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Abstract We study the case where agents have preferences over ranges (intervals) of
values, and we wish to elicit and aggregate these preferences. For example, consider a set
of climatologist agents who are asked for their predictions for the increase in temperature
between 2009 and 2100. Each climatologist submits a range, and from these ranges we must
construct an aggregate range. What rule should we use for constructing the aggregate range?
One issue in such settings is that an agent (climatologist) may misreport her range to make
the aggregate range coincide more closely with her own (true) most-preferred range. We
extend the theory of single-peaked preferences from points to ranges to obtain a rule (the
median-of-ranges rule) that is strategy-proof under a condition on preferences. We then intro-
duce and analyze a natural class of algorithms for approximately eliciting a median range
from multiple agents. We also show sufficient conditions under which such an approximate
elicitation algorithm still incentivizes agents to answer truthfully. Finally, we consider the
possibility that ranges can be refined when the topic is more completely specified (for exam-
ple, the increase in temperature on the North Pole given the failure of future climate pacts).
We give a framework and algorithms for selectively specifying the topic further based on
queries to agents.

1 Introduction

We consider settings in which a group of agents must decide on a range of values, based on
the ranges that the individual agents consider “ideal.” (In this paper, a range is an interval
of real numbers.) For example, consider a group of climatologists debating by how much
the earth’s temperature will change over the next one hundred years. Suppose that each cli-
matologist has privately-held minimum and maximum numbers of degrees by which she
believes the temperature will change.1 Also suppose that the climatologists have reached a
point of fundamental disagreement (or distrust) and can no longer provide each other with

1 These could also be the lower and upper bounds for what she believes is a (say) 99% confidence interval.
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any information that will make them update these beliefs. They would like to take a vote to
produce a single aggregate temperature range (that, for example, they will then provide to
the media).

Other applications abound. Lawmakers can vote on minimum and maximum jail sentences
for certain illegal activities (here, the resulting minimum and maximum together constitute a
range); program committee members can vote over a range for the quality of a paper (rather
than a single number); etc. In all these applications, typically, the aggregated range is intended
as a guideline that is of key importance for later decisions that the agents will make.

One may wonder why agents would have a most-preferred range rather than a single
most-preferred number. There are at least the following three reasons. 1. Indifference. An
agent may be indifferent among a range of values. 2. Limited deliberation. Determining one’s
ideal number can require significant effort in terms of deliberation, computation, or research;
limited effort will result in a range of numbers (which will shrink as more effort is spent).
For example, as a climatologist analyzes more ice cores, or runs more simulations, she will
get a more precise idea of (smaller range for) the future increase in temperature. Similarly, a
program committee member may read a paper more carefully and thereby get a more precise
idea of (that is, shrink her range for) the quality of the paper. 3. Underspecified topics. An
ideal climatologist may be able to give an exact number for the temperature increase if various
specifics are provided to her—for example, that measurements will be taken on the North
Pole, a particular climate pact will be enacted, etc. Without these specifics, however, she
cannot possibly provide more than a range. Similarly, for the example of a lawmaker voting
on the length of jail terms, the lawmaker may wish to allow some flexibility in the sentencing
guidelines (that is, suggest a range of jail terms), to take into account the particulars and
circumstances of the case.

An alternative model would be for each agent to have a probability distribution over point
values. This may be reasonable if there is uncertainty over point values due to limited delib-
eration, or for some types of underspecification of the topic (one may have a probability
distribution over which climate pacts will be enacted). However, it is not reasonable in the
case of indifference, or for other types of underspecification (whether we are considering the
North Pole or Antarctica). The range model can be applied more flexibly. More importantly,
in practice, it is far more difficult to obtain a probability distribution from an agent than it is
to obtain a range.

Our contributions in this paper will follow two main lines. First, we study what rule to
use to produce an aggregate range from the individual ranges. A key issue here is that for
naïve rules, such as taking a type of average of the ranges, an agent may have an incentive
to lie about her range so as to make the aggregate range coincide more closely with her own
most-preferred range. We propose a rule that (under a condition) is strategy-proof; that is,
each agent is incentivized to report her true range. The condition generalizes the concept of
single-peaked preferences, and the rule is the median of ranges rule.2

The bulk of the paper concerns the second line, where we study how to elicit agents’ most-
preferred ranges using simple queries (rather than making them reveal all of their information

2 Of course, the importance of strategy-proofness depends on the particular application. For the climate exam-
ple, one would hope that scientists would be interested not in making the aggregate range coincide with their
own range, but rather in using the voting mechanism to discover the truth. Still, it is (unfortunately) likely
that some parties involved in the determination of such an aggregate range would have a political objective,
in which case using a strategy-proof rule seems desirable. But, perhaps the example of lawmakers voting on
jail terms provides better motivation for using a strategy-proof rule, since here it does not seem that there
is a “correct” answer to be discovered; rather, each lawmaker has her own preferences over ranges and it
seems likely that each would want the aggregate range to coincide as closely as possible with her own true
most-preferred range.
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at once). We can approximate agents’ most-preferred ranges to within a desired threshold
using simple queries. Since the purpose of elicitation is to run the median of ranges rule,
we study how to elicit an approximation of the median most-preferred range from a set of
agents, without necessarily eliciting an approximation of every agent’s most-preferred range.
Eliciting ranges only approximately might introduce incentives for agents to answer queries
falsely. We give sufficient conditions on the elicitation algorithm so that there is no such
incentive. We also study the setting where there are more and less specified versions of a
given topic, and we are interested in finding the agents’ ranges for each version. Here, we
study how to query the agents for the ranges of only a few versions in a way that lets us infer
approximations of the ranges for other versions.

2 Review of single-peaked preferences

We first review some basic concepts from social choice (voting) theory, and specifically the
concept of single-peaked preferences.

In a general voting setting, there is a set of agents (or voters) {1, . . . , n}, who must select
an alternative from a set O (which, in general, may be infinite). Each agent i has (privately
held) preferences �i over O . For example, if O = {a, b, c}, agent i’s preferences may be
b �i a �i c, indicating that b is her most-preferred alternative and c her least preferred.
Each agent reports preferences �̂i (not necessarily her true preferences) over the alternatives.
Then, a voting rule f takes the reported preferences (or votes) as input, and produces a win-
ning alternative f (�̂1, . . . , �̂n). For example, the plurality rule chooses the alternative that
is ranked first the most often. (In general, ties may occur, which must somehow be broken.)
We note that in this case it suffices to ask each voter only for her most-preferred alternative.
As another example, the Copeland rule is based on pairwise elections. In a pairwise election,
we consider two alternatives a and b; the winner of the pairwise election is the alternative that
is preferred by more voters (according to their reported preferences). Under the Copeland
rule, an alternative receives two points for each pairwise election that it wins, one for each
tie, and zero for each loss; the overall winner is the alternative with the most points.

Unfortunately, if voters can have any preferences over the alternatives, then there are
various impossibility results that show that no voting rule obtains certain desirable proper-
ties. A voting rule is said to be strategy-proof if a voter never benefits from misreporting
her preferences. That is, for any �1, . . . ,�i , . . . ,�n , for any voter i , and any misreported
preferences �̂i , either f (�1, . . . ,�i , . . . ,�n) = f (�1, . . . , �̂i , . . . ,�n) or f (�1, . . . ,�i

, . . . ,�n) �i f (�1, . . . , �̂i , . . . ,�n). The Gibbard–Satterthwaite theorem [11,16] shows
that (when preferences are unrestricted and there are at least three alternatives) no voting
rule is simultaneously onto (i.e., for every alternative, there exist votes that would make
that alternative win), nondictatorial (i.e., the rule does not always choose the most-preferred
alternative of the same voter), and strategy-proof. In the remainder of this paper, we will
consider settings in which there are some restrictions on the voters’ preferences, so that the
Gibbard–Satterthwaite theorem does not apply.

In some settings, there is a natural order < on the alternatives. For example, if the alterna-
tives are political candidates, < may represent which candidates are more left-wing. In the
climate change assessment problem, the goal may be to produce a single number representing
the projected temperature increase (rather than a range within which the increase is expected
to lie). In this case, each alternative (projected temperature increase) is a real number, and <

is the natural order on the real numbers.
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Fig. 1 An example with a continuum of alternatives, which receive 0, 1, 2, or 3 votes each. The median vote
is circled

The order < is of little relevance unless it is somehow related to the voters’ preferences.
One way in which the order may be related to the voters’ preferences is that each voter prefers
alternatives that are closer (according to <) to her most-preferred alternative. This intuition
underlies the definition of single-peaked preferences [2].

Definition 2.1 Agent i’s preferences �i are single-peaked with respect to < if the follow-
ing holds. If a is agent i’s most-preferred alternative, then for any b, c ∈ O , we have 1. if
a < b < c, then b �i c; and 2. if c < b < a, then b �i c.

We note that if b < a < c, then both b �i c and c �i b are consistent with single-
peakedness. For example, according to the single-peakedness condition, a centrist voter must
prefer a slightly left-wing candidate to a radically left-wing candidate, and must prefer a
slightly right-wing candidate to a radically right-wing candidate; but she may or may not
prefer a radically left-wing candidate to a slightly right-wing candidate.

Let us suppose that there is a single order < over alternatives such that for every agent
i , �i is single-peaked with respect to <. For simplicity, let us assume (throughout) that the
number of voters n is odd.3 Then, we can define a voting rule as follows. Let each voter i
report only her most-preferred alternative o(i). We will select the median alternative among
these votes as the winner. That is, the winning alternative is the alternative a that receives at
least one vote and for which |{i : o(i) ≤ a}| ≥ (n + 1)/2 and |{i : a ≤ o(i)}| ≥ (n + 1)/2.
An example is given in Fig. 1. The median voting rule is well-known to have the following
desirable properties (given the single-peakedness assumption):

• The winning alternative wins each of its pairwise elections (that is, it is the Condorcet
winner).

• The voting rule is strategy-proof.

3 Extending single-peakedness to ranges

In the setting that we study in this paper, the alternatives that can be chosen are ranges, that
is, intervals of real numbers. It seems reasonable to suppose that agents prefer ranges that are
closer to their most-preferred range, but it is not immediately clear what the best definition
of “closer” is. In this section, we generalize the theory of single-peaked preferences to the
setting of ranges. (The classical theory presented in the previous section corresponds to the
special case where all ranges consist of a single point.) We assume a finite, odd number of
agents throughout.

There has already been some work on single-peaked preferences over multidimensional
alternative spaces. Border and Jordan [3] generalize single-peaked preferences to Euclidian
spaces of arbitrary dimension, and characterize the associated class of strategy-proof voting
rules. Barberà, et al. [1] extend Border and Jordan’s work, by examining situations where

3 Without this assumption, the median is not well defined; this can be addressed by defining the median to
be (say) the (n/2)th voter in the case of even n, but in order to keep notation simple we do not address this in
this paper.
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the space of alternatives is a compact subset of a Euclidean space, and proving that the class
of strategy-proof voting rules in this setting consists of generalized median voter schemes
(which satisfy another condition). In this section of our paper, we define single-peaked pref-
erences over ranges, and show that a generalized median rule is strategy-proof. Since the set
of alternative ranges can be thought of as a subset of R

2, Barberà et al.’s result can in fact be
used to prove this strategy-proofness result. We prove our result from first principles because
it is more instructive and the proof is short (we do not need the full generality of Barberà
et al.’s result).

3.1 Setup

The set of alternatives is a set of ranges, O = {[a, b] : a, b ∈ R, a ≤ b}. Each agent i has
preferences �i over O . We allow for these preferences to be partial; that is, there may be
some pairs of ranges that are incomparable from the agent’s perspective. (In more general
settings, recent work has begun to extend social choice theory to allow for partial prefer-
ences [12–14], and partial preferences have also been studied from a more computational
angle in social choice [19].) In general, each agent i reports an entire partial order �̂i , and a
voting rule f maps these reported preferences to a single range. (As we will see shortly, our
voting rule does not actually require all this information from the agents.) We say that f is
strategy-proof if for any �1, . . . ,�i , . . . ,�n , for any voter i , and any misreported prefer-
ences �̂i , it is the case that f (�1, . . . ,�i , . . . ,�n) �i f (�1, . . . , �̂i , . . . ,�n). This implies
that the agent must be able to compare the range that results from her misreporting to the one
that results from her telling the truth.

3.2 Definition of single-peakedness

If there is no restriction on the agents’ preferences over alternatives (ranges), then the struc-
ture of the alternative space is irrelevant, and the Gibbard–Satterthwaite theorem applies (as
well as many other impossibility results). So, we must assume that the agents’ preferences
are restricted in some natural way. We will do so by extending the notion of single-peaked
preferences to ranges.

Definition 3.1 An agent has single-peaked preferences over ranges if she has a (most-
preferred) range P = [l∗, u∗] such that, for any ranges X = [l, u] and X ′ = [l ′, u′] for
which

• either l ′ ≤ l ≤ l∗ or l∗ ≤ l ≤ l ′; and
• either u′ ≤ u ≤ u∗ or u∗ ≤ u ≤ u′;
the agent weakly prefers X to X ′ (X �i X ′).

An informal way of interpreting this definition is as follows: an agent’s preferences over
ranges are single-peaked if she has single-peaked preferences over the lower bound, and
single-peaked preferences over the upper bound. It should be noted that, as in the case of
“traditional” single-peaked preferences, there are many pairs of ranges for which any pref-
erence would be consistent with the definition.

We believe that the restriction imposed by our definition of single-peaked preferences
over ranges is intuitively reasonable; it is straightforward to consider some examples to get
some intuition (we will not provide detailed examples and discussion here, for the sake of
space). On the other hand, there are certainly preferences that do not satisfy the condition.
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Fig. 2 Labels (1 and 2) indicate the number of value range bounds located at each point. The median value
range bounds are circled. We note that the upper and lower bounds do not have to come from the same vote

For example, if an agent’s primary concern is that the center of the aggregate range is close to
the center of her own true range, this does not satisfy the condition. On the other hand, if the
center of the range is the primary concern, then we effectively return to the standard setting
with single-peaked preferences over points, and the ranges become somewhat inessential.

3.3 The median-of-ranges rule

Let us assume that all agents have single-peaked preferences over ranges. We now propose a
voting rule that is strategy-proof given this restriction. Unsurprisingly, it is a generalization
of the median rule.

Definition 3.2 The median of a set of ranges S is M(S) = [lm(S), um(S)], where lm(S) is
the median of all lower bounds of ranges in S, and um(S) is the median of all upper bounds
of ranges in S.

Definition 3.3 The median-of-ranges rule takes each agent’s most-preferred value range as
input, and produces the median value range as output.

Figure 2 shows an example of the median range. We are now ready to show that the
median-of-ranges rule is strategy-proof, given single-peaked preferences over ranges.

Theorem 3.1 If all agents have single-peaked preferences over ranges, then the median-of-
ranges rule is strategy-proof.

Proof Let Pi = [l∗, u∗] be any agent i’s most-preferred value range, and let P̂i = [l̂, û] be
another range that i is considering reporting. Let P̂−i be the ranges reported by other agents.
Let X = [l, u] be the median range when the agent reports Pi and the other agents report
P̂−i . Let X ′ = [l ′, u′] be the median range when the agent reports P̂i and the other agents
report P̂−i .

We must show that agent i (weakly) prefers X to X ′. Because i has single-peaked prefer-
ences, it suffices to show that either l ′ ≤ l ≤ l∗ or l∗ ≤ l ≤ l ′, and that either u′ ≤ u ≤ u∗
or u∗ ≤ u ≤ u′. By symmetry, it suffices to show this for the lower bounds. There are three
possible cases:

1. If l∗ = l, then either l ′ ≤ l = l∗ or l∗ = l ≤ l ′.
2. If l < l∗, then

• If the agent reports l̂ such that l ≤ l̂, then this does not change the median, so
l ′ = l < l∗.

• If the agent reports l̂ such that l̂ < l, then this can only move the median to the left,
so l ′ ≤ l < l∗.

3. If l∗ < l, then by reasoning analogous to case 2, it can be shown that l∗ < l ≤ l ′.

In all three cases, either l ′ ≤ l ≤ l∗ or l∗ ≤ l ≤ l ′. �	
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The intuition for this result is simple: the median-of-ranges rule chooses the median of the
submitted lower (upper) bounds as the output lower (upper) bound, every agent effectively
has single-peaked preferences over the lower (upper) bound, and we know the median rule
is strategy-proof when preferences are single-peaked.

One would hope that if all agents report ranges that are small, then the median range is
also small. Certainly, this occurs in the limit when everyone submits a degenerate range (i.e.,
a single point), because in this case the output will also be a degenerate range (the median of
these points). The following proposition shows that small reported ranges do indeed result
in a small aggregate range.

Proposition 3.2 If for each range [li , ui ] being aggregated by the median-of-ranges rule,
ui − li ≤ k, then for the resulting median range, [l, u], we have u − l ≤ k.

Proof At least (n + 1)/2 ranges must have upper bounds ui ≥ u. Because each of these
ranges has magnitude at most k, all of these ranges must have lower bounds li ≥ u − k.
Therefore, there are at least (n+ 1)/2 lower bounds li ≥ u − k, so it must be that l ≥ u − k.

�	

4 Elicitation

So far, we have assumed that an agent can easily and precisely report her most-preferred
value range. However, determining this precise range generally requires significant delibera-
tion effort on the part of the agent. It would be preferable to have an elicitation algorithm that
sequentially queries the agent for information about her most-preferred range, especially if
the queries are natural and easy to answer. This has the advantages that 1) the agent receives
some guidance in determining her range, and 2) few queries may already give us enough
information about the agent’s range for the purpose of (say) using the median rule, even if we
do not yet know the agent’s exact range—for example, if the agent’s range is determined to
be much further to the left than most other agents’ ranges. As a result, elicitation can reduce
the burden that participation in the mechanism places on an agent, thereby freeing up the
agent to participate in other voting mechanisms, or to pursue other goals.

A significant body of research exists on eliciting agents’ preferences (e.g., [4–7,17,18]).
Elicitation techniques have been applied to combinatorial auctions (for an overview, see [15])
and also to voting settings [9,10]. Preference elicitation in single-peaked domains has been
studied as well [8], but this work does not consider ranges and is primarily concerned with
the case in which the order of alternatives on the line is not known.

4.1 Eliciting points

We will start by considering the special case where each agent i’s range consists of a single
point xi . We will later generalize this to arbitrary ranges.

Definition 4.1 During the elicitation process, for each agent i , we maintain a bounding
range, Bi = [xi , xi ], which bounds her privately held most-preferred point value, xi .

We will consider elicitation using bound queries, which take the form: “Do you think
the value should be greater than x?” For example, in the climate change example, a query
might be: “Do you believe that the temperature will increase by more than 4 degrees?” This
is arguably the most natural query in this type of domain.
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Definition 4.2 A bound query is a query asking an agent i , with current bounding range
Bi = [xi , xi ], if her privately held point value, xi , is greater than some query point x ∈
[xi , xi ]. If the agent answers “yes,” set xi to x , and if the agent answers “no,” set xi to x .

4.1.1 Eliciting a single agent’s point

Mostly to get used to the notation, let us first consider the special case where we wish to elicit
a single agent’s point to within some threshold ε—that is, we terminate when xi − xi ≤ ε. A
useful type of bound query is the half-half query, which queries an agent at the midpoint of
her current bounding range (“Do you think the value should be greater than the midpoint of
your current bounding range?”) Such a query is guaranteed to cut the size of her bounding
range in exactly half. Half-half queries give us the following simple result:

Proposition 4.1 A single agent i’s most-preferred point xi can be elicited to within ε using
at most max{
log2

s
ε
�, 0} half-half queries, where s is the size of the initial bounding range.

4.1.2 Eliciting the median point

We now examine the problem of eliciting multiple agents’ point values accurately enough
to find the median point value to within some tolerance ε. We are not concerned with how
accurately we have elicited any particular agent’s point, as long as we have elicited enough
information to find the median point to within ε.

Proposition 4.2 Given bounding ranges [xi , xi ] for every agent i’s most preferred point xi ,
the lowest value that the median of the xi can take is the median of the xi , and the highest
value it can take is the median of the xi .

This motivates the following definition:

Definition 4.3 The median bounding range is the range M = [m, m ], where m (m) is the
median of the xi (xi ) over all i .

The following property will be useful:

Proposition 4.3 There is always an agent whose bounding range contains the entire median
bounding range (that is, for some agent i , we have xi ≤ m and m ≤ xi ).

Proof Let there be n agents in total (we note that n must be an odd number for the median to
be defined). By the definition of median, there is a set S of at least (n+1)/2 agents where, for
each agent s in the set, xs ≤ m. Also, there is the set Q consisting of no more than (n− 1)/2
agents where, for each agent q in the set, xq < m. Since |Q| < |S|, there is at least one agent
i ∈ S for whom xi ≤ m and m ≤ xi . �	

To illustrate Proposition 4.3, we note that in Fig. 2, there is an agent whose range consists
of the lowest lower bound and the median upper bound; this agent’s range contains the entire
median bounding range.

At any point in the elicitation process, queries to some agents may affect the median
bounding range, whereas queries to other agents simply cannot.

Definition 4.4 A relevant agent is an agent i for which both xi < m and xi > m (that is,
the agent’s bounding range has an intersection with the median bounding range of nonzero
measure).
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Any query to an agent who is not relevant is wasted, as such a query cannot possibly move
the position of either median bound. Such agents are irrelevant only insofar as querying them
provides no new useful information; the location of an irrelevant agent’s range (specifically,
whether it is to the left or right of M) still affects the location of M . Another useful concept
is that of agents who are relevant to shifting a median bound to a desired point x .

Definition 4.5 For a given point x inside M , an x-relevant agent is an agent i for whom
xi < x < xi .

The notion of x-relevance allows us to prove the following lemma:

Lemma 4.4 For a given point x inside M, let j be the initial number of x-relevant agents.
Asking at most j bound queries at the point x to x-relevant agents will move the position of
one median bound to x.

Proof Each agent who is not x-relevant has her entire bounding range on one side of the
point x (for such an agent i , either xi ≤ x or x ≤ xi ). When a bound query is asked to an
x-relevant agent, her upper or lower bound moves to the point x , after which she is no longer
x-relevant (by Definition 4.5).

Let l(r) be the number of agents whose bounding range is entirely to the left (right) of x
(so, l+ r is the total number of agents who are not x-relevant). Initially, l and r must each be
less than n+1

2 , since otherwise the point x would not be inside the median bounding range.
Furthermore, l (r ) can only increase when an agent’s upper (lower) bound moves to x after
a query (and neither l nor r can ever decrease). Since each x-relevant agent who is queried
immediately loses x-relevancy, if we query all j initially x-relevant agents, all agents are no
longer x-relevant, and we must at that point have l + r = n. It follows that after k queries,
where 1 ≤ k ≤ j , we have either l = n+1

2 with at least one upper bound located at x , or we
have r = n+1

2 with at least one lower bound located at x . If l = n+1
2 (r = n+1

2 ), then there
are n+1

2 upper (lower) bounds weakly to the left (right) of x , at least one of which is equal to
x , so x must be the new median upper (lower) bound. �	

Asking half-half queries is a natural way of eliciting a single agent’s most-preferred
point, since this halves the size of the agent’s bounding range with each query. However,
with multiple agents, we are interested in shrinking the median bounding range. Lemma 4.4
shows us how to ask queries to halve the size of this range. This motivates the following class
of algorithms.

Definition 4.6 A median halving algorithm is any query algorithm that repeats these steps
until convergence:

1. Set h equal to the current midpoint of M .
2. Ask bound queries at h to h-relevant agents until either m or m becomes h.

Let the initial size of the median bounding range be s. Then, for s ≥ ε, a median halving
algorithm must halve the size of the median bounding range 
log2

s
ε
� times before conver-

gence (analogously to Proposition 4.1). In the worst case, such a halving step requires n
queries. However, if this happens, some agents must have become irrelevant, so that we do
not need to query them in future steps.

Lemma 4.5 Let x be some point inside the current median bounding range. If we ask
(n + 1)/2+ k (for some integer k ≥ 0) bound queries at point x to x-relevant agents before
moving one of the median bounds to x, then the number of relevant agents has decreased by
at least k.
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Proof Each query asks an agent if her most-preferred point is greater or less than x . If the
agent answers “greater,” her lower bound is moved to x , while if she answers “less,” her upper
bound is moved to x . By Theorem 4.4, after enough queries one median bound will move
to x . If the median upper (lower) bound did not move to x until (n + 1)/2+ k queries were
asked, it must be that at most (n+ 1)/2 of those agents queried answered “less” (“greater”),
while at least k agents gave the opposite answer. This is because each agent is queried only
once (she is no longer x-relevant after one query), and, by the definition of median, it is
sufficient that (n+ 1)/2 agents give the same answer to the query to move the median upper
(lower) bound to m. The (at least) k agents who answered “greater” (“less”) are all now no
longer relevant, because for each agent i in the set, we now have xi ≥ m (xi ≤ m ). �	

Using Lemma 4.5, we can obtain a tight upper bound on the worst-case performance of
any median halving algorithm.

Theorem 4.6 A median halving algorithm takes at most

n + 1

2
max

{⌈
log2

s

ε

⌉
, 0

}
+ n − 1

2

queries to converge, where n is the number of agents, and s is the initial size of the median
bounding range.

Proof Let the median bounding range be M = [m, m ].
Consider one halving step in the query process to be as follows:

1. Set h equal to the current midpoint of M .
2. Ask bound queries at h to h-relevant agents until either m or m becomes h. �	

One halving step results in (at least) halving the size of the median bounding range.
Therefore, at most 
log2

s
ε
� halving steps are needed to converge.

Intuitively, every halving step may require up to one query to every currently relevant
agent (a halving step cannot require more than one query to a particular agent, because after
she is queried at the point h, the point h is no longer strictly inside her range). The initial
number of relevant agents might be n, and so one might imagine that every halving step
queries n agents, in the worst case. However, Lemma 4.5 states that every time a halving step
queries n+1

2 + k agents, for k ≥ 0, at least k of those agents become irrelevant, and so will
never be queried again. So, in the worst case, every halving step queries at least n+1

2 agents,
and some halving steps query additional agents—but since each of these additional agents is
made irrelevant after that query, that can happen at most once per agent throughout the entire
process. This implies an additional n−1

2 queries (at most) in the entire process.
More precisely, let the number of queries needed to converge be f (s, j), where s is the

initial size of the median bounding range, and j is the initial number of relevant agents. We
wish to show that

f (s, j) ≤ b(s, j)

where b(s, j) is the bounding function:

b(s, j) = n + 1

2
max

{⌈
log2

s

ε

⌉
, 0

}
+max

{
j − n + 1

2
, 0

}

(Note that showing this actually proves something slightly stronger than the result stated in
the theorem. However, in the worst case, j = n, and the result stated in the theorem is the
bound.)
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We will show this inductively. As a base case, for any s where 0 ≤ s ≤ ε, for any j , zero
queries are needed, while the bound is n+1

2 max{
log2
s
ε
�, 0} +max{ j − n+1

2 , 0} ≥ 0.
For the inductive step, assume that for some given s, we know that f ( s

2 , j) ≤ b( s
2 , j), for

any j . We now show that f (s, j) ≤ b(s, j). Because we already know that f (s, j) ≤ b(s, j)
for s ≤ ε by the base case, this will complete the proof. (We will assume s > ε in the below.)

• Case 1: The current halving step takes q ≤ n+1
2 queries. Here, in the worst case, all j

relevant agents remain relevant for the next halving step, because b( s
2 , j) is increasing

in j . The number of queries to convergence is:

f (s, j) ≤ q + b
( s

2
, j

)

= q + n + 1

2

(⌈
log2

s

ε

⌉
− 1

)
+max

{
j − n + 1

2
, 0

}

≤ n + 1

2

⌈
log2

s

ε

⌉
+max

{
j − n + 1

2
, 0

}
= b(s, j)

• Case 2: The current halving step takes q = n+1
2 + k queries, with 0 < k ≤ n−1

2 . In
this case, at most j − k relevant agents remain relevant for the next halving step, by
Lemma 4.5. So, the number of queries to convergence is:

f (s, j) ≤ n + 1

2
+ k + b

( s

2
, j − k

)

= n + 1

2
+ k + n + 1

2

(⌈
log2

s

ε

⌉
− 1

)
+max

{
j − k − n + 1

2
, 0

}

Since we are asking n+1
2 + k queries, and we only ask queries of relevant agents, it must

be the case that n+1
2 + k ≤ j , and therefore we can evaluate the max statement to obtain:

f (s, j) ≤ n + 1

2
+ k + n + 1

2

(⌈
log2

s

ε

⌉
− 1

)
+ j − k − n + 1

2

≤ n + 1

2

⌈
log2

s

ε

⌉
+ j − n + 1

2
= b(s, j)

We have shown that f (s, j) ≤ b(s, j) = n+1
2 max{
log2

s
ε
�, 0} + max{ j − n+1

2 , 0}, for
all s ≥ 0, and for all integers j ≥ 0. This implies the result of the theorem. �	

To show that the bound given in Theorem 4.6 is tight, consider the following example for
any ε, s with ε < s and any odd number n. Let the initial range be [0, s]. Let there be (n+1)/2
agents whose most-preferred point is ε/2, and (n − 1)/2 agents whose most-preferred point
is 3s/4. If the algorithm starts by querying the latter (n − 1)/2 agents, then each of these
agents will be queried once. The other (n+ 1)/2 agents will be queried 
log2

s
ε
� times, after

which the median bounding range becomes a subset of [0, ε]. So, the total number of queries
in this example is

n + 1

2

⌈
log2

s

ε

⌉
+ n − 1

2

4.2 Eliciting ranges

We now return to the general setting where each agent i has a most-preferred value range
Pi = [li , ui ].
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Definition 4.7 For each agent i , we maintain a lower bounding range Li = [li , li ] and an
upper bounding range Ui = [ui , ui ].

We will elicit ranges using a generalized form of the bound query.

Definition 4.8 A range bounding query asks an agent i if she believes the value should be
greater than some point x . There are three possible answers:

1. “yes:” The agent’s entire range Pi is greater than x . In this case, we set li to x , and if
ui < x , we also set ui to x .

2. “no:” The agent’s entire range Pi is smaller than x . In this case, we set ui to x , and if
x < li , we also set li to x .

3. “maybe:” The point x is inside the agent’s range Pi . If x < li , then we set li to x ; and if
ui < x , then we set ui to x .

4.2.1 Eliciting a single agent’s range

Once again, we start with the case of a single agent. We propose a three-stage algorithm
to elicit a single agent’s range using range bounding queries. This algorithm finds both the
lower bound and the upper bound of the agent’s range Pi to within ε.

The algorithm consists of three binary searches: one to find a point inside the agent’s
range, one to find the lower bound, and one to find the upper bound. Each time the algorithm
asks agent i a range bounding query, it is implied that the agent’s bounds are updated as
specified in the definition of a range bounding query.

Let L be an initial lower bound on agent i’s range, and let U be an initial upper bound
—for instance, in the climate change example, we could have L = −100 and U = 100. We
initialize li = ui = L , and li = ui = U .

Stage 1: Ask a range bounding query at the point x = (ui + li )/2. Repeat until either a
“maybe” answer is given (in which case the algorithm proceeds to Stage 2), or
ui − li ≤ ε (in which case the algorithm terminates).

Stage 2: Ask a range bounding query at the point x = (li + li )/2. Repeat until li − li ≤ ε.
Stage 3: Ask a range bounding query at the point x = (ui +ui )/2. Repeat until ui −ui ≤ ε.

Figure 3 shows an example run of the algorithm.

Theorem 4.7 Assuming U − L ≥ ε, the above algorithm requires at most 2
log2
U−L

ε
�− k

queries, where k is the number of queries in stage 1 (1 ≤ k ≤ 
log2
U−L

ε
�).

Proof Each query in Stage 1 for which the answer is not “maybe” halves ui − li , so there can

be at most 
log2
U−L

ε
� queries in this stage. Now suppose that we reach Stage 2 after asking

k queries in Stage 1. Then, at the beginning of Stage 2, li − li is at most (1/2)k(U − L). Each

query in Stage 2 halves li − li , so there can be at most 
log2
U−L

ε
� − k queries in this stage.

By symmetry, Stage 3 also requires at most 
log2
U−L

ε
� − k queries. It follows that the total

number of queries is at most 2
log2
U−L

ε
� − k. The best case is when k = 
log2

U−L
ε
�; that

is, the algorithm terminates in Stage 1. The worst case is when k = 1; that is, the first answer
is “maybe.” �	

In a sense, the first stage is twice as efficient as the second and third stages, because a
query in the first stage will halve both the lower and upper bounding ranges.

123



Auton Agent Multi-Agent Syst

Fig. 3 An example run of the elicitation algorithm. Bold brackets indicate the true range, while other brackets
indicate the algorithm’s current bounds. To save space, Stages 2 and 3 are shown running in parallel

4.2.2 Eliciting the median range

We are finally ready to consider the fully general case, in which there are multiple agents
with ranges and we wish to elicit the median range to within ε.

Definition 4.9 The lower median bounding range is the range Ml = [ml , ml ], where ml

is the median of all li , and ml is the median of all li . The upper median bounding range
Mu = [mu, mu ] is defined similarly.

In this setting, it turns out that we can use the median halving algorithm to find the median
lower bound to within ε, and subsequently we can use the median halving algorithm to find
the median upper bound to within ε. To use a median halving algorithm to find (say) the
median lower bound, we need to be able to ask an agent a query of the form “Is your lower
bound li greater than x?” We can simulate this query using a range bounding query at x : if
the agent answers “yes” to the range bounding query, this means that li is greater than x ; if
she answers either “no” or “maybe” to the range bounding query, this means that li is smaller
than x . The case of finding the median upper bound is similar.

Definition 4.10 A median range halving algorithm is any query algorithm that has this
structure:

1. Find the median lower bound to within ε using a median halving algorithm, simulating
queries about agents’ lower bounds using range bounding queries. If the answers to the
range bounding queries give information about the agents’ upper bounds, update these
as well.

2. Find the median upper bound to within ε using a median halving algorithm, simulating
queries about agents’ upper bounds using range bounding queries.

Theorem 4.8 Assuming s ≥ ε, a median range halving algorithm takes at most (n +
1)
log2

s
ε
� + n − 1 queries to converge, where n is the number of agents, and s is an

upper bound on the initial size of each of the two median bounding ranges.

Proof In a median range halving algorithm, we find the median lower bound to within ε

(Step 1), and then find the median upper bound to within ε (Step 2). Step 1 is a median
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Fig. 4 The number of queries needed by different median range elicitation algorithms. In each experiment,
simulated agents were queried until the median range was found to within ε = 0.001. Each agent’s most-
preferred range was created from a random draw (from a uniform distribution) of two numbers between 0 and
1. Each data point is averaged over 100 runs. “Complete” and “relevant” use only half-half queries. “ Com-
plete” queries every agent to within ε. “ Relevant” queries (only) relevant agents in turn, until convergence.
“Surround” is a median range halving algorithm; each agent it chooses to query is a random agent whose range
surrounds the median range (by Proposition 4.3 such an agent always exists). While a huge improvement is
gained simply by not asking irrelevant agents, it is worth noting that “surround” consistently asks about 13%
fewer queries than the more naïve “relevant.”

halving algorithm with an initial median bounding range size of at most s, so by Theorem 4.6
it requires a maximum of n+1

2 
log2
s
ε
� + n−1

2 queries. The same analysis applies to Step 2.4

�	
Figure 4 shows the results of a simple experiment comparing the performance of different

median range elicitation algorithms.

5 Elicitation incentives

Since the median rule (and the median of ranges rule) is strategy-proof for agents with single-
peaked preferences over points (or ranges), for any elicitation algorithm that results in these
exact points (ranges), answering queries truthfully is an ex-post equilibrium.5 However, if
the algorithm only finds an approximation to the median, this may introduce incentives for

4 We note that Step 1 may reduce the number of queries needed by Step 2, because range bounding queries
can move two bounds in one query (a bound on an agent’s upper bound and a bound on an agent’s lower
bound). This could cause the size of the median upper bounding range to decrease before the beginning of
Step 2, but this can only help.
5 A profile of strategies for the agents is an ex-post equilibrium if, regardless of the agents’ preferences, it
is optimal for every agent to follow her strategy, given that the other agents do so as well. This is weaker
than saying that these strategies are dominant strategies, because a player’s ex-post equilibrium strategy is
in general not optimal if the other players are not following the ex-post equilibrium. It is well known that if
we take a direct-revelation mechanism that is strategy-proof (dominant-strategy truthful), and then make the
modification that we use an elicitation algorithm to obtain the preferences for this mechanism, then answering
queries truthfully is an ex-post equilibrium. In general, answering queries truthfully will not be a dominant
strategy for an agent, because in principle other agents could have strategies that condition on the first agent’s
answers (which cannot happen when all agents report their preferences simultaneously).
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Fig. 5 An example agent’s single-peaked utility function over point values. In this example, the agent does
not have SPPESNOR if the utility the agent receives for a mechanism outputting a range M is equal to the
integral of the agent’s utility function over M divided by |M |. In this case, the agent prefers the range B to the
range A, even though the agent’s most-preferred point is in range A, and both ranges have the same size, s

answering queries falsely. In this section we will give sufficient conditions on the algorithm
so that answering truthfully is an ex-post equilibrium in spite of the approximation.

5.1 Median point elicitation incentives

Again, we start with the simpler setting where each agent i’s range consists of a single value
xi . We are concerned with query algorithms (such as the median halving algorithm) that
approximate the median point by keeping a bounding range on it during the query process.
The output of such an algorithm is the final median bounding range. We must make some
assumption about agents’ preferences over these outcome ranges, if we are to prove that these
querying algorithms incentivize truthful answering. The following assumption seems quite
minimal.

Definition 5.1 Agent i , whose most-preferred point is xi , has single-peaked preferences over
equally-sized non-overlapping ranges (SPPESNOR) if, for any ranges X and X ′ where

1. |X | = |X ′| (they are the same size);
2. X ∩ X ′ contains at most one element (they do not overlap, or they overlap only at an

endpoint); and
3. either

• X lies between X ′ and xi , or
• X contains xi

agent i weakly prefers X to X ′ (X �i X ′).

If agents have single-peaked preferences over output points, then agents have SPPESNOR
in any scenario where the utility an agent receives for some range M being outputted by a
mechanism is equal to the maximum of the agent’s utility function over the points in M .
However, one might imagine other scenarios where agents have single-peaked preferences
over points, and yet they do not have SPPESNOR. If the utility an agent receives for a mech-
anism outputting a range M is equal to the integral of the agent’s utility function over M
divided by |M |, then the agent only has SPPESNOR if the utility function is symmetric.

Figure 5 shows a counterexample for the case where it is not symmetric. Also, Fig. 6
shows an example of why SPPESNOR specifies that the two ranges being compared are the
same size.
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Fig. 6 An illustration of why SPPESNOR specifies that the ranges being compared are the same size. If the
utility the agent receives for a mechanism outputting a range M is equal to the integral of the agent’s utility
function over M divided by |M |, then this agent prefers the range B to the range A, even though the agent’s
most-preferred point is in range A, and the agent’s utility function is symmetric

Fig. 7 An illustration of a partitioning query algorithm in action. The partition into alternative ranges is
shown, along with three agents’ current bounding ranges, and the current median bounding range (circled)

5.1.1 Partitioning the space of possible points

We will consider algorithms that partition the space of values into a set of (small) equally-
sized alternative ranges,6 and produce one of these ranges as the output. We will show later
that the algorithms that we have considered so far do in fact have this property.

Definition 5.2 A partitioning query algorithm is any query algorithm where

1. The space of possible values is partitioned into a set S of alternative ranges, each with
the same size z ∈ (ε/2, ε].

2. Each query to an agent is a bound query at some point x which is at the boundary of one
or two alternative ranges.

3. Querying continues until the median bounding range consists of a single alternative range
in S.

Figure 7 illustrates the idea of a partitioning query algorithm.

Theorem 5.1 If all agents have SPPESNOR, then for any partitioning query algorithm,
answering truthfully is an ex-post equilibrium.

Proof Let there be s ranges in the set S that partitions the set of possible points. The s ranges
in S can be thought of as s alternatives to be voted on by the agents.

We first show that agents have single-peaked preferences over these alternatives. Consider
any arbitrary agent i , with most-preferred point xi . Let A = [a, a ] and B = [b, b ] be two
ranges from S on the same side of xi , and let A be closer to xi than B is (where neither contains
xi ). Since no alternative ranges are overlapping (with the exception of boundary points), the
agent must weakly prefer the alternative A to the alternative B, since she has SPPESNOR.
Furthermore, SPPESNOR implies that the agent weakly prefers the alternative range P con-
taining her most-preferred point xi to any other alternative range B. (If xi is a boundary point
between two alternatives, P and P ′, each of the two alternatives is weakly preferred to any
other, including each other.) So, the agent has a most-preferred alternative (P), and for any

6 We consider these ranges to include both of their endpoints, so that the term “partition” is slightly inaccurate
because boundary points will in general be part of two ranges.
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two alternatives on the same side of P , she weakly prefers the alternative closer to P . The
agent therefore has single-peaked preferences over the alternative ranges in S.

When we elicit using bound queries located at boundary points of ranges in S, this is
equivalent to eliciting over the alternatives in S. A bound query at a point x asks an agent if
her most preferred alternative is to the left of x or to the right. Since each bound query is on a
boundary between two alternatives in S, and no alternatives overlap (except at the boundary
points), each agent’s bounding range will always contain a subset of whole alternative ranges
from S. Further bound queries to this agent must be at a point that is both within her range
and is one of the boundary points of a range in S, so each query will shrink the agent’s
bounding range so it contains at least one fewer alternative than before. Once an agent’s
bounding range contains only one alternative range, she cannot be queried further – she has
selected this alternative as her most preferred. Proposition 3.2 guarantees that, if we query
each agent to a range with size no larger than ε, then the median range has size no larger than
ε. Since the only possible median bounds are bounds in S, the median range will be a single
alternative range in S after querying has progressed far enough.

The mechanism that selects the median most-preferred alternative from a finite set of
alternatives is strategy-proof (dominant-strategy incentive compatible), and, as noted be-
fore, an elicitation algorithm that produces the same results as a dominant-strategy incentive
compatible mechanism is ex-post incentive compatible. �	

We emphasize that answering truthfully is an exact equilibrium, not an ε-equilibrium. The
intuition behind the proof is the following. Effectively, if a partitioning query algorithm is
used, then there is only a finite set of possible outcomes (alternative ranges). Due to SPPE-
SNOR, each agent will have single-peaked preferences over these outcomes, and a query to
an agent at a boundary point effectively asks the agent if her most-preferred outcome is to
the left or right of this boundary point. When querying terminates, the final median bound-
ing range is equal to the alternative range that is the median of the agents’ most-preferred
alternative ranges. Hence, a partitioning query algorithm under SPESSNOR preferences is
effectively a simple elicitation algorithm for finding the median most-preferred alternative
among a finite set of alternatives.

In the remainder of this section, we show how Theorem 5.1 can be applied to some basic
elicitation algorithms. We first consider half-half query algorithms, which are algorithms
that only use half-half queries (querying an agent i at (xi + xi )/2), and that, once an agent’s
bounding range has become less than or equal to ε in size, never ask that agent another query
(as is justified by Proposition 3.2).

Lemma 5.2 If an agent initially has bounding range B = [l, u], then the qth half-half query
to the agent is at a point of the form l + i(1/2)q(u − l) (where i is an integer). Equivalently,
after q ≥ 0 half-half queries to the agent, each of the agent’s bounds is at a point of the form
l + i(1/2)q(u − l).

The proof of this lemma is straightforward. Using this lemma, we can show that half-half
query algorithms are partitioning query algorithms; hence, Theorem 5.1 applies.

Theorem 5.3 If

1. all agents have SPPESNOR;
2. initially, every agent has the same bounding range B = [l, u]; and
3. agents are queried using a half-half query algorithm;

then if we query until the median point is found to within ε, answering truthfully is an ex-post
equilibrium.
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Proof Let k be the smallest integer such that (1/2)k(u − l) ≤ ε. Querying until the median
point is found to within ε never requires more than k queries to an agent, because k half-
half queries results in the agent having a bounding range of size (1/2)k(u − l) ≤ ε, and if
every agent has a range with size at most ε, then the median range has size at most ε, by
Proposition 3.2.

Lemma 5.2 specifies that half-half query number q to some agent will be at a point of the
form l + j (1/2)q(u − l), for some integer j . We can rewrite the form of the query points as

l + j (1/2)q(u − l) = l + j (1/2)q−k(1/2)k(u − l)

Since l, u, and k are constant across all queries, and j (1/2)q−k is an integer (when q ≤ k),
the query points form a partition of the space of possible points. So, by Theorem 5.1, this
query mechanism is ex-post incentive compatible. �	

As it turns out, Lemma 5.2 can also help us show that median halving algorithms are,
under certain circumstances, partitioning algorithms. Intuitively, each halving stage cuts the
current median bounding range in half, and hence acts like a half-half query on the median
bounding range; so, the points at which we query should have the same form as in half-half
query algorithms. However, it can be the case that a halving stage cuts the current median
bounding range by more than half, if initially some agents already have bounds inside the
current median bounding range. If this is not the case, however, the median bounding range
will be exactly halved:

Lemma 5.4 Let the median bounding range be M. If no agents’ bounds are within M except
(possibly) at the midpoint of M, then a median halving algorithm will exactly halve M with
each halving step, by moving one of the bounds of M to the midpoint of M, and no bounds
will be inside the resulting new median bounding range.

Proof Let h be the midpoint of M . If there are no agents’ bounds inside M except (possibly)
at h, a median bound cannot move to any point other than h. A median bound can only move
to a point where an agent’s bound lies, and the only such point inside M during a halving
step is h, because the halving step asks queries only at h. �	

Using this lemma, we can show that if all agents start with the same bounds, then median
halving algorithms are partitioning algorithms, hence Theorem 5.1 applies.

Theorem 5.5 If all agents have SPPESNOR, and, initially, every agent has the same bound-
ing range B = [l, u], then for any median halving algorithm, answering truthfully is an
ex-post equilibrium.

Proof Initially, since all agents have the same bounding range, no agents’ bounds are within
M . By Lemma 5.4, whenever queries cause a median bound to move, it moves to the current
midpoint of the median bounding range. This is exactly the same as if the median bounding
range were a single agent’s bounding range, being repeatedly halved by half-half queries. So,
Lemma 5.2 specifies that halving step q asks its queries at a point of the form l+i(1/2)q (u−l),
for some integer i .

Since each halving step exactly halves the median bounding range, we require k halving
steps to converge, where k is the smallest integer such that (1/2)k(u − l) ≤ ε. Just as in the
proof of Theorem 5.3, we can rewrite the form of the query points as

l + j (1/2)q−k(1/2)k(u − l)

When q ≤ k, j (1/2)q−k is an integer, and the query points are of the form specified in
Lemma 5.2. So, this query mechanism is ex-post incentive compatible. �	
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5.2 Median range elicitation incentives

We now return to the fully general setting where each agent i has a privately held most-
preferred value range, Pi = [li , ui ]. We wish to elicit agents’ most-preferred value ranges
until we have found the median most-preferred range to within some tolerance ε. During
elicitation we maintain bounds li , li , ui , ui on each agent i’s lower and upper bounds. We
also maintain bounds ml , ml , mu, mu on the median lower and upper bounds, and the final
output of the elicitation mechanism consists of the final versions of these bounds, that is,
the two ranges [ml , ml ] and [mu, mu ]. We will elicit the median range to within ε, that is,
ml − ml ≤ ε and mu − mu ≤ ε.

The SPPESNOR definition no longer makes sense in this context, since the output is now
given by two ranges rather than a single one. Informally, we generalize SPPESNOR to this
setting by requiring that agents have SPPESNOR for the lower bound, and SPPESNOR for
the upper bound (analogously to the definition of single-peaked preferences over ranges,
which informally means that agents have single-peaked preferences over the lower bound
and single-peaked preferences over the upper bound).

Definition 5.3 An agent i , whose most-preferred range is Pi = [li , ui ], has single-peaked
preferences over pairs of equally-sized non-overlapping ranges (SPPESNOR2) if, for any
pairs of ranges X = ([ l, l ], [ u, u ]) and X ′ = ([ l ′, l ′ ], [ u′, u′ ]) for which SPPESNOR
implies (given most-preferred point li ) [ l, l ] �i [ l ′, l ′ ], and SPPESNOR implies (given
most-preferred point ui ) [ u, u ] �i [ u′, u′ ], it is always the case that X �i X ′.

In Sect. 4.2.2, we discussed how we can use a range bounding query to simulate a bound
query on an agent’s lower (or upper) bound, hence we can elicit lower and upper bounds
separately. In that section, if a range bounding query that was intended to give information
about the agent’s lower bound also gave us some information about the upper bound, we
happily made use of that information. However, to more easily examine incentives, we will
now assume that when determining upper bounds, we do not make use of anything that we
learned while querying for lower bounds. This leads to the following definition:

Definition 5.4 Let A be an elicitation algorithm that, in the setting where every agent i has
a most-preferred value xi , produces a range [m, m ] within which the median lies. The two-
stage version of A operates in the setting where every agent i has a most-preferred range
Pi = [li , ui ], and first produces [ml , ml ] using A (by simulating queries on the agents’ lower
bounds using range bounding queries), and then produces [mu, mu ] using A (by simulating
queries on the agents’ upper bounds using range bounding queries, ignoring anything learned
in the first stage).

Using this idea of a two-stage algorithm, we can take all the earlier algorithms that incen-
tivize truthful answers under SPPESNOR (Theorems 5.1, 5.3, and 5.5), and turn them into
algorithms that incentivize truthful answers under SPPESNOR2.

Theorem 5.6 Suppose that, in the setting where every agent i has a most preferred value
xi , under algorithm A answering queries truthfully is an ex-post equilibrium if agents have
SPPESNOR. Then, in the setting where every agent i has a most-preferred range Pi = [li , ui ],
under the two-stage version of A answering queries truthfully is an ex-post equilibrium if
agents have SPPESNOR2.
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6 Features and partial instantiations of topics

So far, we have discussed eliciting one value range from each agent. One reason that allowing
agents to submit ranges (rather than point values) can be useful is that a topic may not be
completely specified. For example, consider the topic “Increase in temperature between 2009
and 2100.” This topic is too imprecisely specified for even the ideal climate scientist to give
a single number. Perhaps such a scientist could provide an exact estimate of the increase in
temperature in Antarctica, given that a specific climate pact is adopted to reduce emissions of
greenhouse gases; or of the increase on the North Pole, given that no climate pact is adopted
at all. The region under consideration, as well as the change in human behavior, are exam-
ples of relevant features of the topic. If the scientist’s projected increase is 2 degrees for the
former scenario, and 6 degrees for the latter scenario, this still leaves her with a range of (at
least) [2, 6] for the general (underspecified) topic. A solution may be to vote separately over
each completely specified topic, but this is impractical: first, it is difficult to determine every
feature of the topic that is relevant, and second, the number of completely specified topics is
exponential in the number of features. Hence, agents must vote over underspecified topics;
however, we may be interested in the effect of specifying at least some of the features.

Formally, we have a general topic, and a set F of features of the problem. Each f ∈ F is
defined by a set of values that the feature can take. For example, the feature region can take
values {Antarctica, North Pole, Equator}. A partial instantiation π of a topic has zero or
more features fixed at a certain value. For example, region = North Pole, climate pact = ?
is a partial instantiation. A complete instantiation of a topic has all features fixed at values.
Partial instantiation π is more specific than π ′ if π has all the features that are fixed in π ′ fixed
to the same value (and strictly more specific if π has at least one additional feature fixed). Each
agent i has a value range Pi,π for each partial instantiation π (so for a given partial instantia-
tion, we can use the median rule, as before). We assume that if π is more specific than π ′, then
Pi,π ⊆ Pi,π ′ . We also assume that if Pi,π = [li (π), ui (π)], then there exist complete instan-
tiations π ′, π ′′ with li (π) = li (π ′) and ui (π) = ui (π

′′) (we will refer to this assumption as
the spanning assumption). We allow nondegenerate ranges even for complete instantiations.

The set of all partial instantiations is generally too unwieldy. It is more natural to arrange
some of the partial instantiations of a topic into a tree. Every node v of the tree corresponds
to a partial instantiation of the topic, πv . The root of the tree has no features instantiated. A
node’s children always correspond to strictly more specific partial instantiations; moreover,
all of a node’s children have exactly one more feature instantiated, this feature is the same for
all children, and every value for this feature corresponds to some child. The tree’s leaves may
or may not be complete instantiations; if they are, we say that the tree is complete. Figure 8
gives an example.

If we want to elicit an agent’s ranges for the partial instantiations in the tree, one natural way
of doing so is to first query the agent for her range at the root node, then for the ranges at its chil-
dren, etc. (We note that our use of the word “query” here is different from the use in Sects. 4 and
5: here, a query immediately produces the entire range. If desired, such a query can be imple-
mented by asking subqueries in the manner of Sects. 4 and 5.) One advantage of this is that
any range for a node must contain the range of each of its descendants. Figure 8 illustrates this.

6.1 Finding good trees

For any topic with more than one feature, we can construct several different trees, each con-
taining a different subset of the topic’s partial instantiations. For example, Fig. 8 shows one
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Fig. 8 An example tree with ranges for the partial instantiations

elicitation tree for the climate change topic, with the feature region being queried before
the feature climate pact enacted, but one could easily imagine a different tree that queried
these features in reverse order.

We would like the features that are most relevant to the agent’s range to be close to the
root of the tree, for the following reason. As the remaining unspecified features become less
relevant, the ranges that the agent reports will shrink, perhaps to a point. Thus, if the relevant
features are close to the root, then at relatively shallow nodes the reported ranges will have
magnitude at most (say) ε; the nodes deeper in the tree can then inherit these ranges and be
reasonably well approximated. As we will show, we can then use this to approximate the
range for any partial instantiation (even ones that are not in the tree).

A frontier node is a node that has been queried, and that is either a leaf or the closest
queried ancestor to some unqueried node. (For example, in Fig. 8, the root is a frontier node
because it has a child on the right that has not been queried.)

Lemma 6.1 If for some tree, every leaf is the descendant of a frontier node (this is always
true if querying started at the root), and the magnitude of the range at each frontier node is
less than ε, then for every complete instantiation π , we can infer a range Xπ with magnitude
less than ε within which the true range Pπ must lie.

Proof We can always extend the tree to a complete tree. Then, by the definition of a frontier
node, each complete instantiation can inherit the range from some frontier node, which has
magnitude less than ε. �	

We can use these bounding ranges Xπ for the complete instantiations to approximate the
range for any partial instantiation.

Lemma 6.2 If every complete instantiation π has a bounding range Xπ of magnitude less
than ε, then for any partial instantiation π ′ (not necessarily in the tree), we can infer a range
Xπ ′ within which the true range Pπ ′ must lie, and whose magnitude is at most 2ε larger than
that of Pπ ′ .

Proof Let C(π ′) be the set of complete instantiations that are more specific than π ′. Then, let
Xπ ′ be the smallest range that contains

⋃
π∈C(π ′) Xπ . This range has the desired properties,

for the following reasons. For the true ranges Pπ , it must be the case that the smallest range
that contains

⋃
π∈C(π ′) Pπ is equal to Pπ ′ , by the spanning assumption. For each π ∈ C(π ′),
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we have Pπ ⊆ Xπ , and the magnitude of Xπ exceeds that of Pπ by at most ε. Therefore,
the smallest range that contains

⋃
π∈C(π ′) Xπ must contain the smallest range that contains⋃

π∈C(π ′) Pπ , and its magnitude can be at most 2ε larger (since we can have error of up to ε

on each side). �	

Theorem 6.3 If for some tree, the magnitude of the range at each frontier node is less than
ε, then for any partial instantiation π ′ (not necessarily in the tree), we can infer a range Xπ ′
within which the true range Pπ ′ must lie, and whose magnitude is at most 2ε larger than that
of Pπ ′ .

Proof The theorem follows immediately from Lemmas 6.1 and 6.2. �	

From this, it follows that we can use different trees for different agents, because, given
that the frontier nodes’ ranges become sufficiently small, we can closely approximate each
agent’s range for any partial instantiation. Let us now study how to find a good tree for a
single agent.

Rather than first designing a tree for an agent, and then eliciting the agent’s ranges, it can
be helpful to dynamically construct the tree during the elicitation process. For example, we
can, for each feature separately, instantiate only that feature and query the agent about the
resulting partial instantiations. This way we can decide which feature is most effective in
shrinking the agent’s ranges, place it at the top of the tree, and continue. This greedy algo-
rithm is similar to choosing the feature that maximizes information gain in decision trees. In
general, this will not produce the optimal tree: for example, two features may be very helpful
when considered together, but useless individually, in which case the greedy algorithm will
not use them. Nevertheless, one would expect the greedy algorithm to do well in practice.

We now present the algorithm formally. In the algorithm, v is the current node of the tree
(which initially is the root). π is the current partial instantiation (which initially has nothing
instantiated). F ′ is the set of remaining features (initialized to F). ι(π, f ← w) is the partial
instantiation obtained by starting with π and then instantiating feature f to value w. W f is
the set of values that feature f can take. The algorithm proceeds as follows:

1. For every feature f ∈ F ′, let S f = {ι(π, f ← w) : w ∈ W f } (the set of partial
instantiations that result from instantiating f ).

2. For every f ∈ F ′, for every π ′ ∈ S f , query the agent to obtain her preferred range Pπ ′ .
3. For every f ∈ F ′, compute a heuristic h({Pπ ′ : π ′ ∈ S f }) indicating how effec-

tive f is in reducing the ranges. For example, one might use h({Pπ ′ : π ′ ∈ S f }) =
1
|S f |

∑
π ′∈S f

|Pπ ′ |, the average range size after branching on the feature. Let f ∗ be a
feature that minimizes the heuristic.

4. Branch on f ∗. For every value w ∈ W f ∗ , create a child node v f ∗←w , and recurse with
vnew = v f ∗←w , πnew = ι(π, f ∗ ← w), and F ′new = F ′ − { f ∗}.

Even this greedy algorithm typically asks a large number of queries. The number of
queries can be further reduced by sorting all features by h at the root, and then simply
branching in this order (at depth k, branch on the (k + 1)th-best feature). We have imple-
mented this version, together with a visual interface, as a Web applet, which is available at
http://www.cs.duke.edu/~jfarfel/ranges/. In the future, we hope to use this tool on some real-
world problems—for example, letting climatologists use it to determine reasonable ranges
of temperature increase. Would climatologists using these tools arrive at generally accepted
ranges for temperature increases, or completely different ones?
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6.2 Finding good median trees

In general, as output, we would like to produce a tree with the median ranges. One way of
doing this is to elicit each agent’s preferences separately, leading to potentially different trees
for the agents; however, because such a tree also allows us to find an approximation of the
agent’s range for any partial instantiation not in her tree, we can still use this information to
construct a single tree of median ranges.

Alternatively, we can use a modified version of the single-agent tree elicitation algorithm
to find a good tree of median ranges, as follows. Where the single-agent algorithm queries
for the agent’s range at a node, we instead query for the median range at the node, by asking
all agents for their ranges at this node. (Alternatively, we can use, say, a median halving
algorithm to obtain the (approximate) median range at the node.) At each step, the heuristic
h computes how effective feature f is in reducing the median ranges, and we branch on the
feature that minimizes h.

There are a few issues with this approach. First, it requires that all agents are accessible
for querying throughout the construction of the tree of median ranges, since every time we
query for the (approximate) median range, we may have to query any given agent (in the
worst case). In contrast, if we use the single-agent algorithm, we can use an online approach
where, once an agent arrives, we elicit its complete preferences, after which the agent is
free to leave. Second, if we approximate the median range, there may be ramifications to
how we do this. For example, in order to get an approximation at some step in the process,
we could use a median range halving algorithm, which outputs two ranges, Ml = [lm, lm ]
and Mu = [um, um ], bounding the median lower and upper bounds to within ε. There are
several feasible approximations of the median range that we can derive from this output—for
instance, we could use the largest feasible approximating range, [lm, um ], or the smallest

one, [lm, um ]. The nature of the approximation we choose may affect how “good” the tree
of medians turns out to be.

7 Conclusions

We studied settings in which multiple agents each have a most-preferred range of values,
and an aggregate range must be chosen. For example, the agents may be climatologists
trying to determine a range for the increase in temperature between 2009 and 2100; legis-
lators determining a range for the prison term for a robbery; reviewers determining a range
for the quality of a paper; etc. In such settings, an agent may wish to misreport her most-
preferred range so that the aggregate range better matches her own. To prevent this, the rule
for selecting the aggregate range must be strategy-proof, that is, no agent should have an
incentive to misreport. When agents submit points rather than ranges, a well-known rule is
to select the median submitted point. This rule is strategy-proof if preferences are single-
peaked. We generalized the definition of single-peaked preferences to ranges, and proved
that a generalized median rule—choose the median of the submitted lower (upper) bounds
as the aggregate lower (upper) bound—is strategy-proof for such preferences.

We also studied how to elicit median points and ranges approximately, using bound que-
ries and a generalization called range bounding queries. We introduced a class of elici-
tation algorithms called median halving algorithms, and analyzed the number of queries
these algorithms require. Eliciting a median point or range only approximately can affect
agents’ incentives to answer queries truthfully, but we gave sufficient conditions for when an
elicitation algorithm is such that answering queries truthfully is an (exact) ex-post equilibrium
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(and median halving algorithms satisfy these conditions). Finally, we considered the possi-
bility that specifying additional features of the setting (such as the region in which the
temperature increase is measured, or whether the robbery was armed) can allow agents to
refine their ranges. We developed a framework and algorithms for selectively choosing which
features to specify.
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