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ABSTRACT Current approaches of university students’ Grade Point Average (GPA) prediction rely on the

use of tabular data as input. Intuitively, adding historical GPA data can help to improve the performance

of a GPA prediction model. In this study, we present a dual-input deep learning model that is able to

simultaneously process time-series and tabular data for predicting student GPA. Our proposed model

achieved the best performance among all tested models with 0.4142 MSE (Mean Squared Error) and 0.418

MAE (Mean Absolute Error) for GPA with a 4.0 scale. It also has the best R2-score of 0.4879, which means

it explains the true distribution of students’ GPA better than other models.

INDEX TERMS educational data mining, deep learning, gpa prediction, time-series data, tabular data

I. INTRODUCTION

A
NECESSITY of providing well-targeted academic con-

sultation services in educational sectors becomes one

of the major concerns in improving the quality of school and

academic institutions. One of the most important features

of such services is the use of educational data mining of

student’s academic performance, which is capable to reveal

latent information that can improve the existing educational

system within the institution. For instance, a predictive model

can be employed by a university to forecast students’ future

academic performance, such that the university can identify

the students that may have a poor grade. Thus, the univer-

sity can foster them to have better academic performance,

which leads to the improvement of the overall students’

performance. Moreover, the accurate prediction of students’

academic performance is also an effective strategy for student

recruitment, admission, retention, and individualized educa-

tional support throughout a students’ studies [1]. To measure

the academic performance, the Grade Point Average (GPA) is

commonly used [2]. The result of academic productivity via

GPA values can provide a more straightforward approach to

measure the students’ satisfaction that includes environmen-

tal, academic, social, cultural, economic, and health aspects.

Numerous studies have been conducted to develop a pre-

diction model for student GPA [1], [3]–[9]. In many studies,

the input to the prediction model is tabular data [1], [3]–[7]. A

summary of the tabular data used by these studies is provided

in Table 1. Alternatively, historical GPA data can also be em-

ployed. Structurally, historical GPA data can be categorized

as time-series data, which has different nature than tabular

data. An example of study that employed historical GPA is

the study by Patil et al. [8]. Furthermore, the combination

of both tabular and historical GPA data has been proven to

be beneficial by Iqbal et al. [9]. However, Iqbal et al. treat

the historical GPA data as tabular data instead of time-series

data, which is its most natural form. We argue that such

a treatment remove useful information from the historical

GPA data. Thus, in this study, we propose a model that can

combine tabular data and historical GPA as time-series data

for GPA prediction. The proposed model is a dual-input deep

learning model that can take both tabular and time-series data

as input simultaneously. The model consists of a Multi-Layer

Perceptron (MLP) branch and a Long Short-Term Memory

(LSTM) branch which are concatenated for a single GPA

prediction.
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TABLE 1. Previous studies of GPA predictive model development with tabular

data

Author(s) Tabular Features

Zollanvari et al. [1] The answer of 19 questions from a questionnaire.
Example question: "Do you allow time for exer-
cise and socializing with friends?"

Bosch [3] Pre-experiment GPA, Self-reported typical
grades, Free or reduced-price lunch eligibility,
Expectations of success in high school math,
Gender, Highest level of parental education,
Expectations of success in high school math,
First year freshman, Race/ethnicity, and Fixed
mindset.

Pojon [4] Gender, Nationality, Place of Birth, Educational
Stage, Grade, Classroom ID, Course Topic,
Semester, Parental Relationship, the Parent An-
swering the School Survey, the Parent Level
of Satisfaction, Number of times the student:
Raised Hands, Visited the Course Content,
Checked New Announcement, Joined the Discus-
sion Group, Absent.

Putpuek et al. [5] Gender, Previous Education, Province, Talent,
Loan Status, Admission Type.

Musso et al. [6] The result of the following tests/questionnaire:
Attention Network Test, Automated Ospan,
Learning Strategies Questionnaire, Adolescent
Coping Scale, Perceived Social Support Scale,
SMU Health Questionnaire, Remoralization
Scale, and Socio-Demographic Questionnaire.

Davidson [7] The result of Fragile Families and Child Wellbe-
ing Survey.

II. RELATED WORKS

Most of the studies that developed GPA prediction models

can be grouped in the domain of Educational Data Min-

ing (EDM). It is defined as the utilization of various data

mining techniques to analyze data and provide solution for

educational problems [10]. Essentially, the utilization of

EDM is motivated by study cases such as identifying at-

risk students, prioritize learning needs, identify graduation

rates, performance assessment, maximizing resources, op-

timizing curriculum renewal, and also GPA prediction. To

solve these cases, a variety of Data Mining methods can

be applied. Specifically for GPA prediction, it is common

to employ popular supervised learning algorithms for Data

Mining, such as decision-tree-based algorithms [11]–[16],

Naive Bayes [5], [17], logistic regression [18], and rule-based

classification [19]. Currently, there is no consensus which

supervised algorithm is the best for educational data because

the performance was varied from study to study. Despite the

popularity of the supervised learning algorithms for Data

Mining, it should be noticed that they naturally can only

model tabular data. As the consequence, the aforementioned

studies used only tabular data.

In recent years, however, there is a tendency in almost all

research in data modeling to use deep learning, an umbrella

term for recent advances in neural networks. Since the 2010s,

deep learning has been adopted in numerous cases with a

stunning performance. This trend is starting to permeate the

research in GPA prediction as well. For example, Arsad et

al. [20] used Multi-Layer Perceptron (MLP) for predicting

the GPA of engineering students in the Faculty of Electri-

cal Engineering, University of Technology MARA (UiTM),

Malaysia. The input to the MLP model was the students’

score in several subjects in the first semester. The target

output was the students’ CGPA at semester eight. Arsad et

al. showed that fundamental courses in the first and third

semesters have a strong influence on the final GPA upon

graduation. Similarly, Sikder et al. [21] employed MLP for

GPA prediction with data from the Department of Computer

Science and Engineering at Bangabandhu Sheikh Mujibur

Rahman Science and Technology University (BSMRSTU).

Notice that, like other aforementioned supervised learning

algorithms, MLP also suitable only for tabular data.

In addition to the powerful performance, adopting deep

learning also provides a possibility to use time-series data.

In the context of GPA prediction, it is possible to utilize

historical GPA data by the use of deep learning. An example

of this is the study by Patil et al. [8] that utilized Bidirectional

Long-Short Term Memory (BLSTM), a variant of Long

Short-Term Memory (LSTM) [22], which is a deep learning

architecture specialized for modeling time-series data. By

using LSTM, they can use historical GPA data instead of

the common tabular data used by common GPA prediction

models.

Meanwhile, Iqbal et al. used Restricted Boltzmann Ma-

chine (RBM), which is also a variant of deep learning, to

predict GPA with both tabular and time-series data [9]. The

data were acquired from the students in the Information Tech-

nology University (ITU), Lahore, Pakistan. Because RBM

is not a time-series model, they straightforwardly translated

the time-series data into tabular data by assuming that each

element in the time-series as a separate column. Although

this approach is not impossible to be implemented, it is

theoretically less plausible than using LSTM for the time-

series data.

III. METHODS

A. DATASET

In this study, we used an undergraduate database obtained

from the Student Advisory and Support Center at Bina Nu-

santara University that comprises a total of 46,670 students

enrolled from 2010 to 2017. The data consisted of two

different types of data, which are tabular data and time-series

data. The tabular data contains basic information of students

including two categorical features: the campus locations (3

locations) and academic programs (50 programs); and nu-

merical features: enrollment year (2011 - 2017), TOEFL

score, student orientation score, and leave counts.

Meanwhile, the time-series data comprised 46,670 se-

quences of student academic grades—i.e., Grade Point Aver-

ages (GPA), reported biannually (semester systems) through-

out their active study period. The GPA was computed on

the standard 4.00 scale, which is the most common grading

system in Indonesia. The longest study period was observed

up to 16 semesters and the shortest was three semesters

(students enrolled in 2017).
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B. DATA PRE-PROCESSING

Because a deep learning model can only process numerical

features, data pre-processing is necessary for the categorical

data. For this reason, the two categorical features in the

tabular data were converted into a binary form using one-

hot encoding. Hence, we ended up with a total 53 number of

features as the tabular data. All features were subsequently

standardized with Z-Score Standardization, which is formu-

lated as f(xi) = xi−µ
σ

, where x is the value of a feature in

a data point i, µ is the mean of the attribute, and σ is the

standard deviation of the feature. The features in the dataset

and their corresponding pre-processing are listed in Table 2.

TABLE 2. List of the Tabular Data Features

Feature Data Type Pre-processing

Campus Location Categorical
One-Hot Encoding and
Z-Score Standardization

Academic Programs Categorical
One-Hot Encoding and
Z-Score Standardization

Enrollment Year Numerical Z-Score Standardization

TOEFL Score Numerical Z-Score Standardization

Student Orientation Score Numerical Z-Score Standardization

Leave Counts Numerical Z-Score Standardization

Furthermore, we also imputed missing values in each

series of grades with zero, assuming that these students took

semester leave. From each series, the last GPA value was

pulled out and used as the target variable. Hence, all series

lengths were reduced by one unit (semester). For time-series

based analysis, we arranged the input as an array containing

46,670 univariate time-series. One single time-series belongs

to one sample (one student) and represents the series of GPA

values of that student from the first year up to the year before

the recent year. Due to variations in the study duration of

students across different academic years, the length of each

sample is variable. Unfortunately, the variable-length posed a

problem to the deep learning frameworks we used (Keras [23]

and Tensorflow [24]). The frameworks require the model to

be defined as a static computational graph. To overcome this

problem, we padded the samples with shorter lengths than

the longest sample with some value that falls outside of the

GPA scale. This padding value should be necessarily chosen

outside of the GPA scale so that our deep learning model can

learn to distinguish between ‘real inputs’ and padded inputs.

For simplicity, we took an arbitrary value of -1.0 as our

padding value. We observed that different choices of values

(either positives and negatives) did not affect the performance

of our model. An illustration of the padded series is depicted

in Figure 1.

C. PROPOSED MODEL

For a deep learning model to process time-series data Long

Short-Term Memory (LSTM) [22], [25] layer is commonly

employed. LSTM is a special form of Recurrent Neural

Network (RNN), a deep learning layer that takes input from

the previous time-step when processing the current time-

step. LSTM improves standard RNN with better long-range

dependencies modelling. The novel innovation in LSTM is

its memory cell ct, which is used as an accumulator of the

state information. For controlling the gates inside the LSTM

layer, the cell is accessed, written, and cleared by three self-

parameterized gates: input, forget, and output gate. When

receiving input, its information is accumulated to the cell if

the input gate it is activated. The information from the past

cell ct−1 could be "forgotten" if the forget gate fi is switched

on. Whether the latest cell output ct is propagated to the

final state ht is further controlled by the output gate ot [26].

In summary, the LSTM memory cell is implemented as the

following:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (3)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4)

ht = ot tanh(ct) (5)

where σ is the logistic sigmoid function, c is the cell state,

and i, f , and o are the input gate, forget gate, and output

gate, respectively. All of the hidden vector h in each gate

has the same size. Each gate has its own weights W and a

hidden vector h that has the same size for all gates. LSTM

is currently one of the most powerful algorithms for time-

series analysis that has been applied in many forms of time-

series data such as text [27], internet bandwidth [28], and also

historical GPA [8].

Taking advantage of the LSTM capability in processing

time-series data, our proposed deep learning model combined

MLP and LSTM to allow simultaneous processing of tabular

and time-series data. To be concise, we called our proposed

model MLP-LSTM in this paper. As illustrated in Figure 2,

the architecture of the model consists of an MLP branch and

an LSTM branch which each has five layers. Each branch

receives different data as input. The MLP branch takes the

tabular data, while the LSTM branch takes time-series data.

The information of the tabular and time-series data was fused

by adding the output of each layer in the LSTM branch to the

output of the MLP layer at the same level.

D. EXPERIMENT

The first model was an MLP trained with only the tabular

data. The second model was also an MLP, but it was trained

with the mean of historical GPA data, in addition to the

tabular data. The third model was an LSTM trained with

only the historical GPA data. The first and third models

were included in the experiment to check our hypothesis that

the combination of MLP and LSTM is better than models

with only MLP and LSTM. Additionally, we compared the

proposed model with the second model to see whether MLP-

LSTM can outperform the simplest approach to combine

tabular and time-series data. Furthermore, based on the MLP

and LSTM performance in this comparison, we can measure
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FIGURE 1. An llustration of padded series of GPA where one series belongs to one student. The last_GPA values have been extracted prior to the padding

procedure.

FIGURE 2. The proposed MLP-LSTM architecture.

the individual contribution of the tabular and time-series data.

By comparing it to the performance of models with combined

data (MLP-LSTM and MLP Mean), we could investigate

if the combination of both data is beneficial in term of

performance.

To further analyze the contribution of each feature in the

data, we ran a feature importance algorithm based on permu-

tation importance using the eli5 library in Python. The feature

importance algorithm was applied to the MLP Mean model to

check the contribution of both the tabular and historical GPA

in one model. This is possible because MLP Mean considered

both the tabular and historical GPA (in the form of average

GPA) in the model. We did not apply the feature importance

algorithm to the other model that considered both data, MLP-

LSTM, because standard feature importance techniques such

as the permutation importance in this study cannot be applied

to models with time-series data input. In this case, it is not

possible to apply the permutation importance algorithm to

the LSTM part of the MLP-LSTM model.

TABLE 3. Models for comparison

Model Name Data Architecture

MLP Tabular data MLP

MLP Mean
Tabular data + the mean

MLPof the historical GPA as
tabular data

LSTM
Historical GPA data as

LSTM
time-series data

MLP-LSTM
Tabular data + Hybrid of
historical GPA data as MLP and
time-series data LSTM

To tune the architecture and hyperparameters of all mod-

els, we employed the Tree of Parzen estimator [29] in five-

fold cross-validation. For the architecture, we fixed the num-

ber of layers of all models to five, following the MLP-

LSTM architecture. The activation function of layers was

set to Rectified Linear Unit (ReLU) [30]. The number of

units in each layer of all models was tuned within a set

NL ∈ {32, 64, 128, 256, 512}, whose weights were ini-

tialized with Glorot Uniform Randomization [31]. Specif-

ically for MLP-LSTM, the same number of units was ap-

plied to all layers during the hyperparameter tuning pro-

cess. The learning rate of each model was also included

in the hyperparameter tuning, with the option within a set

LR ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. To reduce

overfitting, Dropout [32] was applied to all models. The drop

rate was also tuned for each layer in each model within a

set DR ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Specifically for the

LSTM layer, we employed recurrent dropout [33] instead

of standard dropout. All models were trained using Adam

optimization algorithm [34].
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E. PERFORMANCE EVALUATION

To compare the performance of MLP-LSTM to the baseline

model, we use three regression metrics: Mean Squared Error

(MSE), Mean Absolute Error (MAE), and R2. MSE is calcu-

lated as in equation 6:

MSE =
1

N

N∑

n=1

(yn − ŷn)
2 (6)

where N is the total number of data, yn is the actual nth GPA

entries in the dataset, and ŷn is the predicted nth GPA entries.

It is known that MSE tends to be more sensitive to large er-

rors. While this characteristic might be appropriate in partic-

ular cases, it is not always applicable to all cases. Therefore, it

is important to also evaluate the regression performance with

Mean Absolute Error (MAE). This metrics has a linear error

growth from the absolute difference of 0 towards infinity, as

opposed to the MSE that has a quadratic error growth. Low

value from both MSE and MAE can ensure the reliability

of the model. The calculation of MAE is expressed as in

equation 7.

MAE =
1

N

N∑

n=1

|yn − ŷn| (7)

Additionally, we also use R2 metric to measure the perfor-

mance for both baseline and MLP-LSTM. R2 is commonly

used to measure regression performance, notably in the statis-

tics field for assessing a linear model. Mathematically, R2 is

defined as in equation 8:

R2 = 1−

∑N
n=1

(yn − ŷn)
2

∑N
n=1

(yn − ȳ)2
(8)

where ȳ is the mean of actual GPA entries in the dataset.

The value of R2 is ranged from 0 to 1, representing the

percentage of explained variance of the actual GPA by the

assessed model in our case.

IV. RESULTS AND DISCUSSION

Figure 3 shows the performance of all models during the

training process. Analyzing the plots, we observed that

LSTM and MLP-LSTM did not suffer overfitting, while MLP

and MLP Mean did. On the one hand, both LSTM and MLP-

LSTM considered the time-series data without aggregation.

On the other hand, MLP Mean only received the time-series

data that has been aggregated with the mean operation. Based

on those facts, we can conclude that the unaggregated infor-

mation in the time-series data can help models to generalize

better. This conclusion is further supported by the fact that

the MLP model, which was not exposed to the time-series

data, also suffered overfitting.

Meanwhile, the performance for all models on the test

set is reported in Table 4. The proposed MLP-LSTM model

achieved the best MSE and MAE among all models in the

experiment. The R2 of the proposed model is also larger than

other models, which means that the MLP-LSTM explained

the variance of the student GPA better than the other models.

Meanwhile, the MLP Mean model achieved the second-best

performance compared to the model that uses only tabular

data (MLP) and only time-series data (LSTM). Ignoring the

different characteristics of the models, this fact suggested that

the contribution of both the tabular and historical GPA was

observable. Thus, the combination of both data in one model

was a beneficial factor to the superiority of the MLP-LSTM

and MLP Mean model. Moreover, with the fact that MLP-

LSTM was better than MLP Mean, we could infer that the

more complex architecture also contributed to the predictive

performance improvement. Additionally, we observed that

the time-series data was more informative than the tabular

data, based on the fact that LSTM has better performance

than MLP.

In the investigation of the feature importance of the MLP

Mean model, we observed that the most important feature

was the average GPA with an importance value of 0.4448.

Although the average GPA was the most important feature, it

did not mean that the other features were not important. Alto-

gether, the importance value of the other features was 0.3423,

which is comparable in magnitude to the importance value

of the average GPA. In detail, the importance value of the

features other than average GPA were respectively 0.1758,

0.1171, 0.0251, 0.0187, and 0.0056 for the academic year,

academic program, student orientation score, TOEFL score,

and campus location. These importance values were plotted

in Figure 4 to visualize the feature importance information

more clearly. This feature importance information could pro-

vide us a rough estimation of the contribution of the role

of the data, especially for each feature, to the performance

of all models. However, we should notice that the other

model that considered both the tabular and historical GPA

data, MLP-LSTM, might provide a different profile of feature

importance, which is unfortunately not possible to be derived

with standard feature importance algorithms. Despite that,

the feature importance information also supported the fact

that both data have an observable contribution, as previously

demonstrated by the result of the model comparison.

TABLE 4. Performance comparison

Model Architecture MSE MAE R
2-score

MLP 0.5297 0.5092 0.2371
MLP Mean 0.4167 0.3459 0.4819
LSTM 0.4542 0.3908 0.4146
MLP-LSTM 0.4142 0.3418 0.4879

In addition to the general performance of the MLP-LSTM,

we found an interesting fact that the performance of the

MLP-LSTM is related to the smoothness of the distribution

of the actual GPA data. To discover this trait, we split the

dataset into two subsets by the two categories in the academic

status field: "active" (AC) and "completed/graduated" (CM).

As visualized in Figure 5, the AC subset has a relatively

smooth distribution of actual GPA value with only a distinct

spike at the GPA of 4.00. In contrast, the CM subset exhibits
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FIGURE 3. Training and validation loss (MSE) plot of the (a) MLP, (b) MLP Mean, (c) LSTM, and (d) MLP-LSTM. A gap between training and validation loss can be

observed in the MLP and MLP Mean plot, which indicates that both model suffered overfitting.

FIGURE 4. (a) Feature importance of the MLP Mean model. (b) Feature importance of the MLP Mean model, aggregated on the features other than the last GPA.

a multimodal distribution with three distinct spikes at values

of 2.00, 3.00, and 4.00. After applying the MLP-LSTM to the

two subsets, we found that the performance was better for the

AC subset with 0.2863 MSE and 0.3628 MAE. These are to

be compared with the performance for the CM subset with

0.3807 MSE and 0.4502 MAE.

Moreover, we also made another observation to examine

the MLP-LSTM performance in relation to the enrollment

year field. In this experiment, the dataset was split into

seven subsets according to the student’s enrollment year. The

performance of the MLP-LSTM for each enrollment year

is shown in Figure 6. The general trend was that the error

grows larger as the enrollment year decreases. This trend

can be explained by the trait of the RNN that usually has

less performance as the length of the sequence gets longer.

Even though LSTM improves the basic RNN in modeling

longer sequences, the trend was still emerged in this study.

Noticeably, the error for the enrollment year 2017 suddenly

grows larger. This trend might be attributed to the insufficient

historical data, where the 2017 subset has the smallest time-
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FIGURE 5. The normalized distribution of last_GPA grouped by two

academic status of students: "active" (AC) and "completed/graduated" (CM).

Dashed lines that indicate density plots are shown for clarity.

series length with only three elements.

FIGURE 6. The MSE and MAE performance of the MLP-LSTM model on the

test set grouped by the enrollment year.

V. CONCLUSION

In this study, we proposed MLP-LSTM, a dual-input deep

learning model that concurrently processes time-series and

tabular data, for modeling student GPA. The result of this

study showed that MLP-LSTM was the best model among

other models that was exposed to only tabular data, only

time-series data, and the combination of tabular and aggre-

gated time-series data. Based on this result, we can conclude

that the complex architecture of MLP-LSTM was beneficial

to improve the performance of a student GPA model by

enabling the use of both unaggregated time-series dan tabular

data.

An additional analysis in this paper revealed that the

MLP-LSTM needs a smooth target GPA distribution to work

well. Unfortunately, the actual data rarely has this conve-

nient feature. To improve the future model, it would be

intriguing to incorporate a non-parametric approach in a deep

learning model. In the statistics field, it is known that the

non-parametric approach can model an arbitrary distribution

better than the parametric counterparts. Although it is not a

prevalent approach in machine learning studies, we found

studies that have attempted to utilize a non-parametric ap-

proach for machine learning algorithms [35], [36].

Further observations also showed that the long-range

dependencies problem was still apparent even though the

LSTM variant was utilized instead of standard RNN. A

possible solution for future works is to use transformer

[37] instead of RNN variants. Transformer models time-

series data with self-attention instead of recurrent connection,

which is theoretically better to model long-range dependen-

cies. Transformer has been successfully applied to model text

[38]–[40], which can also be viewed as time-series data.
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