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Abstract–Protein families can be used to reconstruct evolu-
tionary histories of organisms. The accuracy of protein assign-
ment to such families is critical for the success of such studies.
Here we investigate the automatic aggregation of motif-defined
homologous protein families for further reconstruction of their
evolutionary histories. We propose a method that utilises only
parameters that can be adjusted by using the data. The build-
ing blocks of the method include: (a) a majority rule for com-
bining protein homologous neighbourhood lists into that for a
family, and (b) a robust clustering procedure whose only pa-
rameter, the similarity shift, can be estimated from informa-
tion on proteins with known function. The method is applied
to a herpesvirus protein dataset leading to insights into the
composition of ancestors of herpesvirus superfamilies. Com-
parison of the computational reconstructions with more com-
prehensive analyses also show how alignment-based between-
protein similarity scoring can be improved by using data on
gene arrangements.

1 Introduction

Reconstructing evolutionary histories of organisms using
information on the total protein coding content of each genome
has provided new insights into genome evolution [10, 14,
17]. Gene gain and loss events have also been applied to
reconstructing virus evolutionary history [1]. Herpesviruses
infect a wide variety of animal species and eight herpesviruses
are known to infect humans. Herpesviruses cause impor-
tant diseases in both animals and man. Despite their patho-
genesis, herpesviruses are highly adapted to sustain a life-
long infection of their host after the primary infection. This
adaptation to a mutual co-existence has involved the evo-
lution of the herpesvirus genomes with the result that the
species in existence today capture an extensive evolution-
ary history, within which important insights into host and
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pathogen interactions are buried. Many herpesviruses have
had their complete genomes sequenced, and this shows that
herpesviruses maintain some common genes but also un-
dergo extensive gene gain and loss. The availability of high-
level genomic data creates an opportunity to accurately map
the history of individual genes onto a phylogeny. Such a
mapping presents a unique way of visualising the evolu-
tion of the pathogen’s functions. In addition, different her-
pesvirus genomes have different gene contents, suggesting
active gain and loss of genes. The problem of retracing in-
dividual gene histories over the evolution of herpesvirus as
a family requires a guide phylogenetic tree. The evolution
of herpesvirus family has been mapped to such phyloge-
netic trees rather robustly using single genes or subsets of
conserved herpesvirus genes, all producing trees with very
similar topologies. Such a tree can be used as the target
for parsimoniously mapping “phyletic” patterns of genes
onto it. The pattern of gene presence/absence for the ex-
tant species can be plausibly extended over the entire tree in
such a way that an evolutionary scenario is built by annotat-
ing the phylogenetic tree with events corresponding to gene
birth, horizontal transfer and loss.

Currently the basic units of the mapping to the trees are
homologous protein families representing aggregations of
related individual genes. Assignment to protein families is
often determined with a large manual component because
the degree of similarity between proteins within an align-
ment of protein sequences is not always sufficient to auto-
matically identify the families. Significant protein similar-
ity over the full length of the protein is often insufficient to
group proteins into families, especially for rapidly evolv-
ing organisms such as bacteria and viruses. This makes
the application of phyletic gene/protein gain and loss map-
ping difficult to perform routinely. Computational methods
for identifying fragments of high sequence similarity within
proteins followed by the classification of these proteins into
homologous groups can help identify distant functional re-
lationships in proteins, such as for example the PROSITE
database. However, motif identification can lead to arbitrar-
ily fragmented protein families. Identifying conserved re-
gions within large sets of proteins is now achieved through
iteration and aggregation of sequences using alignment meth-
ods such as PSI-BLAST or hidden Markov chain profiles of
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the close families.
In this paper, we describe a different strategy to improve

the sensitivity and specificity of computational methods for
grouping proteins into families. This strategy involves a
two-stage process: (1) building “fragmented” motif based
homologous protein families (HPFs) such as those devel-
oped in VIDA database [2]; (2) aggregating the HPFs using
their sequence based similarity estimates. The similarity be-
tween two HPFs is estimated by comparing their “homolo-
gous neighbours” (HN) sets, that are derived from sets of
homologous neighbours of individual proteins in the fam-
ilies. An individual protein sequence is assigned with HN
set by using an alignment based tool such as PSI-BLAST.
Having the HN sets defined, we measure similarity between
HPFs as the similarity between their HN sets. To aggregate
the HPFs, we adapt a method for incomplete clustering, that
is derived from data recovery approaches [13]. This method
involves only one parameter to distinguish between func-
tionally similar and dissimilar HPFs. This parameter, the
threshold similarity shift value, is estimated by comparing
two distributions of similarity values: one related to lists
with clearly different functions and the other related to lists
with clearly similar functions.

The aggregate protein families are mapped onto an evo-
lutionary tree of herpesviruses according to both the max-
imum parsimony and the maximum likelihood principles.
We consider 740 HPFs residing in 30 herpesvirus genomes
and analyse the reconstructed composition of the herpesvirus
universal common ancestor (HUCA) as well as those of the
herpesvirus superfamilies’ ancestors.

2 Methods

2.1 Measuring similarity between HPFs

There are many examples of proteins, especially virus en-
coded proteins, whose pair-wise similarity is low, but which
are known to be functionally related and which have many
common homologues. For example the glycoprotein H like
protein of murine herpesvirus 4 (gi: 1246777) and the UL22
protein of Bovine herpesvirus 1 (gi: 1491636) have mini-
mal sequence identity (15%, identified on the second PSI-
BLAST iteration), and have been initially assigned to sepa-
rate HPFs within the VIDA database, namely HPFs 12 and
42 [2]. However, their sets of homologous protein neigh-
bours (with 20% or greater sequence identity), contain 25
and 20 sequences, respectively, and have 14 common pro-
teins, making the overlap between the homologous protein
lists quite significant: the average relative overlap is 63%
(14/25=56% in one of the sets and 14/20=70% in the other).
To alleviate the issue, PSI-BLAST runs are conventionally
reiterated for accruing distantly related proteins into fami-
lies. This, however, may import irrelevant proteins or pro-

teins that are not within the organism group under investiga-
tion. An HPF obtained in this way requires manual curation,
but the overlap between the neighbourhood lists suggests a
different computational strategy.

Given a query protein sequence p, we utilise the PSI-
BLAST program [3] to sort all protein sequences under con-
sideration (we use those in the NCBI Entrez web site [16])
by their similarity to the query sequence. An initial frag-
ment of this sorted list, defined by a contrasting cut-off sim-
ilarity value, is identified. The list of all those proteins sim-
ilar to this fragment that are also identified in our collection
of herpesvirus genome protein sequences makes the homol-
ogy neighbourhood of p, denoted by l(p).

Given a protein family h consisting of m proteins p1,
p2,...,pm, with herpesvirus constrained HN sets l(p1), l(p2),
...,l(pm) assigned to each of them, we aggregate these sets
by using the majority rule. Let us assign a membership
score s(p) to each sequence; s(p) being defined as the pro-
portion of the HN sets l(p1),..,l(pm) to which p belongs;
this is 1 if p belongs to all m of the sets.

Given a > 0, the a-majority list Ma(h) is defined as the
set of those p for which s(p) ≥ a. For a = 1/2, M1/2(h)
is the so-called simple majority list. As a decreases, the
size of Ma(h) can only increase, so that for a ≤ 1/m the
a-majority list Ma(h) is the set-theoretic union of the sets
l(pi) for all pi ∈ h.

To determine an appropriate value for a, we accept the
following view: the proteins in an HPF have developed over
a period of time; thus, the longer the time period spanned by
the a-majority list proteins, the smaller should be the value
chosen for a.

To measure similarity between two HPFs represented by
their HN sets of protein sequences, L1 and L2, one should
rely on the quantities involved: the size of the overlap be-
tween L1 and L2, denoted by a, the number of elements
in L1 denoted by a1, and the number of elements in L2
denoted by a2. To take into account the relative size of
the overlap, we use the average proportion of the overlap,
mbc = 1

2 ( a
a1 + a

a2 ), known as the Maryland Bridge coef-
ficient [15]. This index is co-monotone with the popular
Jaccard coefficient J = a

a1+a2−a , but does not suffer from
the intrinsic flaw of the Jaccard coefficient, which system-
atically underestimates the similarity [15].

2.2 Clustering HPFs with similarity data

As is well-known, no known clustering algorithm reliably
determines the number of clusters. We therefore employ an
approach that finds high-density clusters one-by-one. Such
methods are becoming increasingly popular in bioinformat-
ics; see, for instance, the algorithm CAST [4], which is
similar to our algorithm ADDI-S [12] described below. A
criterion for finding a high-density cluster should combine
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two conflicting principles: (i) a cluster should contain only
highly similar entities, and (ii) the cluster size should be as
large as possible. We utilise a function A(S) of a cluster
S, that incorporates both of these principles. Specifically,
A(S) is the product of the within-cluster average similarity
b(S) and the cluster size NS , i.e. A(S) = b(S)NS . The
choice of this criterion fits well into several frameworks:
(a) maximum density subgraphs, (b) spectral clustering, and
(c) the data recovery approach, in which A(S) emerges in a
least-squares context [12, 13].

A shift in the origin of the similarity measure may af-
fect the clustering results, in the manner similar to that of
threshold graphs drawn at different thresholds, which can
be of advantage in contrasting within- and between- cluster
similarities.

To maximise A(S), we utilise the following method, ADDI-
S, introduced in [12], which extracts clusters one-by-one.

Denote the similarity data after the similarity shift by
B = (bij), i, j ∈ I , where I is the set of all HPFs under
consideration. Take an arbitrary i∗ ∈ I and find j∗, such
that bi∗j∗ is maximised over all j ∈ I . If bi∗j∗ ≤ 0, the
computation stops: S must be a singleton consisting of just
i∗. Otherwise, put both i∗ and j∗ into S. S is updated as
follows. Given the current S, b(i, S), the average similarity
between i and all S members, is calculated for all i ∈ I .
Then the within-cluster average b(S) is calculated and the
threshold π = b(S)/2 is used to select those i �∈ S that sat-
isfy b(i, S) > π and those i ∈ S that satisfy b(i, S) < π.
If there are such i’s, put one of them into S or out of S, if
i �∈ S or i ∈ S, respectively. If there are none, stop. This
procedure is applied |I| times, starting from every i∗ ∈ I ,
and the densest cluster, according to A(S), is selected.

ADDI-S is a local search algorithm for maximizing A(S).
The resulting cluster is mathematically proven to be well
separated from the rest: its “attraction” coefficients β(i, S) =
b(i, S) − b(S)/2 are positive for within-cluster elements
i ∈ S and negative for out-of-cluster elements i �∈ S [13].

A clustering is produced by the repeated application of
algorithm ADDI-S to those entities that remain unclustered.
The process stops when the remainder manifests no positive
similarities between its elements. The result is a set of clus-
ters {St}, t = 1, ..., T , each assigned with its contribution
value, A(St)2, and the remaining unclustered part.

Although the ADDI-S method utilises no ad hoc param-
eters, the clustering results do depend on the similarity shift
value that must be defined by the user. However, this value
can be chosen based on biologically inspired considerations
as explained in section 4.2.

2.3 Mapping HPFs to the evolutionary tree

Given an evolutionary tree over genomes together with the
phylogenetic profile of an HPF in the extant species (leaf

nodes of the tree), the problem that arises is to generate
the most plausible evolutionary scenario that would lead to
this phylogenetic profile. Such a scenario may involve the
evolutionary events of emergence, inheritance, horizontal
transfer and loss. Since, at this level of resolution, we can-
not distinguish between emergence and horizontal transfer
of a gene, we refer to either of these events as a gain. The
total number of loss and gain events in a scenario shows the
extent of incompatibility between the evolutionary history
of the given gene and the species tree. Among all possi-
ble scenarios, we select the most parsimonious, i.e. requir-
ing the minimum number of events to explain the observed
phylogenetic profile, or the most likely, i.e. those for which
the probability of the observed phylogenetic profile is max-
imised. We consider first the criterion of maximum parsi-
mony and then that of maximum likelihood.

2.3.1 Maximum Parsimony reconstruction

Since the likelihoods of loss and gain events are likely to
differ, we may need to weight them differently. This is
achieved by introducing event penalties l and g; the loss
penalty l is normally assigned the value 1, whereas the gain
penalty g can differ from 1. Then a parsimonious scenario
should minimise the total weighted score; this is the in-
consistency of the HPF. Recently, a number of approaches
have been proposed for this problem [17, 14, 10], of which
only that by the authors [14] involves no additional param-
eters or constraints. This method proceeds by recursively
building a parsimonious scenario for each parent node from
parsimonious scenarios for its children. At each node of
the tree, sets of loss and gain events are maintained under
both the assumption that the gene has been inherited at the
node and the assumption that it has not been inherited. It
is necessary to distinguish these two cases since, clearly, it
is only meaningful to consider the loss of a gene at a node
if it was inherited at that node, or the gain of a gene if it
was not inherited. We denote the number of events un-
der the inheritance and non-inheritance assumptions by e i

and en, respectively, where gains are weighted by the gain
penalty g. An evolutionary scenario at a given node is de-
fined by a pair of sets (G, L), representing the gains and
losses in the subtree rooted at the node. We use (Gi, Li) and
(Gn, Ln) to denote scenarios under the inheritance and non-
inheritance assumptions, respectively. As shown in [14], in
a parsimonious scenario, the parental inconsistency score
can be derived from those of its children (indicated by sub-
scripts 1 and 2) as ei = min(en1 + en2 + l, ei1 + ei2)
or en = min(ei1 + ei2 + g, en1 + en2), under the inher-
itance or non-inheritance assumption, respectively. These
lead to a tree accumulation algorithm PARS [14] for com-
puting parsimonious scenarios for parental nodes. At a leaf
node the four sets Gi, Li, Gn and Ln are empty, except that
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Gn = {a} if gene a is present in the given leaf or Li = {a}
if a is not present.

2.3.2 Maximum Likelihood reconstruction

The algorithm PARS can be refined from using only the
heuristic principle of parsimony to incorporating a maxi-
mum likelihood approach, using probabilities of loss and
gain of genes at each node of the tree. These probabilities
can be estimated from the totality of parsimonious scenar-
ios produced by PARS for all HPFs under consideration,
taking account of the total numbers of gains and losses in
reconstructed scenarios as well as which HPFs could be po-
tentially gained or lost. Given the probabilities, λ of a loss
and γ of a gain, respectively, a probabilistic scoring func-
tion can be developed for utilisation in a modified version
of the algorithm PARS for producing a maximum likelihood
scenario for any given phyletic profile. For an internal node
of the tree, under the assumption that the gene has been in-
herited from the node’s parent, the probability of a scenario
leading to the observed phyletic profile in the subtree rooted
at the node is equal to either λpn1pn2 or (1 − λ)pi1pi2,
where pn1 and pn2 (pi1 and pi2) are the probabilities of the
scenarios for the child subtrees under the assumption that
the gene was not inherited (inherited) by the children. The
first of these expressions, λpn1pn2, is the probability of the
scenario in the case in which an inherited gene is lost at the
node, and thus not inherited by its children. This assumes
the stochastic independence of evolutionary events in dis-
joint subtrees and that the Markov property holds. The sec-
ond expression is the corresponding probability in the case
in which the inherited gene is not lost at the node. We select
the scenario for which the probability is maximum. Anal-
ogous formulae can be derived for a non-inherited gene;
in this case, γ is used instead of λ. The modified algo-
rithm PARS can be used to compute the maximum likeli-
hood scenario for the whole tree. This modified algorithm,
MALS, differs from PARS by both the scoring function and
the event sets at the leaves.

It is easy to see that MALS can also be applied when loss
and gain probabilities are node-specific.

After MALS is applied to the totality of all HPFs, the re-
sulting scenarios and thus the numbers of gains and losses
can change from those found with PARS, which were used
for defining MALS’ loss and gain probabilities. This could
lead to different posterior gain and loss probabilities. These
posterior probabilities can be used as input for iterating MALS,
until convergence is achieved. We have no formal proof that
such iterated MALS will always converge, but in all our ex-
periments both with the VIDA and COG [18] databases this
was the case.

The maximum likelihood approach above differs from
the conventional ones in that we determine a single scenario

Table 1: List of the 30 herpesvirus genomes under consideration.

# VIDA Ref. Genome GenBank Ref.
Alphaherpesvirinae

01 CeHV-1 Cercopithecine hv 1 NC 004812
02 HHV-1 Human hv 1/simplex 1 NC 001806
03 HHV-2 Human hv 2/simplex 2 NC 001798
04 EHV-4 Equid hv 4 NC 001844
05 EHV-1 Equid hv 1 NC 001491
06 BoHV-1 Bovine hv 1 NC 001847
07 BoHV-5 Bovine hv 5 NC 005261
08 CeHV-7 Cercopithecine hV 7 NC 002686
09 HHV-3 Human hv 3/varicella-zoster NC 001348
10 MeHV-1 Meleagrid hv 1 NC 002641
11 GaHV-2 Gallid hv 2/Marek’s disease NC 002229
12 GaHV-3 Gallid hv 3 NC 002577
13 PsHV-1 Psittacid hv 1 NC 005264

Betaherpesvirinae
14 HHV-6 Human hv 6 NC 001664
15 HHV-7 Human hv 7 NC 001716
16 HHV-5 Human hv 5/cytomegalovirus NC 006273
17 ChCMV Chimpanzee cytomegalovirus NC 003521
18 MuHV-2 Murid hv 2/rat cytomegalovirus NC 002512
19 TuHV Tupaiid hv NC 002794

Gammaherpesvirinae
20 HVS-2 Saimiriine hv 2 NC 001350
21 AtHV-3 Ateline hv 3 NC 001987
22 EHV-2 Equid hv 2 NC 001650
23 BoHV-4 Bovine hv 4 NC 002665
24 MuHV-4 Murid hv 4/murine hv 68 NC 001826
25 RRV-17577 Macaca mulatta rhadinovirus NC 003401
26 HHV-8 Human hv 8/Kaposi’s sarcoma NC 003409
27 AIHV-1 Alcelaphine hv 1 NC 002531
28 CeHV-15 Cercopithecine hv 15 NC 006146
29 HHV-4 Human hv 4/Epstein-Barr NC 001345
30 CaHV-3 Callitrichine hv 3 NC 004367

for a pre-specified evolutionary tree rather than a distribu-
tion of probabilities over all possible scenarios and trees.

3 Data

3.1 Evolutionary tree

A set of 30 complete herpesvirus genomes covering the α, β
and γ herpesvirus superfamilies (see Table 1) has been ex-
tracted from the herpesvirus database VIDA, release 3 [2];
and an evolutionary tree has been built over the genomes
for the conserved DNA polymerase gene using the PHYLIP
package [7] (see Figure 1). This tree agrees well with pre-
viously published instances of herpesvirus phylogenies.

Additional support for this being a suitable tree is that
very similar trees have been constructed by us using more
comprehensive data, such as the genome phylogenetic pro-
files formed by the 257 HPFs that are present in two or more
of the genomes [2]. Second, our tree is similar to that pub-
lished in [11] and reproduced in [5] on the subset of 25 her-
pesvirus genomes common to our tree. The latter tree is
based on comprehensive data including expert knowledge.
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Figure 1: Herpesvirus evolutionary tree.

Our tree in Figure 1 differs from the tree in [11, 5] on two
clusters rooted at nodes 43 (four β genomes) and 53 (seven
γ genomes), respectively. This difference, however, falls
within the margin of uncertainty of the tree topology indi-
cated in [11, 5]. All subsequent computations for phyletic
assessment of gene gain and loss events were performed on
both trees, that on Figure 1 and that with the topology of
subtrees rooted at nodes 43 and 53 changed according to
the reconstruction in [11, 5]. The mapping results reported
in section 5 below are the same for both tree topologies.

3.2 Homologous Protein Families (HPFs)

A set of 740 homologous protein families (HPFs) residing
in 30 genomes were extracted from the VIDA database [2].
Each HPF is defined by a conserved fragment in the pro-
teins constituting the HPF; these were computed using the
algorithm XDOM [8, 2]. In this way, each HPF is proposed
to represent basal functional grouping, whose origin can be
mapped to the evolutionary tree under the assumption that
the function is inherited according to the tree topology. As
discussed, such motif based protein family assignment can
suffer from fragmentation of protein families and from the
non-assignment of proteins to a family due to lack of pair-
wise similarity. We therefore used our method of generating
and assessing similarity between lists of homologous pro-
teins to check the validity of the starting HPFs and merge
HPFs that were artificially fragmented into aggregate pro-
tein families (APFs).

4 Tuning Methods to Data

There are two places in our method that require fitting the
computational parameters to the data: (1) selection of pa-
rameter a in the majority rule, and (2) selection of the sim-
ilarity shift at the ADDI-S clustering. These will be de-
scribed in this section.

4.1 Selection of the majority threshold

We considered values a = 2/3, 1/2, 1/3, 1/4, 1/5, 1/6. Ob-
viously, there is no need to take a between these values,
since they would produce the same majority lists. The ma-
jority lists at a = 1/6 coincide with the set-theoretic unions
for all HPFs comprising six or less proteins. At any speci-
fied a, the mbc similarity coefficients, the average percent-
age of the overlap, have been computed between a-majority
lists obtained for individual HPFs. Then the obtained HPF-
to-HPF similarity matrix was processed with the ADDI-S
clustering algorithm at different similarity shift values, from
b = 0 incremented by 0.1 to b = 0.9 and, a greater similar-
ity shift value, b = 0.97.

To compare two different clusterings, we use the same
mbc coefficient. We apply a flexible rule to identify clusters
S1i and S2j as similar when they differ by just one or two
elements.

The majority threshold has been set at the level of 20%,
i.e. a = 1/5, because:

1. Clusterings produced at different similarity shift lev-
els differ minimally. The median mbc similarity value
between clusterings corresponding to “neighbouring”
majority thresholds 1/6 and 1/5 is 0.98; 1/5 and 1/4,
1.00; 1/4 and 1/3, 0/99; 1/3 and 1/2, 0.96. The simi-
larity between clusterings at non “neighbouring” thresh-
olds slightly decreases. The average mbc similarity
value varies similarly, taking its maximum at the ma-
jority thresholds 1/5 and 1/4. The sets of unclustered
entities behave similarly.

2. The clustering found over 20%-majority lists is “cen-
tral” among other clusterings; it is more similar to the
other clusterings than at any other of the considered
majority thresholds.

3. The clustering found over 20%-majority lists is more
similar than the others to clusterings produced with
the homology lists obtained with the iterated PSI-BLAST
search [3], starting from a random protein in an HPF.
Repeated PSI-BLAST search, over an averaged pro-
file of the first search results, allows one to catch
more distant homologues to the query sequence [3].
The median similarity between the clustering at 20%-
majority lists and the clustering found at HPF neigh-
bourhood lists of the first iteration is 0.91; lists of the
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second iteration, 0.82; and lists of the third iteration,
0.50.

4.2 Choosing the similarity shift

At the chosen 1/5-majority neighbourhood lists, the sum-
mary number of obtained clusters corresponding to aggre-
gate functions changes from 99 at no similarity shift at all to
29 at b = 0.97. The number of HPFs remaining unclustered
changes from 430 to 681, respectively, leading to the total
numbers of “aggregate” functions from 529 to 710. Note
that the latter number corresponds to the situation when the
HN sets of the clustered HPFs are practically the same sets
of proteins: to overlap at the level of 97% or higher, major-
ity lists of less than 30 elements (that is, almost all) must be
equal to each other.

To choose an appropriate similarity shift value, we com-
pare the values of similarity between the 1/5-majority neigh-
bourhood sets of two types of pairs of HPFs: those that
are synonymous and those that are not. Two proteins are
considered synonymous if they are consistently named be-
tween the herpesvirus genomes and/or they share the same
known function. Such proteins should therefore belong in
the same aggregate protein family. Two proteins are consid-
ered non-synomymous if they have different functions and
thus should belong to different protein families.

Out of the 287 available pairs of HPFs with known func-
tion and positive similarity value, no non-synonymous pair
has a greater mbc similarity than 0.66, which should imply
that the shift value b = 0.67 confers specificity for the pro-
duction of APFs.

Unfortunately, the situation is less clear cut for synony-
mous proteins. There are 24 out of 86 synonymous pairs
(28%) that have their mutual similarity value less than 0.67.
Thus, accepting the similarity shift at 0.67, 28% of the syn-
onymous pairs would not be identified suggesting that at
this similarity shift the method lacks sensitivity. To choose
a similarity shift that minimises the error in assigning nega-
tive and positive similarity values, one needs to compare the
distribution of similarity values in the set of synonymous
pairs with that in the set of non-synonymous pairs. As Fig-
ure 2 shows, the graphs intersect when the similarity value
mbc is 0.42. The number of synonymous pairs whose simi-
larity falls into the wrong side of 0.42 (that is, less than 0.42)
falls to 11, whereas the number of non-synonymous pairs
whose similarity is higher than 0.42 increases to 7 (from 0
at 0.67), which leads to the minimum summary error rate of
16%, at b = 0.42.

Thus two possible similarity shift values are indicated:
(a) b = 0.67 to guarantee specificity in that non-synonymous
HPFs are not be clustered, and (b) b = 0.42 to ensure the
minimum misclassification error rate.
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Figure 2: Empirical percentage frequency functions (y-values) for the
sets of synonymous pairs (solid line) and non-synonymous pairs (dashed
line). The x-values represent the mbc similarity.

5 Reconstruction of APF histories
The two similarity shift values indicated, i.e. b = 0.67 and
b = 0.42, lead to somewhat different but rather compati-
ble clusterings of the set of 740 HPFs under consideration.
There are 80 APF clusters comprising an original 180 HPFs
and leaving 560 HPFs unclustered at b = 0.67. There are
102 APF clusters, over an original 249 HPFs, and 491 HPFs
unclustered at b = 0.42.

The first 80 clusters extracted at similarity shift b = 0.42
correspond one-to-one to the 80 clusters obtained at b =
0.67. All 22 of the additional clusters extracted at b = 0.42
are doublets with similarity values of 0.50 to 0.62.

The aggregation found at b = 0.67 suggests 560 + 80 =
640 APFs altogether whereas b = 0.42 leads to a smaller
total, 491 + 102 = 593. We analysed reconstructions of
histories of APFs at each of the two aggregations and found
minimal differences at the ancestor nodes related to ances-
tors of superfamilies α, β and γ as well as the more uni-
versal common ancestors, HUCA and βγ. Moreover, ap-
plication of the iterated MALS algorithm, starting at PARS
results at gain penalty values from 1 to 3, did not lead to any
changes of the reconstructed HUCA, consistent with the ob-
servation that most of herpesvirus HPFs follow the topology
of the evolutionary tree.

The gains and losses reconstructed in HUCA and its im-
mediate descendants, α, βγ, β and γ, differ minimally be-
tween the aggregations found at similarity shifts b = 0.67
and b = 0.42. We present results at the more conservative
level b = 0.67 and then comment on the only difference of
notice that comes at b = 0.42.

Of the four ancestors, α, βγ, β and γ, only the contents
of the α superfamily is relatively well studied. Of its 33
gained HPFs (plus the inherited HUCA contents) only 9 are
of unknown function.

This pattern is not repeated in the βγ ancestor, with 10
gains (plus the inherited HUCA) of which only 2 are of
known function. Similarly, of 31 additional gains at β-
ancestor, only 10 have known function and of 32 additional
gains at the γ-ancestor, the function is known for only 9. To-
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Table 2: Comparison between a previously determined herpesvirus common ancestor D-HUCA’s [5, 6] list of functions in the herpesvirus ancestor (two
columns on the right) versus the results from the mapping of HPF/APFs (first four columns), with function descriptions taken from VIDA.

Mapping A/HPF Function Description HSV-1 Gene D-HUCA
Peripheral Enzymes

HUCA 8 Nucleotide repair/ uracil-DNA glycosylase, UL2 Uracil-DNA glycose
metabolism HHV-1 UL2

HUCA 24 Nucleotide repair RNA reductase large UL39 RNA reductase;
metabolism subunit, HSV-1 UL39 large subunit

HUCA 33 Nucleotide repair RNA reductase small UL40 RNA reductase
metabolism subunit, HHV-1 UL40 small subunit

HUCA APF 10 UL23 Thymidine Kinase
2 Nucleotide repair/ thymidine kinase

metabolism
27 ” thymidine kinase

HUCA 43 Nucleotide repair/ dUTPase, HHV-8 ORF54 UL50 dUTPase
metabolism

Surface and Membrane
HUCA 20 Membrane glycoprotein M, UL10 Glycoprotein M; complexed

glycoprotein HHV-1 UL10 with glycoprotein N
HUCA 3 Membrane glycoprotein B, UL27 Glycoprotein B

glycoprotein HHV-1 UL27
HUCA APF 3 UL22 Glycoprotein H; comp-

42 Membrane/ glycoprotein H, lexed with glycoprotein L
glycoprotein HHV-1 UL22

12 ” glycoprotein H, HHV-8 ORF22
531 ” glycoprotein H, HHV-8 ORF22

Node 32 267 Virion protein envelope protein, UL49A Glycoprotein N; complexed
HHV-1 UL49A with glycoprotein M

ALPHA 47 Membrane glycoprotein L, UL1 Glycoprotein L; complexed
glycoprotein HHV-1 UL1 with glycoprotein H

BETA 50 ” glycoprotein L, HHV-5 UL115
GAMMA 114 ” glycoprotein L, HHV-8 ORF47
GAMMA 296 ” glycoprotein L, MuHV-4 ORF47

gether, these three ancestors, βγ, β and γ, received 73 gains
of which 52, more than 70%, are of unknown function.

The reconstructions of the ancestors with APFs found at
the similarity shift b = 0.42 are essentially the same. The
only exception is the ancestor of the α superfamily, which
gains three more APFs at b = 0.42. These are APF81 com-
prised of HPFs 9 and 504, both of glycoprotein C; APF82
comprised of HPF 38 and HPF 736, both of glycoprotein
I; and APF84 comprised of HPF 47 and HPF 205, both of
glycoprotein L.

The common ancestor of herpesviruses, HUCA, accord-
ing to our reconstruction, should comprise 45 HPFs aggre-
gated to 29 APFs, i.e. 29 protein families. These are well
studied proteins with only three of the participating fam-
ilies, HPFs 17, 23 and 107, of no known function. Our
HUCA is consistent with the work of others, D-HUCA[5,
6], but does not include all the protein families assigned by
Davidson et al. This concurs with our view that our ap-
proach, relying only on sequence similarity alone, is con-
servative.

Typical relations between our mapping results and D-
HUCA are illustrated in Table 2

In some cases, it is clear that the fragmented HPFs fail
to aggregate at that level of moving from the α, β and γ-
ancestor into HUCA because of almost zero sequence sim-

ilarity between them. For example, Table 2 shows how a
difference between the reconstructed HUCA and D-HUCA
can emerge. All three ancestors, of each α-, β-, and γ
families, have a glycoprotein L. However, the correspond-
ing HPFs, 47, 50 and 296, have no significant sequence
similarity and, thus, cannot be combined together, even in
terms of the neighbourhood lists. Still, at the genome or-
ganisation level, illustrated on Figure 3, each of the gly-
coprotein L genes always exactly precedes the correspond-
ing Uracil-DNA glycosylase gene, which is mapped into
HUCA. This suggests these are common ancestral genes in-
deed; just they have undergone sequence change to a level
where sequence similarity is no longer sufficient to assign
homology. Putting the corresponding gene UL2 into D-
HUCA has been based on experimental evidence that in the
α-, β-, and γ families, glycoprotein L sequences in HPF 47,
50 and 296 functionally complex with glycoprotein H [6].

6 Discussion

Reconstructing evolutionary relationships using whole genome
gene content provides novel insights into the gene gain and
loss events that have shaped the evolution of extant organ-
isms. To achieve such reconstructions, similarity between
proteins must be established to allow their correct place-
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glycolase   /  UL2 = U83

glycoprotein L  /  UL1 glycolase   /  UL2

glycoprotein L  /  U82

glycoprotein L  /  ORF47 glycolase   /  ORF46

ALPHA

BETA

GAMMA

Figure 3: Positional homology between glycoprotein L sites in the her-
pesvirus superfamilies α, β and γ. The homology suggests that the glyco-
protein L gene co-functions with the glycosylase gene and thus the former,
like the latter, should be mapped to HUCA.

ment within a phylogenetic tree. Here we present a method
that first aggregates homology lists of individual proteins
into motif based families, and then finds family clusters
based on similarity between the HN sets. This provides an
efficient and accurate way to identify protein families for
such studies. Conventional clustering algorithms that par-
tition the dataset into a pre-specified numbers of clusters
are not of great help here because one needs not to parti-
tion but rather identify a relatively few aggregations of pro-
tein families leaving the rest unclustered (incomplete clus-
tering). Importantly, the true number of clusters is unknown
and must be assessed through parameters adjustment. These
parameters, namely, the majority threshold and similarity
shift, can be reasonably determined from the data.

We have applied this method to the phyletic reconstruc-
tion of herpesvirus phylogeny and the results support the
validity of the method. We have successfully reconstructed
a herpesvirus universal common ancestor (HUCA) and the
most likely common ancestors of the α, β and γ herpesviruses.
The method is still limited by the requirement for sequence
similarity but consistent with current herpesvirus genome
annotation. We show that inclusion of gene position infor-
mation to this analysis can help in identifying functionally
homologous sequences with minimal protein identity.
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