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ABSTRACT

One of the main findings of the Principal-agent literature has been
that incentive schemes should be sensitive to all information that bears
on the agent's actions. As a manifestation of this principle, incentive
schemes tend to take quite complex (non-linear) forms. In contrast, real
world schemes are often based on aggregate information with a rather simple
structure,

This paper considers the optimality of linear schemes that use only
aggregated information. The hypothesis is that linear schemes are to be
expected in situations where the agent has a rich set of actions to choose
from, because richness in action choice allows the agent to circumvent
highly nonlinear schemes. We show that optimal compensation schemes are
indeed linear functions of appropriate accounting aggregates in a multi-
period model where the agent can observe and respond to his own performance
over time, Furthermore, when profits evolve according to a controlled
Brownian motion (with the agent at the controls) the optimal compensation
scheme is linear in profits. The optimal scheme can be computed as if
the principal could only choose among linear rules in a corresponding
static problem. Applications of this ad hoc principle appear quite promis-

ing and are briefly illustrated.



AGGREGATION AND LINEARITY IN THE PROVISION

OF INTERTEMPORAL INCENTIVES

by

Bengt Holmstrom and Paul Milgrom*

l. Introduction

Interest in the economics of information has surged in response to
shortcomings in received micro-theory. A remarkable intellectual achieve-
ment, the Walrasian theory of general equilibrium is surprisingly super-
ficial in some economic dimensions. Practitioners as well as welfare
analysts have long recognized that the Walrasian theory fails to support
realistic welfare judgments, because it does not bring out the inevitable
trade-off between equity and efficiency, which society is faced with in
the real world. On the positive side, Hayek was among the first to express
strong discontent with general equilibrium theory, because it did not
address what he saw as the fundamental economic question: how economic
systems perform the task of aggregating efficiently widely dispersed in-
formation in society. Closely related is the critique that the Walrasian
model does nothing to explain the real world abundance of nonmarket trans-
actions and institutions, which certainly is a central part of the infor-

mation processing marvel of a competitive system. Since nonmarket
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institutions emerge spontaneously in response to problems with price-mediated
exchange, one is well justified in suspecting that their presence is of
allocational significance and likely to alter the conclusions of a theory
that views them as exogenous. Indeed, one of the main objectives of a
more careful study of organizations is to see to what extent the interac-
tion between market and nonmarket activities may be of help in explaining
"anomalies'" in the performance of a competitive system (e.g. strikes and
underemployment), which cannot be accounted for in the traditional theory.

The aforementioned shortcomings of received micro-theory are largely
associated with the implicit assumption that individuals have identical
information and that only resource constraints matter, In contrast, the
economics of information is based on the postulate that informational con-
straints are equally important for the allocation of goods. Private infor-
mation may alter feasible trades and efficient transaction modes in funda-
mental ways. This observation underlies the extensive research on communi-
cation, information processing and incentives in various organizational
contexts. Much of the incentive research has focused on the simplest
organizational structure: the principal-agent relationship. Progress has
not always been easy, however. The principal-agent literature has had to
contend with analytical difficulties as well as weak economic implications.

Consider for instance the standard moral hazard model in which the
agent controls a one-parameter family of return distributions through his
choice of effort. Even for the most regular looking distributions a solu-
tion may fail to exist. As an example, Mirrlees [1574] showed that if the
agent controls the mean of a normal distribution with fixed variance, then
a first-best solution can be approximated arbitrarily closely by using

schemes that punish the agent very severely with low probability although



the first-best cannot actually be attained. On the other hand, when suf-
ficient assumptions are made to assure existence, there is no guarantee
yet that one can take much advantage of the one-dimensional action space,
because the agent's incentive constraint cannot always be represented by

a first-order condition. Some advances have recently been made in placing
Trestrictions on the problem structure such that the common first-order
characterization is valid (Grossman and Hart [1983], Rogerson [1984], and
Holmstrom [1984]1). Even so the resulting optima rarely take a simple form.
One finds that they can be sensitive to what seems to be small details

of the information structure of the problem. By changing the information
structure almost any scheme can be made an optimum of some moral hazard
problem. The complex forms optimal incentive schemes can take makes it
hard to tell much about thg agent's choice at equilibrium, although that
should be a significant part of the model prediction, Besides the rather
obvious observation that moral hazard leads to a second-best solution,

one of the few general conclusions to emerge from the one-dimensional model
is that an optimal incentive scheme uses all the available information about
the agent's choice of effort (Holmstrom [1979] and Shavell [1979]), which
is another reflection of the fact that optimal schemes respond to all
changes in the information content of the output signals.

Thus, from a methodological point of view, it would be desirable to
find models that yield simpler and sharper answers in such rudimentary
organizations as the principal-agent set-up, in order to be able to go
forward with the analysis and investigate more interesting aggregate ques-
tions, Such an effort is also supported by the fact that in reality incen-
tive schemes tend to take rather simpler forms than the finely tumed rules

predicted by the theory; for instance, real world schemes make much more



use of aggregate information than what present theory might suggest. One
could in part explain such simplicity by the costs of writing intricate
contracts, but that is hardly the whole story. Our purpose is to show
that simple schemes--particularly linear schemes based on aggregates--have
other appealing features that provide more likely explanations for their
extensive use.1

The main idea can best be grasped by considering what is "wrong" with
the step-function punishment schemes that come close to first-best in the
normal distribution example studied by Mirrlees. The practical problem
with such schemes is that their performance is so sensitive to the partic-
ular assumptions of the model. The step-function schemes encourage effort
by punishing certain rare "disasters,'" so their effectiveness relies both
on an accurate specification of the probabilities of rare events and on
the model's assumption that the agent's efforts at disaster prevention
will increase the expected profits of the principal. Small probabilities
are notoriously hard to estimate, Moreover, if the agent has the benefit
of private information before choosing an action, it will rarely be true
that disaster prevention enhances profits. For example, suppose that the
agent can vary his effort over time in response to observations of how well
he is doing and that the incentive scheme is a reward for performance at
the end of some finite period of time (a year, say)}. In that case a step-
function punishment scheme might induce the agent to bide his time early
on and to start working hard only if that is necessary to avoid a disaster.
In contrast, a linear scheme, which applies the same incentive pressure
on the agent (income effects aside) no matter what the outcome history is,
will lead to a more uniform choice of effort over time.

We show in the paper that these intuitive arguments can be made preciseé.



We consider a continuous time model in which the agent controls the drift
of a Brownian motion over the unit time interval. Assuming that the agent
has an exponential utility function (to remove income effects) and the
cost of control is monetary, the optimal incentive scheme will indeed be
linear in output. The agent will choose a constant drift rate indepen-
dently of the path of output. This means that the optimal incentive scheme
can be computed as if the agent were choosing the mean of a normal distri-
bution only once and the principal were restricted 2 priori to using a
linear rule. Thus, the dynamic perspective leads not only to a natural
resolution of the nonexistence problem that the Mirrlees' example posed,
but also to a remarkably simple and easily computed optimal incentive scheme.
While the linearity results that we will develop in this paper clearly
depend on a particular intertemporal structure, there is a more general
lesson to be learned from the analysis we present., The lesson is that
finely tuned schemes may perform rather poorly (and simple schemes may
become optimal or nearly so) when the agent's action space is enriched
sufficiently. This point is best understood by reinterpreting the dynamic
Brownian model as a static model in which the agent, instead of choosing
a simple effort level, chooses a path-contingent strategy at the outset.
As in standard static models, the agent's strategy induces a distribution
over end-of-period outcomes. But instead of being constrained to a one-
parameter family of outcome distributions, the rich set of contingent
strategies now permits a vastly wider choice, The enormous expansion in
the agent's opportunity set limits the principal's options dramatically;
in fact, for each strategy that the principal wishes to implement, there
is essentially a unique incentive scheme that he must use, which stands

in sharp contrast to the usual flexibility in choice of schemes that the



principal has in one-dimensional models,

We turn to a brief outline of the analysis we will pursue, Section 2
contains an analysis of a single-period model of moral haz#rd with the
agent controlling a multinomial distribution. The purpose of this section
is twofold: to isolate the key implications of the agent's exponential
utility function and to illustrate how "richness" in the agent's opportun-
ity set limits the principal's choice of incentive schemes,

In Section 3 we look at a finitely repeated version of the single-
period multinomial model. The main result is that even though the principal
can observe the outcomes of each period separately, the optimal scheme
depends only on aggregates, and it depends linearly on them. The aggre-
gates are the numbers of times that each particular outcome occurs during
the pay period. For instance, in a three-period problem it is enough to
know that the agent made $200 twice and $100 once; the principal gains
nothing from further information about the precise sequence of these events.
While it is not generally true that an optimal scheme is alsc linear in
profits (i.e. one $300 outcdme and one $100 outcome is not equivalent to
two $200 outcomes), this additional feature does hold for the Bernoulli
case in which there are only two possible outcomes in each period, For
the Bernoulli case the linearity in end-of-period profits implies that
optimal compensation depends only on accumulated profits; it does not matter
when or how a dellar is made.

In Section 4 we go on to study a continuous time approximation of
the discrete time model. The agent controls the instantaneous drift (but
not the covariance) of a multi-dimensional Brownian motion. This model
serves as a good approximation of a frequently repeated multinomial model

provided that four conditions are met: (i) each outcome is expected to
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occur very often, (ii) the costs and profits in each individual period
are negligible, (iii) the principal can observe the exact number of times
that each outcome occurs, and (iv) the agent exercises very limited con-
trol over the outcome in any single period but can substantially affect
profits by systematic effort over many periods. The optimal scheme for
the multi-dimensional Brownian model is a linear function of the end-of-
period levels of the different dimensions of the process (which we inter-
pret as different account balances). In analogy with the discrete time
model, the optimal scheme uses only account balances aggregated over time,
but it generally requires more information than just the accumulated pro-
fits. For the one-dimensional case, which serves to approximate a fre-
quently repeated binomial process, the scheme is of course linear in the
end-of-period profits. Thus, the one-dimensional Brownian model is an
appropriate approximation only for discrete time models in which the
agent controls a process with two possible outcomes in each period.

This may seem to make the one-dimensional Brownian "linearity in
profits" result very special. However, it has an important corollary im-
plication for the multi-dimensional Brownian model, in which the manager
controls a more interesting and complex process. If, in the latter model,
the compensation paid must be a function of profits alone (because detailed
reliable accounts are unavailable) or if the manager has sufficient dis-
cretion in how to account for revenues and expenses, then the optimal
compensation scheme will be a linear function of profits. This is a central
result, because it explains the use of schemes which are linear in profits
even when the agent controls a complex multi-dimensional process.

We devote Section 5 to illustrations of the ease with which one can

apply the continuous time model to obtain simple and explicit solutions



-8-

to various kinds of agency problems. The examples we go through should
be viewed as merely suggestive; we do not attempt any serious analysis
of possible applications,

In Section 6 we address the robustness of our results, particularly
with regard to the Brownian model. We show that the results survive some
useful extensions; for instance, one can allow the principal to be risk
averse (with exponential utility). But there are also some important re-
strictions to note for those who wish to make use of linearity, The most
significant one is the necessity to assume that any control by the agent
of the variance of the Brownian process is perfectly observable.

In the concluding section we provide a brief summary of our main

findings.

2. A Single-Period Model

We begin by studying a fairly general single-period model of moral
hazard.

There is a principal and an agent. The agent chooses an action pri-
vately, which results in a realization of a stochastic state 8 . The set
of possible states, © , is finite with N+1 elements {Bo, ...,GN} .
Each state 6&; 1is associated with a monetary payoff LA that belongs to
the principal and a publicly observable information ocutcome Xy € X . We
will write w for the random payoff and refer to it as "profits." The
random public information is denoted x and called the "public outcome,"
or simply the "outcome," of the agent's action. Note that if X3 = Xy
implies TP My, then the outcome x contains at least as much infor-

mation as 1w (i.e. profits can be observed). Notice, too, that it is

possible that some of the information states 8; are never observed.
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The probability of state 1 is denoted P; - The agent's action
determines the probability vector p = (po, ...,pN) . It is convenient
to view p itself as the agent's action. The feasible set of actions
is then a subset P of the N-dimensional simplex., P is assumed compact,

The principal is risk neutral and the agent is risk averse, In par-
ticular, the agent has a constant coefficient of absolute risk aversion,
r , and we will take his utility function as u(y) = -exp(-ry) , where
y is money. Given an outcome x , the principal pays the agent s(x) .
The rule s(x) is called a sharing rule or incentive scheme. The agent's
final income is s(x) minus the cost of taking the action p ., We assume
the cost of action is monetary or that it has a monetary equivalent inde-
pendently of other income. The cost is allowed to be stochastic and we
write it c(p; ei) . The cost function is assumed to be continuously dif-
ferentiable on P .

The principal's problem is to select a sharing rule s and instruc-
tions p for the agent under the two standard constraints that (i) the
agent can maximize his expected utility by following inmstructions and
(ii) the agent can attain a certain minimum level of expected utility from
the contract. We will measure this minimum expected utility level in terms
of the agent's certain equivalent w ; thus, his expected utility has

to be at least u(w) . The Principal's Problem can then be formally

stated as:
(D max Z(ui -s(x.i))pi , subject to:
P,s
(2) p maximizes 2u(s(xi) - c(p'; ei))Pi on P,

(3) fu(s(x;) - elp; 85))p; > u(w) .
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Before going on to analyze this problem it may be helpful to suggest
some interpretations that indicate the scope of the formulation.

In the simplest situation and the one most often studied, the agent
controls a one-dimensional action variable, usually interpreted as effort,
The cost of effort is deterministic and the agent chooses his effort with
no more information about the production possibilities than the principal
has. Commonly, output is the only observable variable. In our formulation
this standard set-up would correspond to letting P be a one-dimensional
manifold (a curve) in the (N+1l)~simplex, letting c(p; ei) = ¢c(p) for
all o, and letting X, = w; for all i .

The standard model can be enriched by having the agent observe a sig-
nal about the production technology or the cost function before choosing
his effort level but after entering into a binding contract with the prin-~
cipal. Since the agent is assumed to have no private information at the
time of contracting, this is not a model of adverse selection in the usual
sense; we refer to it as the “Informed Agent Model™, In the Iinformed Agent
Model, the agent's action can be thought of as a strategy that maps his
observed signal values into effort levels. Equivalently and more simply,
the agent's strategy can be represented as a distribution over the set
of states © . In that case the choice of distribution has to be constrained
to be consistent with the composition of the distribution of the signals
that the agent observes and the distributions he can choose from
conditional on these signals (c.f. Milgrom and Weber [1984])). Thus,
the Informed Agent Model is subsumed in our general formulation. In view
of our subsequent interests it is worth noting that even if the agent's
effort is a one-dimensional choice variable, a contingent strategy usually

permits control of p in more than one dimension, In other words, a
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natural way of increasing the dimensionality of P , and hence enriching
the agent's action space, is to let the agent act on the basis of private
information.

Our formulation is even more general than the simple Informed Agent
situation described above, The agent could be choosing a sequence of actions
over time, Information of relevance for future decisions could be enter-
ing along the way. The agent's actions could influence this information
stream as well as future costs, payoffs and opportunity sets. At each
stage actions could be multi-dimensional (e.g. include effort choice,
production decisions, project selections, etc.). The cost of action could
be stochastic and the observable information essentially anything. In
short, we could permit rather arbitrary production and information tech-
nologies and still have the reduced form map into the simple structure in
(1)-(3). Our principal restrictions are that (i) the agent evaluates wealth
at a single point in time, after all actions have been taken, (ii) the
cost of actions can be expressed in monetary units, (iii) the utility func-
tion is exponential, and (iv) neither party has private information at the
time of contracting.

We proceed to the analysis of the principal’s problem. As is well
known, existence of a solution to the program (1)-(3) cammot be taken for
granted. The following result gives sufficient conditions for existence;
it is a variant of an existence result by Grossman and Hart [1982], adapted
to our framework. Here £ p' is defined to be any solution to (2) when

s 1is identically zero,
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Theorem 1. If P is compact, c(-, ei) is continuous, and if all »p
that assign zero probability to any information state are sufficiently
expensive, that is, c(p, Bi) > c(p', Bi) + maxij(ni -wj) » for some

p' ¢ P then a solution (p*, s*) to the Principal's Problem exists, and

p* assigns positive probability to every information state.

Given any sharing rule s , the agent's problem (2) has a solution
p because P is compact and the objective function is continuous, If
the sharing rule s and the optimal response p results in an expected
utility level with certain equivalent w , we say that s implements p

with certain equivalent w . The set of sharing rules that implement p

with certain equivalent w is denoted S(p,w) . This set may be empty
for some (p,w) . Therefore, define Po(w) = {p|S(p,w) is not empty}
and P*(w) = {p!for some s, (s,p) solves the Principal's Problem} . The
key implications of assuming that the agent's utility is exponential can

now be stated as follows:
Theorem 2. For any s , w and p € Po(w) :

(i) s € S(p,w) 1if and only if s-w € S(p,0) ,

p0

(ii) POw) for all w ,

(iii) P*{w)

P* for all w .

Proof. Because utility is exponential,
(4) EU(S(xi] -w-c(p; ei))pi = -u(-w)Zu(s(xi) - c(p; ei))pi .

Since =-u(-w)} > 0 , any p that is best for the agent against s(x) - w

is also best against s(x) , and conversely, Also, -u{=w)ju(w) = u(0) .
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This proves (i) and (ii). Part (iii) then follows from the form of the

principal's objective function in (1).

Q.E.D.

Theorem 2, part (iii) asserts that the optimal choice of an instruc-
tion p* given to the agent does not depend on the required minimum cer-
tain equivalent w , Also, the optimal incentive scheme s* adjusts to
changes in w by a simple shift, that is, s* - w is a constant, Compu-
tationally, this means that the principal can deal with the two constraints
(2) and (3) separately. He governs the agent's incentives by the choice
of the differences s(xi) - S(XU) s 1i=1, ..., N, and he assures a
sufficient expected utility level by adjusting s(xo) . This separation
result will play a key simplifying role in the subsequent multi-period
analysis,

For notational convenience, we will henceforth write S(p) for S(p,0)
From S(p) we can recover schemes in S(p,w) by adding w .

Before moving on tothe multi-period case, we wish to make a brief
digression into the relation between the dimensionality of the agent's
feasible set of actions P and the principal’s freedom in choosing a
sharing rule to implement any particular p € P (for a more extensive
discussion, see Holmstrom [1984]). Notice that the principal chooses a
sharing rule, which is a point in an N+1 dimensional space, to control
the agent's choice of action and to provide a particular equivalent., When
the agent chooses a point in a one-dimensional space, as has been commonly
assumed, and when N > 1 , the principal normally has many sharing rules
that will coax any implementable action from the agent. As the agent's
action space grows in dimension, the principal's ability to control the

agent becomes correspondingly more limited. We show below that in a simple
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version of our model where the agent's action space is of full dimension,
the rule that implements any particular action is in fact unique. This

requires an additional assumption.

Assumption A.

(i) P has a nonempty interior in the N-dimensional simplex;
(11) ce(p: ei) = c(p} for all ei ;
{iii) «c{p) 1is continuously differentiable on P ;

(iv) c(p) -~ c(p*) 3_maxij(wi -wj) for p on the boundary of P .

Theorem 3. For any p in the interior of P , the set S(p) is either
empty or a singleton under Assumption A; i.e, if an interior p can be
implemented, then the implementing scheme (with any certain equivalent w )
is unique. Specifically, the sharing rule that implements an optimal action

p* 1is unique.

Remark: It could still be the case that P* has more than one element

and therefore that there are many optimal incentive schemes.

Proof. Assume for the moment that X, =My for all i ., Fixa p in

the interior of P . Let ¢4 be the partial derivative of c(p) with
N

respect to pj after substituting Py = 1- E P into the cost function.
i=1

If S(p) 1is empty we are done, so assume there exists an s € S(p) . Since
p is in the interior of P which is of full dimension, the first-order

conditions for the agent's optimization problem (2), imply:

N
) -1

i=]

ut (s(x;) - c(p))espy +ulsxy) - e(p)) ~ulslxy) - elp))

0o, j=1, ..
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If we define z, = u(s(xi))/u(s(xo)) = —u(s(xi) -s(xo)) s then (5) c¢an

be written (using the exponential form of utility) as:

N
(6) iZorzipicj + z__i -1=0, j=1, ..., N.
N
Let K= -E rz;p; - Then 25 = 1l - ch and
i=0 :
N
K = .E r(l--ciK)pi or
i=0
N
K=1x/(1 + Z re.p.) ,
\ iti
i=0
N
which implies unique values for the zj's . Note that if E TC; Py = -1,

i=0

then (6) has no solution contradicting the assumption that S(p} is non-
empty. Consequently, s(xi) - s(xo) is uniquely determined for all i ;
specifying s(xo) determines the agent's certain equivalent.

If we do not have X; = ei as assumed, but instead have that x
provides coarser information than the state, then uniqueness is implied
a fortiori, because system (6) will have added constraints of the form
z; = zj (in case X, = xj ).

The last statement of the theorem follows from the first part and the
obvious fact that part (iv) of Assumption A implies that P* is in the

interior of P .

Q.E.D.

Theorem 3 contrasts sharply with the conclusions of standard one-
dimensional moral hazard models. When P 1is one-dimensional (i.e., a

curve), S(p,w) normally contains infinitely many schemes {(unless N = 1)
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The analysis then centers on the characterization of the best scheme in
S{p,w) . Under some rather restrictive assumptions (see Grossman and Hart
[1983], Rogerson [1984] and Holmstrom [1984]) one can use variational tech-
niques to provide an intuitive and useful characterization of the best
scheme, However, little can in general be said about the optimal choice
of p . Also, once the agent's action space expands, the corresponding
characterization result becomes much less informative, It may then be
both realistic and analytically tractable to go to the opposite extreme
and let P be of full dimension so that s(p) can be obtained uniquely
from (6). This route has the potential of offering more information about
the optimal p to be implemented and in addition provide a useful char-
acterization of the best scheme, In fact, this point is illustrated by
earlier Informed Agent models such as Mirrlees' [1971] model of optimal
taxation (as well as by adverse selection and non-linear pricing models).
Also--in the spirit of our main theme--it may be possible to study this
one-period model more abstractly and find out what kind of richness in

the agent's choice and what kind of cost functions will lead to simple
incentive schemes, We do not pursue that route here, but instead special-
ize the model by focusing on a particular dynamic structure. (Note that
the dynamic model we will study can, by our previous discussion, be mapped

into the one-period model described here.)

3. A Multi-Period Model

Consider a T-period version of the previous model. In each period
t=1, ..., T, the agent picks a pt € P, incurring a periodic cost
c(pt; ei) . We denote the outcome xt , the resulting state et and

the profit level nt . We call Xt = (xl, cves xt) the history of the
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stochastic outcome process up to time t . A key assumption is that the
agent can observe Xthl before deciding pt . Thus, a strategy for the
agent is a stochastic process {pt(Xt-l)} .

We assume that the principal pays the agent at the end of the last
period based on the entire realized path X' of the outcome process,

The incentive scheme is denoted s(XT) . The agent is assumed to be con-

T
cerned about his final wealth, which will equal s(XT) - Z c(pt; et) .
t=1
He values this wealth according to the exponential utility function defined

earlier. The principal's final wealth is § ﬂt - s(XT) » over which he
is risk neutral, =

The principal's problem is to select a sharing rule and a strategy
for the agent (interpreted as a set of instructions) such that it maximizes
his expected end of period wealth, subfect to the instructions being in-

centive compatible and the agent being assured a minimum certain equivalent,

which we henceforth normalize to zero. Formally, the problem can be

stated as:
T T
(7 max E[ J n" - s(X)] , subject to
{p*},s *1
T Tt T-1. .t
(8) E{u(s(X') - ] c(p (X' 77); 89} > u(0)
t=1
t T L t
(9) {p"} maximizes E{u(s(X') - J c(p (X'"7); 8%} > u(0) .
t=1

The expectations are taken with respect to the distribution over states
induced by the agent's strategy '{pt} .

We start by considering the agent's problem using dynamic programming.,
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Fix a compensation rule s(XT) and let {pt(-)} be an optimal strategy
for the agent given that rule. Define Vt = vt(xt) by
T

vV, = E[u(s(XT) - 3 c(p’; es))IXt] .
s=t+1

Since u is exponential, Vt differs from the standard dynamic programming

t
value function only by the positive multiplicative factor -u( 2 c(ps; es)) .
s=1

which is a constant from the perspective of time t . Thus, we may use

Vt for purposes of dynamic programming, interpreting it as the maximal
expected utility to the agent of continuing after time t given the his-
tory up to and including the outcome at time t , but excluding the accum-

ulated sunk costs. Let w_ = wt(xt) be the corresponding certain equiva-

t
lent; i.e. u(wi) = Vt . We wish to examine Wt as a function of xt .
holding the history Xt_l constant. For this purpose we will write
wt(Xt) = wt(xt'l, xt) . The dynamic programming equation for the agent's

problem requires that pt(xt'l) solve

N
(10) max u(wt(xt'l, x.) - c(p; 6.0)p. .
. i i1
p i=0
t-1 s s
Note that the sunk cost term Z c(p”; 87) has been dropped as it gives
s=]

rise to a positive constant that can be factored out.

The problem in (10) is of the same form as the single-period problem
(2). Thus, Theorem 2 applies. It follows that p (X*"!) is optimal in
(10) and makes the certain equivalent of the maximum value of (10) equal

to w,_ (X)) if and only if:
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D w9 = s pt ) v oD

where st(-;p) denotes a scheme in S{p) , that is, a scheme which in
the single-period problem implements p with certain equivalent zero,
Summing (11) over t (from 1 to T ) and noting that, by definition,

wT(XTJ = s(xh) gives the following:

Theorem 4. A strategy {pt(xt'l)} can be implemented if and only if for

every date and history, pt(xt'l) e p?

pt(xt-l) can be implemented in the single period problem). A sharing rule

(that is, if and only if each

s(XT) implements {pt(xt"l)} with certain equivalent Yo if and only if
it can be written in the form:
T, vt _t,.t-l
(12) s(X) = ) se(x75 P (X7 7)) + oWy,
t=1
where each st(-;p) is a sharing rule that implements p with certain

equivalent zero in the single-period problem.

It is instructive to think of each possible outcome as being recorded
in a different account, There may be fewer than N+1 such ocutcomes, since

two different states may correspond to the same outcome (xi =x.) . If

J
there are M possible outcomes, then there are M accounts, Let A:
be the number of times in the first t periods that the it outcome

occurs and let At be the vector (A{, ...,Aﬁ) . Also, it is convenient
to represent the sharing rule st(-;p) by the M-vector st(p) whose
i component is the compensation payable when the ith outcome occurs,

Then we can write (12) as:
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(13) s(x) = %st(pt(xt‘l))-(At-At'l) * g
t=1

Written this way, the sharing rule can be thought of as a "stochastic inte-
gral" of the account process {A%}) and it is this form that is suitable
for an extension to continuous time models.

Theorem 4 recovers a sharing rule from the strategy that is to be
implemented. Note that there may be many sharing rules that implement
the same strategy, because we may not have uniqueness in the single-period
model, Of course, in view of Theorem 3, if each pt always lies in the
interior of P , we do have a unique implementation.

We wish to stress that while (12) has an additive form over time,
this does not imply that every sharing rule s(xT) is additively separ-
able in the x‘'s , Indeed no sharing rule that implements a history-
contingent strategy has this separability property because, for history-
contingent strategies, xt affects the actions and hence the summands in
periods after period t .

Without assuming exponential utility, we could have derived a formula

similar to (12), namely:

T
@) s = § IG5 pteth, w

t-1 t-1
1 e T - (xFTh)

where st(-;p,w} is a scheme that implements p with certain equivalent
w in the single-period problem. What is special about exponential utility
is that st(_;p,w) =W 4-st(-;p) as we saw in Theoren 2, We will see
shortly the ramifications of this separability.

Turning to the principal's problem, we see that with (12) the prin-

cipal will get a payoff:
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T
(15) D EG® - s 8 pt ) - w

t=1 0

In view of the time-separable structure of (15) and the stochastic inde-
pendence of periods, we have by inspection that one solution to the

principal's problem is given by the following theorem:

Theorem 5. An optimal strategy for the principal to implement is
pt(xt_l) = P* , where p* is any single period optimum. An optimal com-
pensation rule to use is:
R T
(16) s(X) = I s{x;p¥) =s(peA ,
t=1
where s(+; p*) 1is an optimal single-period scheme that implements p* ,

and s(p*) is the corresponding M-vector.

Again we note that the scheme in (16) is generally not the unique
scheme that implements p* (unless Theorem 3 applies). And even if s(xT)
is unique in implementing p* , there will be several optima if P* has
more than one element. Any string of actions from P* with accompanying
one-period optimal schemes would solve the principal's problem. However,
Theorem 5 tells us that there is no need to do anything more complex than
apply the same scheme in each period separately.

The sharing rule in (16) has a ready interpretation in terms of aggre-
gation and linearity. The agent's optimal compensation is a linear func-
tion of the account balances recorded in Al . These balances represent
time-aggregated information of the action outcome path, Thus, events in

account X, have equal value independently of when they occurred and the

principal need not know the timing details of any of the events. In view
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of previous sufficient statistics results (Holmstrom [1579] and Shavell
[1979]), it is rather notable that an optimal scheme can be based on the
aggregated information AT even though it is not a sufficient statistic
for the agent's strategy. This means that the earlier sufficient statis-
ties results, which were derived for the one-dimensional models, need to
be reformulated when the agent's action space is of higher dimension?

In particular, one has to account for the possibility that in some dimen-
sions of choice there is no conflict of interest between the principal and
the agent. This is true here for the timing of actions, which explains
the time-aggregation result.

Evidently, common accounting information is heavily time-aggregated.
Aggregation saves costs, but it may also involve losses because of reduced
control, We have identified a particular class of environments in which
no loss of control occurs from aggregation over time, primarily because
income effects are missing in the agent's attitude towards risk.

In the same vein, one could ask when aggregation across accounts is
costless from an incentive point of view. TFor instance, suppose each xt
is a monetary payoff, say profits, of the agent's activity in period. t,
so that A; is the number of periods the agent has made a profit of $xi .
When will the optimal incentive scheme be linear in the total profits

Yoy

‘I Aixi ? Theorem 5, it should be stressed, does not tell us that the
i=0

optimal scheme is linear in profits: Two periods with a profit of $100K
each are not always compensated the same as one of $50K and one of $150K,
Nevertheless, there is a special case for which the optimal scheme in {16)
is linear in money. That is the case when there are only two outcomes

yielding two different profit levels; in other words, if the agent controls
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a binomial process. In that case, the two account balances AT and AT

1 2
are both linear in total profits, so the compensation rule (16) is linear
in profits. We now turn to the Brownian model as a vehicle for investigat-~

ing linearity in profits in more detail,

4. The Brownian Model

Suppose that the environment in which the agent functions is one in
which he takes almost inconsequential actions frequently in time., In terms
of the model in the preceding section, suppose the time between repetitions
is small, the number of events in each account summed over all the periods
is large, and the cost of action c(pt) as well as the money value of
the outcome X' in any single period is negligible to both principal and
agent. In that case it is reasonable to model the problem as one of con-
trolled vector Brownian motion, where each component of the vector represents
the accumulated activity in one of the N accounts of the outcome process.
(Account 0 is a residual that can be suppressed,)

Henceforth, we will think of the accounts as measured in dollars,

The firm's profit is computed by adding the revenue accounts and subtracting
the cost accounts. Because of the normalizations involved in making the
Brownian approximation, it is best to view the Brownian process as the
vector of differences between realized and planned outcomes or, equivalently,
as the excess of the account balances over budget: These excesses are

what accountants call "accounting variances." In particular, accounting
variances can be positive or negative.

We measure time t on the unit interval. We let Z(t) denote the
vector of excesses over budget in each account as of time t ; the vector

may be positive or negative in each component. We assume that
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{Z(t); 0 <t <1} is a controlled N-dimensional Brownian motion with a
fixed covariance matrix denoted by Var(Z) . The agent can control the
drift, but not the variance, of the process. In economic terms, the as-
sumption that the agent cannot control the variance means that over short
periods of time the developments in the accounts are almost entirely random;
only over longer periods do the agent's systematic efforts accumulate to
a quantity that is of the same order of magnitude as the accumulated ran-
dom fluctuations,

Formally, we specify that Z is the solution to the following Ito

stochastic differential equation:
dZ = y(t)dt + $dB ,

where B 1is 2 standard N-dimensional Brownian motion (with zero drift and
the identity matrix as its covariance matrix), u(t) is the drift vector,
occasionally referred to as the agent's effort choice, and ¥ is a non-
singular matrix. Thus, the variance-covariance matrix for Z is
Var(Z) = 'z .

For ease of presentation, we focus on the one~dimensional case for

which the control equation is:
(17) dZ = p(t)dt + odB ,

where ¢ 1is a positive constant and 2(t} is the excess of profit over
budget at time t . The one-dimensional case corresponds to a particular
limit of discrete time binomial processes. As we discussed in the previous
section, the binomial case implies (i) that the sharing rule whiéh imple-
ments any '"'interior" strategy for the agent is unique and (ii) that there

is an optimal linear scheme. As we shall see, these results have precise
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analogues in the Brownian model.

Let Zt = {Z(s); 0 < s <t} be the history of profits up to time
t . Then, since the agent can base his choice of u(t) on 7t ,»  ult)
is itself a stochastic process. Thus, the instructions given to the agent
also take the form of a stochastic process. The compensation paid to the
agent is allowed to be any function of the complete history of profits
over the whole unit time interval, that is, any random variable S(Zl) .
Henceforth, we will often write u(t) as u(zt) to emphasize that the
instructions governing the agent's behavior at time t can depend on the
history of the process Z up to time t .

We assume that the agent can at each point in time choose an action

u from the finite open interval (E;ID . The total cost incurred by the

1
agent over the unit time interval is f c(u(zt))dt . We assume that ¢
0

is twice continuously differentiable and strictly convex on the closed
interval [u,u] and c'(y) <0 and c'(p) > 1,

We formulate the principal's problem as one of choosing a compensation
scheme S(Zl) and instructions M = {u(t); O <t <1} such that (i) M is
the agent's best strategy given S and (ii) the agent's expected utility,
if he follows instructions,ris at least u(0) ,

As in the discrete time case, we begin by studying the agent's dynamic
programming problem., To that end, fix a compensation scheme S and a
set of instructions u which are optimal for the agent, given S , qu-
pose that the agent has used the strategy M' = {u'(t)} up to time ¢t .

Then the value to the agent of continuing optimally after time t is:
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t 1
V(z'; M') = max E[u(S - [ c(u'(s))ds - [ c(u"(s))ds)|z%]
u" 0 t

1
max E[u(S - [

t
C(u"(SJ)dSJ!Zt]exp[rIOC(u'(S))dSI
H t

(18}

)

1 t
E[u(S - [ c(u(s))ds) [z%lexp[r] c(u'(s))ds
t 0

vzt mcore, o

t
where C(M', t) = exp[rf [c(u'(s)) - c(u(s))1ds] .
0

Notice, too, that if M 1is a best strategy for the agent in response

to the sharing rule S , then:
t 1 t
V(Z'3 M) = E[u(S - [ c(u(s)ds)|z"] .
0

Since V(Zt; M} has the general form of V(Zt; M) = E[Y|Zt] , it is im-
mediate that {V(Zt; M), Zt} is a martingale. By construction, for any
fixed M, the information (o-field) corresponding to z% is the same

as the information corresponding to t generated by the Brownian Motion,
Hence, by the Martingale Representation Property of Brownian Motion (Jacod

[1977]), we may write:

(19) avzt; M = y(z%aB

for some stochastic process vy for which
12 .t
P{f v“(27)dt] <=} =1 .
0

Recall that, at the agent's optimm, dZ = u(Zt)dt + gdB , and write:
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(20) vz M = [y(z%/0)dz - u@h) [v(zY)/e)at .

Equation (20) lets us study V(Zt; M) as a functional of the path 7zt
without regard to whether the agent actually controls the path using M .
Equation (19} holds only on the assumption that the agent actually uses
the control strategy M . If instead he uses M!' » then since

dZ = y'dt + odB , we have:
(2 vzt W = - ue)Xde + vdp .

In economic terms, V(Zt; M) is the utility that the agent appears to be
getting from the principal's point of view, when the principal observes
the history z% and assumes that the agent has been following the instruc-
tions M . The actual probabilistic evolution of this quantity depends on
the actual choices M' that the agent makes.

Now suppose that the agent has followed the optimal strategy M up
to time t , and considers deviating by setting the drift to ' over
the interval (t, t+dt) . Call this modified strategy for the agent M' .

Then in view of (17), (18}, (21) and the definition of C s We must have:

av(z®; My = d[vezt; meme, o]

CM', ©1avz®; M + vz Mrdtle’) - cu) T}

CM', {1 - u(0))v (2% /e +V(ZY; Mrle(u) - cu(t))]}dt

H

+ CM', t)y(zhas .

According to Bellman's Principle of Optimality, the optimal strategy
for the agent (M) must call for the agent to select the drift u' in

all states and at all times to maximize the drift of the value function,
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i.e., the coefficient of dt . This leads to the smooth concave maximi-

zation problem:

max[y(z5)/olu' + V(%5 Myzc(y’) .
p'

The first-order necessary conditions for optimality are:

(23) ~roc' (u(z%)) = y2Hvet w .

Substituting (23) into (21) to eliminate +y would lead to a stochastic
differential equation that determines V up to a boundary condition in
terms of the instructions u and the parameters of the problem. As in
the discrete time case, the next main step is to invert the value function
to obtain its certain equivalent, W(Zt; M = u'l(V(Zt; M)) . Once we
have W(Zl; M) , it will be easy to recover the compensation scheme S
in a form similar to (8).

To recover W(ZI; M) , we apply Ito's lemma using the relation
W(zt; M) = -(1/r)1n(-V(Zt; M}) . Then, suppressing the arguments (Zt; M),

and using (20):
(24) —rdW = [y/V]dB - (1/2) [y/V]%dt .

Recalling that dZ = u(zt)dt + gdB , and substituting from (23), we get:

(25) i = c'(W)dZ - [c'(Wu- (x/2)oc 2w 1at .

Now, W = W(Zo; M) is the agent's certain equivalent from this problem.
Given W and a stochastic process M , equation (25) can be integrated

to determine the agent's certain equivalent at time 1 .
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1 1 t 1 t t 2.2, .t
Wz M) =W+ et uz))dz - [ [ uz™)uih - (/) o% e P uzh) Jat
0 0

The agent's certain equivalent at time 1 can also be expressed as the ex-
cess of the agent's compensation over his cost of effort. Equating those

two representations of the certain equivalent quantities leads to the fol-

lowing result.

Theorem 6. The stochastic process M can be implemented with certain equi-
valent W by the sharing rule S5 only if S is given by:

1 t 1 t 1 t t
(26) W+ [ c(u(zD)dt + {f er(u(z)dz - [ e (uzD)uzhde)
0 0 0

1
+ (1o2/2) [ ' ?(uzH)ar .
0

One can actually show under our hypotheses that a stochastic process
M taking values in (Heij can always be implemented with any certain
equivalent W by the sharing rule (26), however we shall need this result
only for the special case where yu is a constant over time, and that case
is covered by Theorem 4.1 of Chapter VI of Fleming and Rishel [1975].

Sharing rule (26) is analogous to (8) in the discrete time case with
N =1. We therefore conclude that our model is an appropriate approxima-
tion to the discrete time binomial formulation.

The sharing rule specified by (26) has a simple interpretation. The
first terms provide the agent with the desired certain equivalent W plus
direct compensation for his effort expenditures. The dZ term in the
first line provides the incentive for effort. From the-point of view of
the agent's local optimization problem, only this term and the marginal cost

are controlled, and the agent chooses u(t) to set the marginal benefit
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equal to the marginal cost. From that incentive we subtract its expecta-
tion, so that the component of compensation in the bracketed terms

in (26) has mean zero. Finally, to compensate the agent for the risk he
must bear, a risk premium is paid, represented by the last term. The risk
premium is proportional to the sum of the squares of the coefficients of
dZ , a familiar form in exponential-normal models,

We have a representation of the principal's problem as one of pick-
ing a certain equivalent W and instructions M for the agent. Since
the expected output is E[2(1)] = E[fu(z%)dt] and the middle line of (26)
has mean zero, the problem is to:

1

max E[2(1) -S] = max [ E[u(z%) - cu(z) - (xe¥/2) ' 2(uz®)) 1at - W
0

2

subject to W >0 and M implementable.

We now have it by inspection that an optimum is to set W =0 and

to set u(Zt) = y* , where y* is any solution to

(27) max{y - c(u) - (ro2/2)(c'(w))?).
H

Our assumptions about the derivatives of ¢ at the boundaries of the feas-

ible region ensure that (27) has an interior optimum.

Theorem 7. An optimal solution to the Principal's Problem is to instruct
the agent to set a constant drift p* that selves (27) and to pay the

agent the following linear function of the end of period profits Z(1) :

(28) c(u®) + (L) - w*] + (ro¥ /et iun) .



Evidently, the solution in (28) corresponds to the solution to a static
incentive problem in which the agent chooses the mean (u) of a Normal
distribution with fixed variance (cz) and the principal is constrained
to offer a linear rule. Thus, we can analyze the dynamic problem as a
static problem with the "ad hoc" constraint that only linear rules are
permitted, knowing that the constraint is not really ad hoc, but justified
by a full-blown intertemporal incentive problem. In view of the fact that
the static problem has no solution at all without the linearity restric-
tion, this is a rather striking demonstration of how enrichment of the
action space can make matters much simpler. In the next section we will
give some examples that illustrate tﬁe computational convenience that re-
sults from being able to solve the problem with the linearity restriction.

Another advantage of linearity is that one can compare the agent's
effort level in second-best with that of first-best., In common moral
hazard analyses this is often difficult. We have the following result

directly from (27):

Theorem 8. The agent's choice of drift is lower in second-best than first-
best. It is also lower than what the principal would desire given the

optimal incentive scheme,

Remark: Note that this partial equilibrium result extends to a model of
market equilibrium as well, because the agent's certain equivalent, which

will be determined in equilibrium, has no impact on the choice of action.

The analysis of the one-dimensional case can be generalized to con-
trolled vector Brownian motion. We will not provide any details, but merely
state the conclusion. Letting =« = (“0’ ...,ﬁN) be the vector of profit

weights for the accounts so that total profit is #w+Z(1) we have:
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Theorem 9. An optimal solution to the principal's problem is to instruct

the agent to set a constant vector of drift yu* , which solves:

max(nen - cu) - (x/2)c’ (1) Var(2)e(w) .
u
where c'(u) is the gradient of the cost function, The corresponding

optimal payment scheme is

(29) c(u*) + c' (1) <[Z(1) - u*] + (x/2)c' (u*) Var(zZ)c' (u*)

For the multi-dimensional case, we do not have a result corresponding
to Theorem 8, unless, of course, the N dimensions of the Brownian process
are independent, and the cost function separable.

As in the general discrete time model, the optimal scheme in (29)
is linear in the final account balances, but not necessarily linear in
profits, There is aggregation over time, but not across accounts., Evi-
dently, the N-dimensional Brownian model is the right limit of the multi-
nomial discrete time case discussed earlier, provided that the principal
can distinguish events in different accounts even when actions are very
frequent and individual outcomes of very minor importance, because the
N-dimensional model preserves the profit levels generated by any outcome

path and the associated frequency information in the accounts.

What does this mean for the interpretation of the one-dimensional
Brownian model? It means that the model only serves as a good approxima-
tion for a discrete time binomial process (that is, a process with exactly
two possible outcomes at each stage) if indeed the principal is assumed to
be able to observe the detailed composition of profits. This appears very

restrictive. However, the scope of the one-dimensional Brownian model --
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particularly the result that the optimal scheme is linear in profits--is
vastly expanded if we make assumptions that 1limit the brincipal's ability
to observe the detailed composition of profits,

Specifically, let us assume that we begin with a discrete time model
in which all that the principal can observe is the final level of profits
X(T) . Now one might expect, based on the preceding discussion, that the
one-dimensional Brownian model becomes an appropriate approximation, because
the loss of information that occurs in the passage to the 1limit is incon-
sequential as the principal does not have that information at any point
in the discrete time model either. It seems reasonable therefore to con-
jecture that the optimal solution to a frequently repeated multinomial
process is approximately linear since it is linear for the one~dimensional
Brownian model. Undoubtedly, one could prove an approximation theorem of
this kind, but not without some additional assumptions. To give an indi-
cation of what can go wrong in general, consider a trinomial case with
outcomes Xg = 0, Xp =1, X, = q . Suppose there are T repetitions,

Total profits are then =(T) = n, +qn, , where Ry n; and n., are

2
the number of times each individual outcome occurred; of course,

Ny +nj+n, =T. If q is an irrational number, then for any possible
n(T) , one can recover uniquely n, , n;, and n, . In other words,
observing n(T) is as good as observing the account balances Ny, Ty,
and n, . Consequently, the restriction on observability has no force

and the one-dimensional Brownian model will not serve as a good approxima-
tion no matter how large T is, because it will not preserve the informa-

tion content of the process,

The problem identified above depends on an implausible trick; the
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principal is able to decode a single one~dimensional statistic into N
such statistics, Evidently, this is a problem of modeling--not one of
economics. Rather than exploring the problem systematically, we finesse
it by proceeding with a formulation in which the principal cannot untangle

the N components of profits from the profit account alone,

Theorem 10. Let the agent control the vector of drift of an N-dimensional
Brownian process Z(t} with fixed covariance matrix. Assume accumulated
profits at time t are a linear function of the balances in the N ac-
counts, i.e. w(t) = m+Z(t) , and that the principal is only able to
observe the end-of-period level of profits w-Z(1) . Then the optimal

incentive scheme is linear in end-of-period profits.

Proof, Since the sum of any linear combination of normal variables is
normally distributed, it is clear that the profit process weZ(t) 1is a
one-dimensional Brownian motion. The agent controls the drift (but not
the variance) of this one-dimensional profit process by his choice of the
vector u(t) . Each u{t) implies a profit drift v(t) = weu(t) . Since
only the choice of v(t) matters for the final payoff to the agent (be-
cause payments are based on weZ(1) ), it is clear that for any wv(t) ,
u{t) will be chosen so as to minimize the cost c(u(t)) subject to

v(t) = 7-u(t) . If we replace c(u(t)) with the corresponding minimum
cost function c(p(t)} , we find that the principal's problem is one of
providing incentives for the agent's control of the drift of a one-
dimensional Brownian process at an instantaneous cost c(u(t)) . The solu-
tion is linear in ¢-Z(1) according to Theorem 7.

Q.E.D.
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In a similar vein, if the agent exercises some discretion over the
accounting system, the principal may not be able to rely on the separate
accounts, For example, suppose the agent has considerable latitude con-
cerning which of several expense accounts to use for recording common
items. Then, the relevant cost function is c(u) = c(ul + e +uN) ., SO
a direct application of (29) establishes that the optimal scheme is linear
in profits, Similarly, if the agent had enough latitude to control the
allocation of expenses, but only within the expense categories, and the
allocation of revenues, but only within the revenue categories, and the
optimal scheme will be a linear function of revenues and expenses separ-
ately, but not of profits. Thus, our model is consistent with the idea
that it may be desirable to use "cost centers” (and "revenue centers')
rather than "profit centers" for evaluating managerial performance.

We have used the N-dimensional Brownian model as an approxXimation to
the frequently repeated discrete time model with N+1 outcomes. In the
standard theory of weak convergence of stochastic processes (c.f. Billingsley
[1968]), processes like ours which are derived from summing multinomial
random variables in which a single period outcome is always inconsequential
are approximated by a one-dimensional Brownian motion, However, as Milgrom
and Weber [1984] have shown, when the important economic issue is one of
information, the topology of weak convergence is an inadequate notion of
approximation. We have used an N-dimensional Brownian process here to
approximate a multinomial with N+1 outcomes because this allows us to
approximate both the profits and the relevant accounting information
accurately.

We have found, however, that the N-dimensional controlled Brownian

model can be adequately represented by a model of lower dimension when the
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agent has some control over the accounting process, or when the principal
can observe only the total profits, and not the account balances that make
up the profits. Evidently, this result considerably expands the applica-
bility of the one-dimensional Brownian model; or put differently, it offers
an alternative, much more encompassing interpretation of that model,

To conclude this section, we wish to point out that the Brownian models
are not the only continuous time models one might consider as approxima-
tions of the model of Section 3. An alternative is a model in which the
agent controls the rates of jump A of N Poisson processes subject to
a cost function c(A) . Like the Brownian model, the Poisson model can
be viewed as an approximation to a frequently repeated multinomial model,
but the Poisson model replaces the assumption that each outcome is '"very
frequent'" with the assumption that each outcome is far less frequent than
outcome 0 (which might be interpreted as the outcome that "Nothing unusual
is happening just now"). The results for the N~dimensional Poisson model
resemble those for the Brownian model, with one major gxception. Using
the Poisson model, one can prove (i) a theorem like Theorem & that every
implementable strategy has a unique implementing rule which can be written
as a stochastic integral, (ii) theorxems like Theorems 7 and 9 asserting
the optimality of linear rules, and (iii) a theorem like Theorem 8 assert~
ing that the agent puts forth too little effort. The one major difference
between the two models lies in Theorem 10 and the subsequent discussion,
which have no analogues for the Poisson case.

To better grasp the one key difference between the two continuous
time models, consider the problem of compensating an industrial salesman
whose efforts control (and are identified with) the arrival rates of large

and small sales in a controlled Poisson process. Large sales are $5,000,000
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and small ones are $75,000. Assume that mark-ups are the same on all sales,
so observing sales volume and observing profits amounts to the same thing,
Only the total sales in a period can be observed, When the actual sales

in some period are $6.5 million, one can infer with certainty that the
agent made one large sale and twenty small ones in the period. One can
further infer from this that the agent did not devote his effort to large
sales only or to small sales only and, indeed, that the maximum likelihood
effort allocation is (1,20), where the components are the arrival rates of
sales of the two kinds. Statistical inferences like that have no analogue
in the Brownian model: In the Brownian model, all strategies for the agent
that lead to the same instantaneous drift rate of total profits at all
points in time also lead to the same distribution of end-of-period profits.
Even strategies which assign zeros to some categories of revenue and ex-
pense cannot be distinguished from strategies with all nonzero drifts pro-

vided that the drift rates of total profits are identical.

5. Applications

The methodological value of our linearity results rest largely with
the ease with which one can compute optimal solutions. One can solve the
dynamic problem as a static one with the ad hoc restriction that the shar-
ing rule is linear., Below we will offer some variations on an example
that illustrates how simple the analysis becomes when the linearity restric-
tion is appropriate. At the same time we wish to caution the readership
against indiscriminate application of this ad hoc principle. It requires
some fairly restrictive assumptions on the information and production tech-
nologies. The limitations will be discussed in more detail in the next

section,
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We begin by computing a closed form expression for the linear rule
when the cost of varying the drift yu in the one-dimensional Brownian
model is quadratic, for example, c(u) = (a/z)uz + For the purpose of
comparing the second-best solution with the first-best solution, let us
first compute the latter. If the agent's action were observable and pos-
sible to control independently of the sharing rule, then the agent would
be paid the constant amount c(u) ‘as compensation for his action choice
u and yu would be set so as to maximize 1y - (a/2)u2 . Thus, in the
first-best solution, u = a"1 . This arrangement would yield a net return
to the principal equal to = = (Za)'1 .

When there is a moral hazard problem, the constant payment rule would,
of course, no longer be optimal. But some other linear rule s(z) = az + B
will be optimal according to Theorem 7. In order to find the best values
for o and B , we first calculate the agent's best response against
sz} , given that 2z is normally distributed with mean uy and variance

02 . The agent's certain equivalent under s(z) is given by:

(30) ap + B - c(y) - (¥/2)a%e? .

The first-order condition is o = c¢'(u) = ap , i.e. we set the slope of
the incentive scheme equal to marginal cost at the desired level of action.
Substituting this value for g into (30) and setting the resulting cer-

tain equivalent to zero, we get that

u2 + (r/2)02a2u2 .

N‘LH

(31) B

This implies that the only linear sharing rule that implements u with

certain equivalent zero is:
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(32) s = qand s auw ¢ (/2aR%2

which is the expression we have in (21)., The principal's payoff with this

arrangement is:
(33) TE - %auz(l + raoz)

Maximizing over u gives:

-1

(34) p* = (1 + racz) a1,

Inserting w* into (33) gives the principal's net return:

-1
(35) T = (1 + raoz) (Za)_1 .

The optimal slope for the sharing rule is

-1
(36) a* = (1 + rag?)

Comparing the first-best values of effort and profit with u* and
™ , we éee that the moral hazard problem causes a reduction in the action
(as Theorem 8 stated) as well as a reduction in thé principal’s net pay-
off, Both reductions are proportional to (1 +ra02]- . Thus, a small
degree of risk aversion or uncertainty, or a low cost of effort will allow
a solution close to the first-best.

The fact that expected profits increase with a reduction in uncertainty
is consistent with the general result that additional information is valu-
able for the agency problem (Holmstrom [1979] and Shavell [1979]). A

reduction in 02 can be viewed as stemming from additional monitoring

of the agent's activities in the following way. Let z = p + ¢ be a one-
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period representation of the dynamic problem with ¢ ~ N(O, 02} . Let

y be another signal that the principal can observe which is correlated
with z . For simplicity (though it is immaterial), assume y is an
exogenous signal unaffected by yp --for instance, an observation of gen-
eral economic conditions or of the performance of other agenfs. Let ¥y
be normally distributed with variance 72 and write vy for the correla-
tion coefficient between z and vy .

We may now think of (z,y) as end-of-period balances of a two-
dimensional Brownian process and apply Theorem 9. The optimal sharing
rule will be a linear function s({z,y) = @z + ayy + B . It is then easy
to calculate the optimal slopes in the same way as above., They are given
by:

-1
(1 + ract(1-vH)

) -1 -1
o7 1 s raa])) = 0¥ o

The optimal action to induce and the principal's maximal net profits are:

-1
a‘I(_l + raoz(l -Yz)) ,

u*

-1
2a)"1(1 + rac?(1-v9)) .

.,r*

From the formulas above we see that observing the additional signal

2

y 1is equivalent to a reduction of the variance from ¢~ to 02(1 -Yz)

as we claimed. The reduced variance is thé conditional variance of ¢
given y as one could have guessed directly. If y and z are per-
fectly correlated, that is as good as observing ¢ and =z, hence 1y,
and first-best can be achieved.

In accordance with earlier results on the value of relative performance
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evaluation (see e.g. Holmstrom [1982]) we find, of course, that the optimal
compensation does depend on the uncontrolled variable y ., But in contrast
to general informativeness results, which state that there is some positive
value to costless monitoring (or relative performance evaluation), it is
here poséible to compute the net value using the explicit formulas,

One can also extend the analysis to situations where the principal
can monitor the agent at different levels of intemsity. A natural way of
doing it is to let him observe at a unit cost any number of signals
y; S e+ 0+ n; o, with ng » € and 6 independent and normally dis-
tributed. The mean of the yi‘s will then be a sufficient statistic for
the additional information andone finds easily the implied reduction in
the variance as before. It is also clear that the principal will engage
in some additional monitoring if the unit cost of additional signals is
sufficiently low. On the other hand, the optimal number of additional
signals will always be finite because of diminishing returns (the incre-
mental reduction in variance goes to zero)}. On its own, our suggested
analysis of monitoring only confirms the obvious, but placed in a richer
economic context it is likely to prove quite useful.

Proceeding along the same lines as above one can also study the value
of diversification due to agency costs. In the simplest case, suppose the

choice is between one project: z = y + ¢ or two "half-sized" projects:

N“LH

1 . .
Zy = Ut FE, and 2y, = Uy +5E, , with €, and €, having the same
variance as ¢ and ¥ and My being the allocation of effort between
the two. Even if the principal only can observe z; *+ 2, it is clear
that diversification pays as long as € and €, are mot perfectly cor-

related (positively) and the cost of effort is c(pl +u2) . Diversification

simply amounts to a reduction in the variance, as one would expect,
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Another related question one might be interested in is the effect
of letting the agent control a bigger project, e.g. have 2z = n(p+e) ;
n > 1 . The answer is easily obtained by writing v, = nu and e, = Dt .
This transformation brings us back to the base case with a cost function
c(un) = (1/2)u§/n2 and variance ci = n202 . Substituting into (36) we
see that the slope of the optimal incentive scheme remains unchanged.
However, effort (and profits)} will increase linearly in n . This suggests
that the quadratic cost function is not very suitable for large values
of u . Obviously, other specifications of the cost function will result
in different conclusions, but the point is that one is able to get precise

answers of this kind.

As a final variation of the basic example, suppose the agent can allo-
cate his effort between two activities 2y =Wy ey and 2, = Uy + €,
with a cost function c(ul, ”2) = %u? + %ug . Thus, there are diminishing
returns to effort in each project. If the principal can only observe
Z= 2y %2, then the solution will obviously be linear ip 2z and the
agent will choose Uy = by symmetry. Somewhat surprisingly, the situ-
ation is rather different if zy and z, can be separately observed.

By Theorem $ the optimal scheme will be of the linear form

s(zl, zz) =02y *Ay2y ¢ g , but &y need not be equal to ey . In fact,

the only case for which the two are set equal is if CHY and €,y have

the same variance. In general, @ > a, if a? < cg . In the case of

independent prujects, the slopes are simply determined by (36) (with cf
or cg in place of 02 J. It follows that there is generally value to
observing the agent's different activities and also that incentive weights

among different projects (or accounts) are not solely a function of the

marginal cost or product of the activity, but also its variance., As an



-43-

example, if the agent can allocate time between reducing costs or increas-

ing revenues and is equally effective at both, and if revenues are subject

to more exogenous variance than costs, then the incentive scheme should

not be based on profits alone; it should reward cost reductions more highly

than revenue increases.

6. Variations and Limitations of the Model

There are some significant restrictions on the applicability of our
results. On the other hand, they also survive some interesting generali-
zations. Our purpose here is to discuss both extensions and limitations
with the hope that they give a good idea of the overall relevance of the

model.

Risk Averse Principal

If the principal is risk averse with a constant coefficient of abso-
lute risk aversion (i.e. he has an exponential utility function) the main
conclusions of the paper remain unchanged. This follows from the fact that
Theorem 2 is still valid as can easily be checked. In the multi-period
model the same dynamic programming arguments apply leading to the conclu-
sion in Theorem 4. It is evident therefore that the aggregation and linearity
results of the Brownian models also remain true, though the specific form
of the optimal sharing rule and the optimal action to implement will change.

As an illustration of the impact of a risk averse principal, recon-
sider the earlier example (with a = 1 , for simplicity) when the agent's
coefficient of absolute risk aversion is Th and the principal's is 1, .
Given that the agent's sharing rule is linear it is easily found that the

slope of the sharing rule is
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(37) a = (1+0°1)/(1 + o(r, +7p)) -

Since a=1, we have py = a . Evidently, (37) generalizes the optimal
sharing Tule in the example {(which has ¢ = (1 +IA02)-1 ). The impact of
a risk averse principal relative to a risk neutral one is that the agent's
share increases and his effort u does, too.

First-best in this situation is to choose p =1 and set
a = rP/(rP'+rA) . This corresponds to optimal risk-sharing. Thus, second-
best again dictates a lower action and a higher share for the agent than
in the first-best. Note also that if the variance is very high, the second-
best solution is close to the first-best solution in terms of risk sharing,

while u goes to zero. The reverse is true if variance is very low,

Cost/Production Shocks

In the discrete time model we could allow almost any kind of shocks
to the cost or production function. The shocks could be observed privately
or publicly, either before or after the agent takes an action (or they
could be observable only partly or not at all)., The only important re-
striction was that the shocks were independent over time.

When we took the discrete time model to a continuous time limit, we
eliminated the stochastic element from costs in order to sidestep technical
problems in defining a2 continuum of independent observed shocks over time.
One way to deal with the agent's private information about costs and out-
put is to allow the agent to observe processes Y(t) and Y'(t) which

affect accumulated costs C(t) and output Z(t) , as follows:

(38) dz(t)

u(tldt + odB(t) + dY(t)

(39) dc(t)

c{p(t))dt + 4dY'(t) .
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With these specifications of cost, the model retains its basic time-
separable structure, and the main results (unigueness of the implementing
rule, optimality of linear rules) are unaffected.

A more interesting generalization is one in which the agent has pri-
vate, advance knowledge about the timing of costs. Suppose y(t) is a

random disturbance term in the agent's cost function in the Brownian model.

1
Further suppose that for each realized path y(t) , f y{t)dt =0, i.e.
0

there is no aggregate uncertainty. The instantaneous cost of effort is

c(u(t) +y(t)) . We make no further assumptions about the distribution

of y(t) , and we allow that the agent may observe the entire path of

y(t) at time 0; we require only that the agent know y(t) before acting

at time t . Then, we claim, the solution remains linear in Z(1) .
The proof follows by a simple transformatioﬁ of variables, Suppose

the principal observes y(t) . Let wu'(t) = u(t) - y(t} . Then the 2Z'(t)

process, constructed like Z(t) with y'(+) in place of u(+) , is

dZ'(t) = p'(t)dt + odB(%t) ,

1
where Z(1) = Z'(1) , because [ y(t)dt = 0 for all realizations. We are
0

back to our original model and the solution must therefore be a linear

scheme with u'(t) = u* ., That means, it is optimal for the agent to choose:
u(t) = p* - y(t) for every t .

Notice that the solution would be unaltered even if the principal
could observe the path of y(t) at time O, We conclude therefore that
there is no cost to the principal in this case from ignoring transfers of
respurces across time by the agent, because the agent's interests in this

matter do not conflict with those of the principal. Indeed, the principal
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does not need to know which night the agent "'goes bowling" in order to
fashion an optimal compensation scheme, which is another kind of aggrega-
tion result that reduces the principal's need for information. Note well,
however, that this conclusion depends on the Browniaﬁ model, the specific
way in which we have parameterized costs, and the assumption that y(t)

is only a timing effect, i.e., that it integrates to zero.

Wealth Restrictions

If the agent has finite wealth it may be argued that strictly speak-
ing a linear scheme is infeasible because the range of a normal distribu-
tion is unbounded below. However, the following feasible scheme is
approximately linear and approximately optimal: As long as the agent's
certain equivalent stays above the minimum payment level, stick to the
original payment plan; if the agent's certain equivalent with the linear
scheme reaches the minimum payment level, instruct the agent to stop work-
ing and pay him the minimum at the end. From the stochastic integral repre-
sentation of implementatable strategies, we see that this scheme will
leave the agent's strategy unaltered as long as the minimum is not reached.
If the wealth constraint is reached with only a small probability, the
new scheme is approximately optimal (and linear). An alternative, approxi-
mately optimal scheme is to pay the agent a linear function which is
truncated at the minimum payment level.

Thus, the linear rule features a very desirable robustness property,
which is notably missing in the fine-tuned schemes that we discussed in
the introduction. For the extreme punishment schemes, wealth restrictions
have significant ramifications. They may perform very poorly and become

far from optimal,
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Quitting Option

One may wonder what happens if the agent can quit in the middle of
the evaluation period. This depends on what is assumed about the agent's
wealth and ability to bond himself. If the agent cannot be forced to pay
anything to his present firm and he can switch costlessly to another firm
at any point in time, he will quit with probability one in the Brownian
model, His certain equivalent will dip below zero for sure in any ini-
tial interval. On the other hand, if the agent can be held to pay his
certain equivalent (if it is negative) at the time of quitting, then there
is no incentive to quit, because after having cleared his account with the
present employer he can do no better on a new contract and he might as
well stay. This applies equally in the case the agent contemplates to
quit when he has accumulated a positive certain equivalent. There is a
provision though. We are assuming implicitly that the next firm will offer
a contract with zero certain equivalent. If firms are not making excess
profits (i.e. they do not receive rents) that will be the case (having
the certain equivalent zero was only a normalization, recall).

The importance of the agent's ability to quit obviously depends on
mobility costs. When these costs are large then, even with wealth con-
straints, the agent will quit with a low probability, which makes the

option insignificant,

Model Restrictions

Next we turn to the limitations of the model. Throughout both the
discrete and continuous time models, the optimality of linear rules has
rested on the absence of income effects and on a stochastic environment
characterized by stationary independent increments. These assumptions are

crucial. Without them, optimal schemes could not be based on time
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aggregates alone, Yet, we do not feel that these assumptions should be
viewed as enormously restrictive. Whenever income effects can be deemed
small we expect linear rules to be nearly optimal.

For the‘Brownian model, the conclusion that the optimal compensation
scheme is only a function of final account balances depends on the speci-
fication that the agent does not control variances. If the agent did control
variances, the principal would also want to keep track of a statistic that
estimates the total variance over time, but the new problem retains its
essential time stationarity., Despite the trickier accounting involved,
the analysis involves no new principles.

The extra results obtained from the Brownian model--the explicit
linear form of the sharing rule and the possibility of aggregation over
accounts--depends on exact properties of the normal distribution. The
possibility of aggregating over expense accounts or revenue accounts or
both arises in this model when the agent has some control over the account-
ing system or the separate accounts are not reliably observable.‘ Although
the particular form of our aggregation results does depend on our normality
assumption, the economic sense of the results is clear and can be extended
to ohtain related results in related (non-Brownian) models.

Our assumptions about the agent's information in all the models is
restrictive and deserves further comment. First, the agent is assumed to
have no private information at the time of contracting, that is, there is
no pfoblem of adverse selection. If there were a problem of adverse selec-
tion, then there would be moral hazard even if the agent were risk neutral,
For example, suppose the principal were an inventor who contracts with
an agent to market an invention. Being a marketing expert, the agent knows

more than the principal about the product's market potential and the level
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of the agent's marketing effort will play a key role in determining the
product's sales. It is standard in these combined moral hazard--adverse
selection models that the principal should offer the agent a menu of con-
tracts, and the question then becomes: When will the contracts in the
menu all be linear functions of aggregates? We have not studied this
question, though we expect that it is susceptible to a variant of our
methods. (Likewise, it may be possible to find simpler and sharper results
in the analysis of taxation, by exploiting richness of action choice along
the lines we have pursued.)

Finally, we have assumed that the agent can monitor how the process
is evolving over time. In the Brownian model, if the agent were to re-
ceive no information until the end of the compensation period, then the
situation would be the same as in a one-period model where the agent
chooses the mean, once and for all, of a normal distribution. We would
be back to a static model with no solution (unless bounds on wealth are
imposed). At the opposite extreme, if the agent could observe B(1l)} at
time zerc, we would be in the Informed Apgent model, and once again the
solution would probably be non-linear. The Brownian model, which lies
in between these two extremes, is likely to be the only one of the three

in which a linear sharing rule is optimél.
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7. Conclusion

There are two main ideas that motivate the kind of analysis we have
pursued. The first is that one need not always use all of the information
available for an optimal incentive contract. Accounting information which
aggregates performance over time is sufficient for optimal compensation
schemes in certain classes of environments and it is sometimes possible
to aggregate further over the various accounts. The second idea is that
optimal rules in a rich environment must work well in a range of circum-
stances and will therefore not be complicated functions of the outcome;
indeed, in our model, linear functions are optimal.

Models that derive optimal rules in which small differences in out-
comes lead to large differences in compensation are invariably based on
an assumption that the agent finds it impossible, or very expensive, to
cause small changes in individual outcomes. The optimal rule in such cases
is usually inordinately sensitive to the distributional assumptions of the
model, For example, in the model where the agent makes a one-shot choice
that determines the mean of a normal distribution, by changing the dis-
tribution of outcomes for each action on a set of probability e > 0 ,
some of the near-optimal rules derived for that model can be made to per-
form worse than a flat compensation scheme, which provides no incentives
at all for the agent to incur costs to increase production,

Linear rules, in contrast, are strikingly robust. For example, in the
Brownian model, the agent's optimal response to a linear rule and the
principal's expected payoff do not depend at all on the timing of the
agent's information. Nor does this conclusion depend on normality: The
agent's optimal response to a linear rule where the agent adds drift to

any stochastic process is always the same.
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It is probably the great robustness of linear rules based on aggre-
gates that accounts for their popularity. That point is not made as
effectively as we would like by our model; we suspect that it cannot be
made effectively in any traditional Bayesian model. But issues of robust-
ness lie at the heart of explaining any incentive scheme which is expected
to work well in practical environments,

Finally, a brief remark on alternative dynamic models of agency is
in order. Radner (1982) and Rubinstein (1982), among others, have developed
multi-period models of moral hazard with distinctly different conclusions.
They have shown that moral hazard models may yield close to first-best
solutions when repetition permits very precise monitoring of the agent's
strategy. We have deliberately designed our model so that repetition does
not lead to first-best outcomes. The ingredients that assure that are:

a finite horizon (rather than an infinite horizon with little or no
discounting), a stochastic process in which uncertainty about the agent's
actions remains significant3 and evaluating the agent's utility at the
end of the horizon rather than continuously, so as to make sure that the
agent's marginal utility over income does not converge to a constant
{(i.e. to risk-neutrality) as time evolfes.

We do not wish to argue that our modeling strategy is more realistic
than that of Radner and Rubinstein; evidently, that depends on the context.
Also, as we have tried to stress above, our main interest is not so much
with dynamics per se, as with the issue of robustness. To us dynamics
has mainly been a convenient (and we do not think an urealistic) vehicle
for demonstrating that a rich action space may imply simple incentive
schemes: for those who like it better, our model can be seen as a static

one instead.
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A major reason for our focus on simple schemes bears repeating, too.
It seems clear that second-ﬁest analyses of moral hazard will be less
helpful in reaching the ultimate objective of understanding the ramifica-
tions of organizational design on aggregate economic phenomena, unless
the answers to the "small" design problems are simple and easy to work
with in larger models. (Note that with this objective it is meaningless
to set up models that yield first-best solutions.) It remains to be
seen to what extent our linear incentive schemes will prove useful in
this larger task and also whether there are more natural ways to trans-
late robustness into simple and operative solutions of the small organi-

zational building blocks that principal-agent models represent.
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FOOTNOTES

There is a trivial and uninteresting sense in which it is always
possible to make the optimal compensation of the agent a linear
function of a single numerical "aggregate," namely, his optimal
compensation rule can be expressed as a function of half that rule,
and the later is a single numerical aggregate. When we say that
compensation can be based on aggregates, we have something more
sensible in mind. First, the aggregate must be determined as a

linear function of some separately observed variables, such as the
profits earned in two different periods of time. Second, it must be
a 'natural aggregate" whose definition does not depend on such features
of the problem as the agent's risk aversion or the costs of various
actions the agent may take. For example, accounting systems are
ideally based on aggregates of this sort. Account balances are
accumulated sums over time, and they are defined in a way that depends
only to a limited extent on the tastes of the manager.

"One-dimensional" refers to the dimensonality of P (see section 2)
rather than the dimensionality of the agent's economic action. Thus,
an effort model of standard type is not in general one-dimensional,
because the convex hull of the distributions that effort can induce
is not. This is why the "firt-order approach' often fails. See
Holmstrom (1984).

We would get a result like Radner and Rubinstein if we let the binomial
multi-period model converge to a Brownian model with zero variance. A
linear scheme - one with unitary slope - would be optimal in that case.





