households account for large percentages of the total
business activity. It may be challenging to understand the economies of develop-
ing countries if we trim or winsorize the most productive households who make
up a large percentage of total economic activity. It might be more useful to study
mechanisms that can produce fat-tailed outcomes, such as multiplicative production
functions, experimentation or investments with a relatively high risk exposure and
long maturation horizons.23

6 Conclusion

The microcredit results demonstrate the value of using appropriate methodology
for the question of interest, rather than a "default" approach restricting oneself to
conditional means. The models developed in this paper could be used to study the
distributional effects of other financial interventions, trade and innovation policies,
educational subsidies, and local migration incentives, all of which have social welfare
implications (Borusyak and Jaravel 2018, Duflo, Dupas and Kremer 2017, Chetty,
Hendren, and Katz 2016, Bryan, Chowdhury and Mobarak 2014). There are many
settings in which quantiles are implicated in policy directly, often because taxation
and welfare policies are explicitly made with reference to quantiles of the income
distribution; in such settings, the conditional mean often contains little information
about the policy’s impacts. The models provided here are especially relevant when
the data contains discrete spikes of individuals who record certain outcome values
due to their extensive margin decisions. In these cases, aggregation of distributional
effects within the Bayesian hierarchical framework may be both more informative
and more reliable than individual analyses of average treatment effects alone.

23One might ask whether if microcredit interventions were studied over a 10 or 20 year horizon
the imprecise tail effects we observe after two years could either become precise or could lead
to benefits across the entire distribution, but this data set does not contain the answer to that
question.
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Table 3: Posterior probability that effects are equal for groups PB = 0 and 1

Quantile Tolerance = 0.5 USD PPP 1 USD PPP 3 USD PPP 5 USD PPP
0.050 0.219 0.275 0.426 0.507
0.150 0.608 0.634 0.697 0.734
0.250 0.688 0.718 0.793 0.830
0.350 0.588 0.633 0.761 0.826
0.450 0.425 0.482 0.654 0.756
0.550 0.276 0.341 0.534 0.660
0.650 0.165 0.220 0.401 0.536
0.750 0.082 0.121 0.268 0.399
0.850 0.035 0.060 0.157 0.251
0.950 0.011 0.020 0.062 0.101

Notes: Posterior probabilities are generated by integrating over areas of the full joint posterior
distribution, which automatically adjusts for dependencies in the uncertainty on these parame-
ters. Tolerances must be used in probability statements (or tests) on equality conditions to avoid
measure-theoretic paradoxes caused by testing a single point in Real space, which has measure zero
under a continuous prior (and indeed, under the Lesbesgue measure). In practice, this amounts to
testing whether the two values are in a small interval near one another with interval length equal
to the tolerance.
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Figure 1: Average quantile treatment effects across all settings for all variables. The
dark line is the posterior mean, the opaque color bands are the central 50% poste-
rior uncertainty interval, the translucent color bands are the central 95% posterior
uncertainty interval.
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Figure 2: Posterior Predictive quantile treatment effects for the next setting for all
variables.The dark line is the posterior mean, the opaque color bands are the central
50% posterior predictive uncertainty interval, the translucent color bands are the
central 95% posterior predictive uncertainty interval.
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Figure 3: Model fit analysis: posterior predictive quantiles in the control group from
the LogNormal and Pareto models compared to the real data. Further details and
caveats can be found in Appendix C.
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Figure 4: Average quantile treatment effects for the next setting for all variables,
graphed in square root terms due to the very large scale of the Pareto tail. The dark
line is the posterior median (the mean is unreliable as this posterior has fat tails), the
opaque color bands are the central 50% posterior predictive uncertainty interval, the
translucent color bands are the central 95% posterior predictive uncertainty interval.
The Pareto-Lognormal model has convergence issues as noted in Reed and Jorgensen
2004, here somewhat mitigated by strong priors, and should be interpreted with
caution. The Composite tail model, generated by manually cutting up the support
of each tail and fitting a Lognormal between zero and the 80th percentile and a
Pareto beyond it, is computed in a two-step procedure. Further details and caveats
can be found in Appendix C.
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Figure 5: General Quantile Treatment Effect Curves split by prior business owner-
ship (β1) for consumption-type variables. The dark line is the posterior mean, the
opaque color bands are the central 50% posterior uncertainty interval, the translu-
cent color bands are the central 95% posterior uncertainty interval.
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Figure 6: General Quantile Treatment Effect Curves (β1) for business variables
split by prior business ownership. The dark line is the median, the opaque bars are
the central 50% interval, the translucent bands are the central 95% interval. Display
is in cubed root of USD PPP due to the scale differences in the uncertainty at the
right tail versus the rest of the distribution.
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