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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W e  present an  agent-bmed architecture fo r  resource reser- 

vations. For each domain in the network there is an agent 
responsible for  admission control. The architecture provides 
scalable per-link resource reservations in agents and low per- 
packet overhead in routers. The key ideas are the follow- 
ing. First, reservations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom different sources to  the same 
destination are aggregated as their paths merge toward the 
destination. Second, an  agent in charge of resources at the 
final destination can generalize reservations for  specific end 
points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that they are valid for  any end point in the des- 
tination domain, thereby allowing more aggregation. Third, 
agents can do bulk reservations in advance with neighbor- 
ing agents, thereby allowing aggregation over time. Fourth, 
agents are responsible for  setting up police points at edge 
routers for  checking commitments. Agents can minimize per- 
packet policing overhead in routers by varying the granularity 
of policing over time. 

1 Introduction 

We are designing an architecture for resource reserva- 
tions where clients make #%dmission requests through agents 
[SP97b] [SP97a]. For each routing domain in the network 
there is an agent which knows the topology and static link 
resources in the domain (figure 1). The agent is an end- 
system that is configured For passively participating in a link 
state routing protocol (e.g., OSPF) where all routers have 
a complete topology map of the domain. Thus, an agent 
obtains the same topology map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the routers with little sig- 
naling overhead. Link state advertisements are sent from the 
nearest router to the agent. Agents retrieve link properties, 
such as static bandwidths, by querying routers seen in the 
topology map. For this, we use a network management pro- 
tocol (e.g., SNMP). Queries are done at startup and when 
topology changes are detected by the routing protocol. Gen- 
erally, routers need no extensions to allow agents to build a 
resource map through the management protocol. 

Agents do parameter-based admission control over the 
static resources in their domain. There is no signaling of 
traffic dynamics between routers and agents. Admission re- 
quests contain the bandwidth to be reserved, a source and 
a destination address. This simple model allows us to focus 
on scaling properties for the reservation architecture rather 
than on complicated admission control. A more sophisti- 
cated model could involves token bucket specifications, delay 
specifications, bounds on packet sizes, etc. 
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Figure 1: Reservation agents and their domains 

Packets using reserved resources are marked by applica- 
tions or edge routers. Core routers handle marked packets 
by classifying them into a small number of predefined service 
types. Similar ideas, known as differentiated services, have 
been proposed in [CF97] and [NJZ97]. In the differentiated 
services model, packets are marked to obtain either lower 
drop probability or higher strict priority. In this paper, we 
abstract from these details and use the term priority pack- 
ets to denote marked packets, and the term priority traf ic 
for all priority packets collectively. A key point of differen- 
tiated services and our agent architecture is to avoid non- 
scalable signaling state and expensive per packet processing 
in routers. 

Independently of which packet scheduling model is used 
in routers, there must be an admission control architecture 
to make sure that the amount of priority traffic is low enough 
to receive a good quality of service. One issue is whether the 
admission control architecture should reserve resources over 
the links that are actually going to be used, or just limit 
the overall rights to send priority traffic. A scheme that 
does not consider exactly where traffic will go cannot give 
reliable commitments without very low utilization. Thus, it 
is likely that such a scheme would need to gamble and accept 
occasional service loss. 

In this paper we focus on agent-based admission control 
where the objective is to administer resources exactly, i.e., 
admission control in an agent maintains information about 
reserved resources on each link in its domain. Agents do ad- 
mission control without involving the routers. Our objective 
is to find out if such a scheme is scalable. The paper is or- 
ganized as follows. Section 2 describes how reservations are 
aggregated and how agents can find out where traffic will en- 
ter a domain and which path it will take through the domain. 
Section 3 describes how commitments are enforced by agents 
setting up police points in edge routers checking that incom- 
ing traffic conforms. Section 4 provides a comparison with 
RSVP, and finally, section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 discusses how the architecture 
can handle changing topologies. 



In our architecture, reservation requests may be immedi- 
ate and open-ended or made in advance by including start- 
ing time and duration for the reservations. In earlier work 
[SP97b], we have shown the benefits and costs of supporting 
a mix of immediate and advance reservations in terms of link 
utilization, rejection probabilities, preemption probabilities 
etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReservation Model 

An admission request is directed to any agent, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe.g., an 
agent that manages a user’s account. Each agent sets up 
reservations between any two points in the network by in- 
voking other agents. Thus there is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno difference between 
reservations for sending or receiving data, reservations for 
nomadic computing, or reservations paid by a third-party. 

Each reservation request contains a bandwidth to be re- 
served, a source and a destination address. The source ad- 
dress determines the point where the reservation starts (i.e, 
the point where traffic using the reservation will enter) and 
the destination address determines the point where it ends. 
An agent receiving a request first considers whether the start 
point is in its domain. If the start point is not in its domain, 
it finds an agent closer to the start point and repeats the re- 
quest with that agent. Technically speaking, it is possible to 
directly identify the agent that is responsible for the source 
domain, but in practice clients may prefer using a particular 
agent and agents may prefer repeating the request in sev- 
eral steps according to established accounting relations. In 
figure 2, it is shown how a request is issued by node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADx for 
reserving resources from Ax to Dx. 

10 from Ax to Dx 

Figure 2: A receiver Dx requesting a reservation to receive data 

from Ax 

If an agent finds that the start point given in the request 
is in its domain, admission control is performed on the links 
from the start point towards the destination, defined by the 
routing protocol. This is possible since all routers and the 
agent have the same topology map of the domain. Thus, an 
agent can perform admission control on the links from the 
start point to an edge router in its domain. 

An agent cannot perform admission control beyond its do- 
main. Therefore, if the destination is outside of the agent’s 
domain it must request a reservation with the neighboring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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agent, giving the edge point where traffic will cross the bor- 
ders as the source address of the reservation (figure 2). With- 
out distinguishing between reservations to different destina- 
tions it would be impossible for agents to grant reservations 
to other domains. This is because there is no way to make 
sure that there are sufficient reservations along any path in 
other domains further downstream (unless we accept very 
low utilization for priority traffic). 

If reservations were always done “on demand” there 
would be signaling between all neighboring agents along the 
path for each end-to-end admission request. To avoid this, 
agents make bulk reservations in advance so that admission 
requests become much fewer and more aggregated than if 
they were made only on demand. If an agent already has a 
sufficiently large reservation from its edge to a distant desti- 
nation, it can grant further requests for that destination by 
just doing admission control over its local links and check 
that it has a sufficiently large reservation beyond its edge. 

To grant requests spanning many routing domains, there 
must be a commitment from all agents along the path in- 
volved in the request. When an agent is making a reserva- 
tion with a neighboring agent, the source address included 
in the request determines the point (router interface) where 
the traffic will cross the borders, i.e., enter the domain of 
the neighboring agent. The neighboring agent does not care 
where traffic came from originally. Thus, priority packets 
can use reserved resources as long as the destination address 
matches the reservation. This allows agents to aggregate 
traffic with different sources into one single reservation made 
with a neighboring agent. 

Figure 3: Funnels and aggregate reservations for one destination 

An end-to-end resource reservation can be seen as a num- 
ber of consecutive funnels (figure 3). Priority packets poured 

into any of these consecutive funnels use reserved resources 
all the way to the destination. Agents may aggregate several 
requests with different source addresses into the same fun- 
nel, as long as they all specify the same destination. Agent 
C (in fig. 3) may set up a funnel starting at its edge by 
pre-reserving resources with neighboring agent D to a dis- 
tant destination and then aggregate requests for resources 
between domains C and D into the established funnel. This 
advance bulk reservation implies that downstream agents 



only keep state for the aggregate. The agent that decides 
to aggregate into a bulk reservation keeps information about 
its individual commitments constituting the aggregate. Ag- 
gregation by merging reservations towards each destination 
can be done with full control over the resources. 

Requests that specify different destinations cannot easily 
be aggregated into a funnel in the general case. If we al- 
low funnels to split out in different directions further down- 
stream, upstream agents must keep information about which 
destinations are involved and how resources are divided be- 
tween them. This means; that the aggregate no longer can 
be seen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas one unit. However, if a set of destinations can 
be identified by one common identifier, and there are suffi- 
cient resources available in each branch to service the whole 
aggregate, then split outs can be scalable and exact. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Funnels and generalized destinations 

With this argument, we allow aggregation to be increased 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgeneralizing a reservation to be valid for all destinations 
within the same destination domain. This means that a fun- 
nel provides resources to all endpoints within the destina- 
tion domain, i.e., resources in the destination domain must 
be sufficient enough to ensure that priority packets get ex- 
pected service independently of how they are routed within 
that domain. It is only the agent responsible for the desti- 
nation domain that can judge if resources are sufficient for 
allowing generalization. Consider the example in figure 4. 
Agent D can judge if the resources in D'are sufficient to let 
incoming funnels be valid for the whole domain. Thus, it 
must be agent D that decides when a reservation request for 
a particular destination node within D can be replaced with 
a reservation for any node in domain D. 

In IP networks an address prefix is often used to rep- 
resent a domain (individual nodes within the domain are 
distinguished by the remaining suffix). An address prefix is 
represented by an IP address and an associated mask telling 
how many bits are part of that prefix. An agent generalizes a 
request by replying with an address prefia: to be used as des- 
tination address for the reservation instead of the original 
address included in the request (figure 4). The aggregation 
that results from generalizing a reservation is also called pre- 
fix aggregation. 

Clients or agents thak have been granted a generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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reservation can use it for any destination matching the prefix 
of the reservation. Agents providing generalized reservations 
must handle the committed bandwidth of priority traffic to 
any destination in its domain. A conservative agent would 
therefore generalize reservations up to an aggregated value 
equal to the narrowest link. In practice we believe that this 
can be quite useful for well provisioned local area networks. 

To sum up this section we stress that aggregation is hap- 
pening in the agents as routers are not dealing with admis- 
sion control at all. The motives for aggregation may be 
smaller when reservation state is stored in agents with plenty 
of memory and disc. However, a per-flow reservation model 
would have scaling problems both in terms of state and pro- 
cessing cost in agents. Therefore it is important to show that 
agents can provide exact resource reservations with nice scal- 
ing properties. 

3 Policing and classification 

Agents establish police points in edge routers of their 
domains to protect against sources and neighboring agents 
sending more priority traffic than committed. We call such 
traffic excessive. An ingress police point is established by 
looking at the source address in a reservation. This address 
identifies the edge router where traffic using the reservation 
will enter the domain. An agent may also establish an egress 
police point. Given the ingress point and the destination ad- 
dress, the'routing protocol can find the point where traffic is 
leaving the domain. 

In our architecture the number of commitments is kept 
low through aggregation. Still, the number may be quite 
large as we distinguish between reservations for different des- 
tinations (or prefixes). Policing is demanding as it involves 
per-packet processing, i.e., each priority packet must first be 
classified against all commitments before measuring band- 
width. Therefore, we have support for reducing the classi- 
fication overhead. To obtain this reduction without loosing 
control, we accept more signaling between policing routers 
and their agent, as well as some delay until a misbehaving 
source is found. 

The method is to check only aggregate bandwidth of pri- 
ority traffic. When excessive priority traffic is found, this is 
reported to the agent (the agent sets up a trap with the polic- 
ing router by using a management protocol). The agent can 
go through its commitments associated with the actual edge 
point and set up close policing by matching different des- 
tinations one-by-one, or randomly, in the router. The key 
idea is that the agent has knowledge about any policing that 
could be done, but saves per-packet policing overhead in the 
routers by not checking all commitments at once. The strat- 
egy depends on whether processing power or link bandwidth 
is the bottleneck in the router. 

A police point judges whether each priority packet is ex- 
cessive or not. Agents may set up actions in police points to 
degrade service for excessive packets, e.g., they can be either 
re-marked or dropped. The appropriate action depends on 
the policy associated with the service commitment that was 



given. In addition, agents should report excessive traffic back 
to upstream agents. There are two reasons for this. First, 
the agent detecting excessive traffic cannot police individual 
flows within in a commitment. Upstream agents have the 
details of the aggregate and can make sure that only vio- 
lating parts of the aggregate will have service degradation. 
Second, it is a waste of network resources to serve excessive 
priority traffic and then degrade it, or even drop it, further 
downstream. As police points find out where excessive traffic 
is coming from, the report proceeds between agents towards 
the agent responsible for the source. There, a final police 
point should be established to regulate the excessive traffic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Comparison with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSVP 

In RSVP [ZDE+93], QoS setup is managed by end points 
and routers. Reservation state occurs for each flow in each 
router along the path. A flow is defined by a pair of sender 
and destination addresses (and ports), resulting in large 
numbers of fine granular reservations to manage by routers. 
Also per-packet processing is expensive as every packet must 
be classified against the total number of reservations. In 
RSVP, it is difficult to introduce aggregation as the model 
relies on per-flow semantics. To add aggregation, some way 
of identifying aggregates would be necessary. Transparent 
aggregation along a path would require labeling aggregates 
at one RSVP router, making sure that downstream routers 
know about the labels, and finally splitting up the aggre- 
gate at some hop. Overhead in intermediate routers is saved, 
but routers constituting aggregates would get even more per- 
packet overhead than before. Aggregation with RSVP can be 
difficult to support over several domains owned by different 
providers. 

Having per-flow reservation state in the routers, as in 
RSVP, is not advisable for unicast reservations. Even if ag- 
gregation is supported over some parts of the path, there 
would generally be an explosion in state and packet process- 
ing overhead compared to ordinary best-effort routing. For 
multicast, the overhead associated with RSVP can probably 
be justified. Already by using best-effort multicast, a user 
has decided to trade off bandwidth savings for per-flow state 
in the routing table. The extra state for RSVP should only 
add some overhead. One should, however, make sure that 
multicast and RSVP are used only when resulting multicast 
trees are sufficiently dense (branched) to motivate the control 
state. 

Our agent architecture is not currently tailored for multi- 
cast reservations as more research is required to develop a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso- 
lution that provides sufficient benefits over RSVP. Therefore, 
the agent architecture can be used for unicast reservations, 
while RSVP can be used for multicast reservations. 

5 Changing topologies and resources 

In the Internet, agents must handle occasional topology 
changes, as well as pathological changes such as route-flaps 
[Pax96]. Agents listen to the routing protocol and detect 
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routing changes on average as fast as any router in the do- 
main, depending on when the routing protocol converges. 
When changes occur, agents can schedule resources along 
new paths. If it is found that there are insufficient static 
resources along the new path, agents can perform temporary 
actions by setting up police points to re-mark or drop traf- 
fic from some commitments so that other commitments can 
be met without quality loss. Once an agent has decided to 
degrade a commitment, the method for handling the result- 
ing excessive traffic is the same as described in section 3. 

However, in this case traffic is considered excessive because 
of network failure (not client failure) and therefore clients 
could be given some kind of refund. 

6 Conclusion 

The agent architecture can provide resource reservations 
in a global network for sending data from any point to any 
other point, independently of where the reservation request 
originated. The key ideas of our architecture are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaggregation 
(merging towards destinations), generalization of destination 
domains, adwance reservations (bulk), and minimal flexible 
policing. 

The architecture separates functionality between packet 
forwarding in routers and QoS negotiation in agents. For en- 
forcement, agents must set up police points in some routers. 
Thus, one architectural requirement is to standardize an in- 
terface to allow trusted agents to setup police points. 

References 

[CAHSG] 

[CF97] 

[NJZSi’] 

[Pax961 

[SPWa] 

[SP97b] 

[ZDE+93] 

A. Campbell, C. Aurrecoechea, and L. Hauw. A review 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgos architectures. In Proceedings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 4th IFIP Inter- 
national Workshop on Quality of Service (IWQoS’96), 
Paris, France, March 1996. 
David D. Clark and Wenjia Fang. Explicit allocation 
of best effort packet delivery service. Technical re- 
port, MIT Lab for Computer Science, Boston, Mas- 
sachusetts, November 1997. 
Kathie Nichols, Van Jacobson, and Lixia Zhang. A 
two-bit differentiated services architecture for the in- 
ternet. Internet draft, Bay Networks, LBNL and 
UCLA, November 1997. 
Vern Paxon. End-to-end routing behavior in the inter- 
net. In Proceedings of SIGCOMM, pages 25-38, Palo 
Alto, California, August 1996. ACM. 
0. SchelBn and S. Pink. An agent-based architecture 
for advance reservations. In IEEE 22nd Annual Con- 
ference on Computer Networks [LCN’Sr), Minneapo- 
lis, Minnesota, November 1997. 

0. SchelBn and S. Pink. Sharing resources through 
advance reservation agents. In Proceedings of IFIP 
Fifth International Workshop on Quality of Service 
(IWQoS’97), New York, May 1997. 
Lixia Zhang, Stephen Deering, Deborah Estrin, Scott 
Shenker, and Daniel Zappala. RSVP: a new re- 
source Reservation protocol. IEEE Network Maga- 
zine, 7(5):8-18, September 1993. 


