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AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR
CONVECTION-DIFFUSION EQUATIONS∗

YVAN NOTAY†

Abstract. We consider the iterative solution of large sparse linear systems arising from the
upwind finite difference discretization of convection-diffusion equations. The system matrix is then an
M-matrix with nonnegative row sum, and, further, when the convective flow has zero divergence, the
column sum is also nonnegative, possibly up to a small correction term. We investigate aggregation-
based algebraic multigrid methods for this class of matrices. A theoretical analysis is developed for
a simplified two-grid scheme with one damped Jacobi postsmoothing step. An uncommon feature
of this analysis is that it applies directly to problems with variable coefficients; e.g., to problems
with recirculating convective flow. On the basis of this theory, we develop an approach in which
a guarantee is given on the convergence rate thanks to an aggregation algorithm that allows an
explicit control of the location of the eigenvalues of the preconditioned matrix. Some issues that
remain beyond the analysis are discussed in the light of numerical experiments, and the efficiency
of the method is illustrated on a sample of large two- and three-dimensional problems with highly
varying convective flow.
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1. Introduction. The efficient solution of large sparse n× n linear systems

(1.1) Ax = b

is critical for many of today’s applications in science and engineering. In this work
we focus on nonsymmetric problems that arise when the convection-diffusion partial
differential equation (PDE)

(1.2)

⎧⎪⎨⎪⎩
−νΔu + v · grad(u) = f in Ω,

u = g0 on Γ0,
∂u
∂n = g1 on Γ1 = ∂Ω\Γ0

is discretized by an upwind finite difference method (e.g., [36, 40]); in this equation,
Ω is either a two- or a three-dimensional bounded domain, ν the viscosity, and v a
convective flow. For reasons that are explained below, we restrict ourselves to the
most common situation where v has zero divergence. Note that having an efficient
solver for this class of applications is also a needed ingredient to several approaches
for solving Navier–Stokes problems; see [1, 13] and the references therein.

For linear systems arising from discretized PDEs, efficient iterative solvers are
often schemes of the multigrid or the multilevel type [16, 40]. These combine the
effects of a smoother and of a coarse grid correction. The smoother is generally
based on a simple iterative scheme such as the Gauss–Seidel method. The coarse grid
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correction consists in computing an approximate solution to the residual equation on
a coarser grid which has fewer unknowns. The approach is applied recursively until
the coarse system is small enough to make negligible the cost of an exact solution.

Now, for ν → 0 , the PDE (1.2) is a singularly perturbed problem. As a general
rule, such problems raise difficulties to multigrid methods [16]. Specifically, these
methods usually do not possess mesh-independent convergence for the convection-
diffusion equation with dominant convection unless special techniques are used to
define the smoother and/or the coarse grid correction; see [10, 31, 35, 46] for a sample
of results along these lines.

For constant flow problems, for example, using a downstream numbering of the
unknowns makes the Gauss–Seidel method increasingly efficient as the viscosity pa-
rameter ν decreases, because all entries in the strictly upper triangular part are small
(proportional to ν) compared to the diagonal. Hence using this method as a smoother
in a multigrid scheme allows one to compensate for the intrinsic difficulties raised by
the singular perturbation, and yields a solver that is robust with respect to both ν and
the mesh size h; see, e.g., [16, 47]. It is, however, more challenging to solve problems
with recirculating flow, for which a downstream numbering may not exist or become
difficult to implement. In [13, 40], it is suggested that the same effect can be obtained
by performing four (in two dimensions) or six (in three dimensions) line Gauss–Seidel
sweeps, corresponding to the four or six possible lexicographic orderings. This makes
the overall scheme very costly, whereas its theoretical validation is so far based on
Fourier analysis. Hence only equations with constant flow can be analyzed directly:
for more general problems, the best that can be done is, following [44], to check that
the convergence rate with constant flow is bounded independently of the direction
of the flow. This latter approach has also been used to validate some more specific
multigrid or multilevel techniques based on Schur complement approximation [27, 34].
These methods do not require such costly smoothers, but have so far been considered
for two-dimensional problems only.

The methods mentioned above are all of the geometric multigrid or multilevel
type; that is, knowledge from the continuous problem and its discretization is needed
to define the hierarchy of coarse systems. In contrast with this, algebraic multigrid
(AMG) methods build this hierarchy exclusively from the system matrix, without
additional input. For symmetric problems arising from elliptic PDEs, there are several
such approaches that lead to efficient solvers [4, 5, 6, 18, 38, 42]. In particular,
contrarily to geometric multigrid methods, they tend to be robust for wide classes of
applications without having to adapt the smoother. However, regarding convection-
diffusion equations, the only convergence analyses we are aware of are the ones in [45]
and [7]. The former is related to classical AMG methods along the lines of [4, 38]
and is also restricted to two-dimensional problems with constant flow. Moreover, for
recirculating flows, it is again suggested to obtain robustness thanks to four Gauss–
Seidel sweeps. The method developed in [7] extends the approaches in [6, 42], i.e., is
based on smoothed aggregation AMG. The convergence proof is general, but requires
more smoothing steps for highly nonsymmetric problems than would be necessary for
symmetric problems. Moreover, despite this analysis, the method is apparently not
scalable for recirculating flows.

In this work, we consider aggregation-based multigrid schemes, in which the hier-
archy of coarse problems is obtained from a mere aggregation of the unknowns. This
approach is sometimes referred to a “plain” or “unsmoothed” aggregation, to distin-
guish it from “smoothed aggregation AMG” mentioned above. It is somewhat non-
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standard because it does not mimic any well-established geometric multigrid method,
and, although introduced quite early [3, 8], it has been overlooked for a long time, as it
was originally unclear how to achieve a mesh-independent convergence rate; see, e.g.,
[38, pp. 522–524]. However, a number of recent works show that the approach is both
theoretically well founded and practically efficient [14, 19, 23, 24, 25, 28], providing
that aggregates are formed in an appropriate way, and that one uses an enhanced
multigrid cycle, that is, either the K-cycle [30] or the AMLI-cycle [43], in which the
iterative solution of the residual equation at each level is accelerated with either a
Krylov subspace method (K-cycle) or a semi-iterative method based on Chebyshev
polynomials (AMLI-cycle).

In particular, numerical results in [19, 28] suggest that the approach can be ef-
ficient for convection-diffusion problems. However, the theoretical foundation is so
far restricted to systems with symmetric positive definite (SPD) coefficient matrix A .
Specifically, advanced results are obtained in [25] for the class of nonsingular symmet-
ric M-matrices with nonnegative row sum. It is shown that, for any such matrix, the
aggregates can be built in such a way that a meaningful bound on the convergence
rate is guaranteed; moreover, this bound is a fixed number, i.e., independent of any
problem parameter or peculiarity.

In the present work we mainly extend this latter approach to nonsymmetric M-
matrices. Using the analysis in [29], we show that the aggregation algorithm at the
heart of the approach in [25] can be applied to the symmetric part of the matrix
1
2 (A+AT ) and yet guarantee some convergence result for the nonsymmetric problem.
It is worth mentioning that our results apply as well to problems with variable (e.g.,
recirculating) flow. Thus in some sense we break the curse according to which the
theory for nonsymmetric problems is restricted to the constant coefficient case (e.g.,
because it is based on the Fourier analysis) and hence unable to directly address the
peculiarities associated with recirculating flows.

Nevertheless, whereas in [25] a full multilevel convergence proof is provided, we
have to be less ambitious in the nonsymmetric case, and the following restrictions
apply: the convergence analysis is for the two-grid method only (with exact solution
of the coarse system); it holds for a simplified scheme with only one damped Jacobi
smoothing step (whereas Gauss–Seidel smoothing works better in practice); it is based
on eigenvalues, and hence reflects the asymptotic convergence properties, but does not
take into account “nonnormality” effects that can deeply affect the actual convergence;
see [15, 20] and [39, Chapters 25 and 26]. However, these issues are discussed through
numerical experiments.

Regarding assumptions, our analysis requires that the system matrix A is a non-
singular M-matrix with row and column sum both nonnegative. Recall that an M-
matrix has nonpositive offdiagonal entries, and a matrix C with nonpositive offdiag-
onal entries is an M-matrix if and only if Cx is nonnegative for at least one positive
vector x [2]; in particular (consider x = 1 , i.e., the vector with all components equal
to 1), a matrix with nonpositive offdiagonal entries that has nonnegative row sum is
an M-matrix. Then it is clear (see below for details) that the matrix A arising from
the upwind finite difference discretization of (1.2) is an M-matrix with nonnegative
row sum. However, one may wonder about the column sum. In the next section, we
obtain an expression for the column sum at a given gridpoint which shows that it is
equal to the divergence of (−v) at that point, plus some O(h2) or O(h3) correction
term. This motivates the restriction of the present study to problems with divergence-
free convective flow. Note that, because of the correction term, the column sum turns
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out to be negative at part of the gridpoints in some of the problems we have tested,
without having a significant influence on the results.

The remainder of this paper is organized as follows. In section 2, we briefly
review the matrix properties associated with the upwind finite difference discretization
of (1.2). Our convergence analysis in presented in section 3, and the associated
aggregation algorithm is given in section 4. Numerical results are reported in section 5
and conclusions are drawn in section 6.

2. Discretization of convection-diffusion equations. Here we want to as-
sess the matrix properties associated with the upwind finite difference discretization of
(1.2) on a regular grid with uniform mesh size h in all directions. For the sake of sim-
plicity, we consider two-dimensional problems only. The analysis of three-dimensional
problems leads to the same conclusions.

We first write the stencil of A at some typical gridpoint P , with neighbors N , E ,
S , W as depicted on the figure below. We assume that neither P nor its neighbors
belong to the boundary.

× × × × ×
× × × × ×
× × × × ×

P E

N

W

S

Beside the stencil of A , we give the stencil of its transpose, which is obtained by
considering the stencil of A (hence entries in its rows) at neighboring gridpoints. Since
the discretization scheme depends on the sign of the components of the convective flow
v = (vx , vy) , we need to consider different cases. We give the result for vy(P ) > 0
and both vx(P ) > 0 and vx(P ) < 0 ; the case vy(P ) < 0 can be treated in a similar
fashion. If vx(P ) is positive (negative), we assume that it is accordingly nonnegative
(nonpositive) at neighboring gridpoints. This always holds if the lines where vx(P ) is
zero coincide with grid lines.

If vx(P ) > 0:

Stencil of A :

⎡⎢⎣ − ν
h2

− ν
h2 − vx(P )

h
4 ν
h2 +

vx(P )+vy(P )
h − ν

h2

− ν
h2 − vy(P )

h

⎤⎥⎦ .

Stencil of AT :

⎡⎢⎣ − ν
h2 − vy(N)

h

− ν
h2

4 ν
h2 +

vx(P )+vy(P )
h − ν

h2 − vx(E)
h

− ν
h2

⎤⎥⎦ .

If vx(P ) < 0 :

Stencil of A :

⎡⎢⎣ − ν
h2

− ν
h2

4 ν
h2 +

−vx(P )+vy(P )
h − ν

h2 − −vx(P )
h

− ν
h2 − vy(P )

h

⎤⎥⎦ .

Stencil of AT :

⎡⎢⎣ − ν
h2 − vy(N)

h

− ν
h2 − −vx(W )

h
4 ν
h2 +

−vx(P )+vy(P )
h − ν

h2

− ν
h2

⎤⎥⎦ .

Hence one sees that A is indeed a matrix with nonpositive offdiagonal entries and
nonnegative row sum, and therefore an M-matrix.



A2292 YVAN NOTAY

The column sum at P is trivially obtained by summing the entries in the stencil
of AT . To obtain from there more insightful expressions, we further assume that vx
and vy are twice differentiable functions of x and y, respectively, and that the second
derivative is continuous. Then

vy(N) = vy(P ) + h
∂vy
∂y |P +h2 ∂2vy

∂y2 |n ,
where n is some point situated between P and N . Similarly,

vx(E) = vx(P ) + h∂vx
∂x |P +h2 ∂2vx

∂x2 |e ,

vx(W ) = vx(P )− h∂vx
∂x |P +h2 ∂2vx

∂x2 |w ,

where e is some point situated between P and E , whereas w is some point situated
between W and P . Using these relations one finds, for the case vx(P ) > 0 ,

(AT1)P = h−1
(
vx(P )− vx(E) + vy(P )− vy(N)

)
= −div (v) |P −h

(
∂2vx
∂x2 |e +∂2vy

∂y2 |n
)
,

whereas, for the case vx(P ) < 0 ,

(AT1)P = h−1
(− vx(P ) + vx(W ) + vy(P )− vy(N)

)
= −div (v) |P +h

(
∂2vx
∂x2 |e −∂2vy

∂y2 |n
)

.

When v has zero divergence, the column sum at interior gridpoints is therefore
zero up to a correction term which, relative to the diagonal element, is of order O(h2)
or O(h3) .

3. Two-grid analysis.

3.1. General setting. As already stated, two-grid methods combine the effects
of a smoother and of a coarse grid correction. If a stationary iterative method is used,
it means that at each step the error vector (i.e., the difference between the exact
solution and the current approximation) is multiplied by the iteration matrix

(3.1) T = (I −M−1
2 A)ν2(I − P A−1

c RA)(I −M−1
1 A)ν1 .

In this expression, M1 , M2 are, respectively, the pre- and the postsmoother, and ν1 ,
ν2 are the number of pre- and postsmoothing steps; letting nc be the number of coarse
unknowns, P is the prolongation, an n × nc matrix that allows to prolongate on the
fine grid a vector defined on the coarse grid; R is the restriction, an nc × n matrix
that does the converse operation; i.e., it allows one to map on the coarse variables a
given fine grid vector; Ac is the coarse grid matrix, an nc × nc matrix that in some
sense represents the fine grid problem on the coarse variables.

Note that in practice one rarely stays with a two-grid scheme. Indeed, it remains
costly to solve exactly a system with the coarse grid matrix Ac as required by the
term A−1

c in (3.1). Therefore, an approximate solution is used instead, which is itself
based on the same two-grid scheme applied now to this coarse system, and hence
using a further coarser grid with even fewer unknowns. The approach so defined is
then followed recursively until the coarse grid matrix is small enough to be factorized
at negligible cost. As stated in the introduction, our theoretical analysis is, however,
restricted to the model two-grid method defined by (3.1).
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Clearly, the efficiency of the approach critically depends on the good interplay
between the smoother and the coarse grid correction. That is, modes that are not
significantly damped by the smoothing iterations (i.e., by the factors (I−M−1

2 A)ν2and
(I −M−1

1 A)ν1) should be efficiently damped by the coarse grid correction. In AMG
methods, the components P , R , Ac defining this latter are not given but set up by
appropriate algorithms which use only information from the system matrix A . Most
often—and this work will make no exception—one sets Ac = RAP , which ensures
that the coarse grid correction term I − P A−1

c RA is a projector which perfectly
filters out modes in the range of P . The setup amounts then to finding appropriate
P and R , in a way that favors the good interplay mentioned above, most often fixing
the smoother to some simple method such as the Gauss–Seidel or damped Jacobi
methods.

According to the remark above about the recursive use of a hierarchy of two-grid
schemes, this setup phase is not only applied at the top (fine grid) level, but actually
recursively at the successively defined coarse levels. If the two-grid analysis is based on
some matrix properties, it is then important that the coarse grid matrices generated
by the process inherit these properties from the fine grid system matrix.

In this work, we focus on very simple (piecewise constant) prolongations associ-
ated with aggregation. The main setup task consists then in the agglomeration of
the unknowns into nc nonempty disjoint sets Gk , k = 1, . . . , nc , called aggregates. To
each aggregate Gk is associated one unknown at the next coarse level in the hierar-
chy. In addition, some unknowns can be also kept outside the coarsening process,
and the corresponding (possibly empty) set is denoted G0 ; that is, G0 gathers the
unknowns that are not associated to any coarse unknown. Thus Gk , k = 0, 1, . . . , nc,
is a partitioning of [1, n] . This partitioning uniquely determines the prolongation P :
for i = 1, . . . , n and j = 1, . . . , nc , we set

(3.2) (P )ij =

{
1 if i ∈ Gj ,
0 otherwise .

Hence a row of P is zero if and only if the corresponding unknown is in G0 , whereas
the other rows have exactly one nonzero entry. Note also that P has full rank by
construction.

When G0 is empty, a constant vector on the coarse grid is then prolongated by
a constant vector on the fine grid. This is a sensible choice for M-matrices with
nonnegative row-sum, and, more generally, for matrices from the discretization of
scalar PDEs like (1.2). As made clearer below, the role of G0 is to gather nodes
that need not to be represented on the coarse grid because the corresponding error
components are sufficiently damped thanks to the sole action of the smoother.

Regarding the restriction, R = PT is the standard choice in the symmetric case,
but it is still an open question how to, in general, best choose R for nonsymmetric
problems; see [7, 11, 21, 29, 37, 44] for related discussions. However, given the simple
form of P and the fact that the column sum is also nonnegative, we stay with R = PT ,
which seems the most sensible option in this context; the results obtained below may
also be seen as an a posteriori justification of this choice. Note that if the row and/or
the column sum would be not nonnegative, it might be better to use an adaptive
scheme in the spirit of the method in [7]. The discussion of such approaches lies,
however, outside the scope of the present paper.

As mentioned above, we use Ac = RAP , or, since R = PT , Ac = PT AP .
Hence all components P , R , Ac are fixed from (3.2) once the partitioning Gk , k =
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0, 1, . . . , nc, has been defined. In particular, it is worth noting that the entries in
Ac = PTAP can be obtained from a simple summation process:

(3.3) (Ac)kl =
∑
i∈Gk

∑
j∈Gl

aij k, l = 1, . . . , nc .

The following lemma proves some properties of the matrices A and Ac , showing
in particular that Ac defined in this way is nonsingular and, more generally, inher-
its useful algebraic properties from A . Statement (2) is essentially retrieved from
Theorem 3.6 in [19].

Lemma 3.1. Let A be a nonsingular n × n M-matrix with row and column sum
both nonnegative. Let Gk, k = 0, . . . , nc , be some partitioning of [1, n] , define P by
(3.2), and set Ac = PTAP .

(1) If A is irreducible, then AS = 1
2 (A+AT ) is positive definite.

(2) Ac is an M-matrix with row and column sum both nonnegative.
(3) If AS = 1

2 (A + AT ) is positive definite, then 1
2 (Ac + AT

c ) is positive definite
and Ac is nonsingular.

(4) Letting D = diag(A) , there holds

‖I −D−1/2AD−1/2‖2 ≤ 1 .

Proof. (1) AS has nonpositive offdiagonal entries and nonnegative row sum, and
hence it is a symmetric M-matrix and therefore nonnegative definite [2]. Further,
the irreducibility of A entails that of AS , and it is known that for an irreducible
symmetric M-matrix AS , when AS1 ≥ 0 (where 0 is the zero vector),1 then either
AS is positive definite or AS1 = 0 [2]. But, with A1 ≥ 0 and AT1 ≥ 0 , AS1 = 0
is possible only if A1 = AT1 = 0, i.e., only if A is singular, which contradicts the
assumptions.

(2) One has, for all 1 ≤ k ≤ nc ,

nc∑
l=1

(Ac)kl =

nc∑
l=1

⎛⎝∑
i∈Gk

∑
j∈Gl

aij

⎞⎠ =
∑
i∈Gk

⎛⎝ n∑
j=1

aij −
∑
j∈G0

aij

⎞⎠ ≥ ∑
i∈Gk

(A1)i .

Hence the row sum of Ac is nonnegative. The proof of the nonnegativity of the
column sum is similar. On the other hand, one sees from (3.3) that Ac has nonpositive
offdiagonal entries. Then, having nonnegative row sum, it is necessarily a (possibly
singular) M-matrix.

(3) Since 1
2 (Ac +AT

c ) = PTASP and P has full rank, the positive definiteness of
AS entails that of 1

2 (Ac + AT
c ) . This further ensures the nonsingularity of Ac since

Acx = 0 for any x would entail xT (Ac +AT
c )x = 0 , which is possible only for x = 0 .

(4) Let C = I −D−1/2AD−1/2, and observe that

‖I−D−1/2AD−1/2‖22 = λmax(C
TC) = λmax(D

−1/2CTCD1/2) ≤ ‖D−1/2CTCD1/2‖∞ .

Further, since C and therefore D−1/2CTCD1/2 has nonnegative entries (the diagonal
of C is zero),

‖D−1/2CTCD1/2‖∞ = max
i

(
D−1/2CTCD1/21

)
i
.

1Inequalities between vectors are to be understood componentwise.
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The required result then follows because A has nonnegative row and column sum:

D−1/2CTCD1/21 = D−1/2CT
(
D1/21−D−1/2A1

) ≤ D−1/2CTD1/21

= D−1/2
(
D1/21−D−1/2AT1

) ≤ 1 .

The main assumptions of our analysis below are that A is a nonsingular M-
matrix with row and column sum both nonnegative and such that its symmetric part
AS = 1

2 (A+AT ) is positive definite. By (1) of the above lemma, this latter property
follows from the irreducibility of A ; (2) and (3) then show that Ac inherits these
properties. The usefulness of statement (4) will appear later.

Now, as stated in the introduction, our theoretical analysis is restricted to the
case of just one damped Jacobi postsmoothing step; that is, ν1 = 0 , ν2 = 1, and
M2 = ω−1D , where D = diag(A) . With R = PT , the iteration matrix (3.1) is then
simplified to

(3.4) T = (I − ωD−1A)(I − P A−1
c PTA) .

On the other hand, here we mainly consider the two-grid scheme as a precon-
ditioner for a Krylov subspace method. This is true at the fine grid level, but also
at coarser levels because we intend to use the K-cycle. It means that we have to
implement the action of the B−1

TG on a vector, where B−1
TG is defined from the iteration

matrix via

T = I −B−1
TGA .

With (3.4) this amounts to

(3.5) B−1
TG = ωD−1 + (I − ωD−1A)P A−1

c PT .

In the SPD case, the eigenvalues of B−1
TGA are real positive, and the convergence

properties are in general well reflected by the condition number, which is equal to the
ratio of the extremal eigenvalues. There is no such “magic” number in the nonsym-
metric case, but

(3.6) ραopt = min
α

max
λ∈σ(B−1

TGA)
|1− αλ|

is often meaningful. It represents the asymptotic convergence factor of a fixed point
iterative method with optimal scaling of the preconditioner. When this number is
reasonably small (away from 1), then the eigenvalues of B−1

TGA are necessarily both
bounded and away from the origin, which are the two main requirements for efficient
preconditioning. The convergence also depends on phenomena that cannot be cap-
tured by the analysis of the sole eigenvalues, but we can only discuss the latter in
section 5 via some numerical experiments.

3.2. Summary of previous results. Before developing our analysis, for the
sake of readability, we gather needed results from [29] and [24] in, respectively,
Lemma 3.2 and Lemma 3.3 below. We give a short proof because the statements
in these lemma are particularized to the context defined in the previous subsection,
which requires some additional steps.

Lemma 3.2. Let A be a nonsingular n× n matrix with positive diagonal entries.
Let P be a n× nc matrix of rank nc such that Ac = PT AP is nonsingular. Let BTG

be defined by (3.5), where D = diag(A) .
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(1) PTDP is nonsingular.
(2) The eigenvalues of B−1

TGA that are not equal to one are the inverse of the
nonzero eigenvalues of

ω−1A−1D
(
I − P (PTDP )−1PTD

)
.

(3) If ‖I −D−1/2AD−1/2‖2 ≤ 1 , then any eigenvalue λ of B−1
TGA is either equal

to one or satisfies

(3.7) |λ− ω| ≤ ω .

(4) If AS = 1
2 (A+AT ) is positive definite, then any eigenvalue λ of B−1

TGA satisfies

(3.8) �e(λ) ≥ min

(
1 ,

1

κS

)
,

where

(3.9) κS = ω−1 sup
v �=0

vTD
(
I − P (PTDP )−1PTD

)
v

vTASv
.

Moreover, κS in this relation is nothing but the inverse of the smallest eigenvalue of(
B

(S)
TG

)−1
AS , where(

B
(S)
TG

)−1
= ωD−1 + (I − ωD−1AS)P (PTASP )−1PT .

Proof. (1) Since the diagonal entries of A are assumed positive, D is SPD, and
therefore PTDP is also SPD because P has full rank.

(2) Observing that the eigenvalues of B−1
TGA are those of I − T , this statement

is essentially statement 1 of Theorem 2.1 in [29], applied to the case ν1 = 0 , ν2 = 1 ,
M2 = ω−1D , and therefore X = ω−1D (with thus Xc = PTDP nonsingular, as
required by this theorem).

(3) Consider again ν1 = 0 , ν2 = 1 , M2 = ω−1D, and X = ω−1D ; X being SPD,
observe that

‖ωI −X−1A‖X = ω‖I −D−1A‖D = ω‖I −D−1/2AD−1/2‖2 ;

that is, ‖I − D−1/2AD−1/2‖2 ≤ 1 if and only if ‖ωI − X−1A‖X ≤ ω . Then the
required result straightforwardly follows from relation (34) in Corollary 2.1 of [29].

(4) Considering again ν1 = 0 , ν2 = 1 , M2 = ω−1D, and X = ω−1D , this state-
ment is inequality (44) in Corollary 2.2 of [29], in which one setsQ = P (PTDP )−1PTD ,
and therefore (I −QT )X(I −Q) = ω−1D

(
I − P (PTDP )−1PTD

)
.

Lemma 3.3. Let AS be an n × n SPD matrix, and set D = diag(AS) . Let Gk,
k = 0, . . . , nc , be some partitioning of [1, n] , and define P by (3.2). Let Ab , Ar

be nonnegative definite symmetric matrices such that AS = Ab + Ar and Ab is block
diagonal with respect to the partitioning Gk (i.e., (Ab)ij = 0 if i , j do not belong to the
same subset Gk). For k = 0, . . . , nc , let Ab|Gk

be the submatrix of Ab corresponding
to indices in Gk . There holds

(3.10) sup
v �=0

vTD
(
I − P (PTDP )−1PTD

)
v

vTASv
≤ max

k=0,...,nc

μ(k) ,
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where

μ(0) =

{
0 if G0 is empty ,

maxv
vTDG0v

vTAb|G0v
otherwise

and where, for k = 1, . . . , nc ,

μ(k) =

⎧⎨⎩0 if |Gk| = 1 ,

supv/∈N (Ab|Gk
)

vTD|Gk
(I−1Gk

(1T
Gk

D|Gk
1Gk

)−11T
Gk

D|Gk
)v

vTAb|Gk
v otherwise ,

with D|Gk
being the submatrix of D corresponding to indices in Gk and 1Gk

=
(1, 1, · · · , 1)T (of size |Gk|).

Proof. This lemma is Theorem 3.2 in [24], applied to AS and particularized to
the case D = diag(A) with pk = 1Gk

for all k > 0 .

3.3. Analysis. First of all, with (2) of Lemma 3.2, one sees that changing ω
only rescales all the eigenvalues of B−1

TGA except the eigenvalue 1, which, nevertheless,
remains inside the spectrum if ω is chosen in a sensible way. Then this rescaling has
nearly no influence on the convergence when using Krylov subspace acceleration. We
therefore do not need to discuss how to select ω ; we leave it as unspecified parameter
in this section, whereas the numerical illustration in section 5 is given for ω = 0.5 .

Now we come back to the two main requirements for efficient preconditioning
discussed at the end of section 3.1, that is, to have the eigenvalues of B−1

TGA both
bounded and away from the origin.

The first objective of having bounded eigenvalues is the easiest to check. In the
SPD case, it is a quite general result that the eigenvalues of B−1

TGA do not exceed 1,
under mild assumptions on the smoother and whatever the prolongation P ; see, e.g.,
[29, 43]. There is no equivalent for nonsymmetric matrices, except perhaps the result
in Corollary 2.1 of [29] that is restated in (3) of Lemma 3.2 above. The assumption
‖I −D−1/2AD−1/2‖2 ≤ 1 is indeed also independent of P , but, however, in general
far from trivial to check. Fortunately, we have already shown in (4) of Lemma 3.1
that it is always satisfied in the context of this paper.

On the other hand, to show that the eigenvalues are away from the origin, we
can use (4) of Lemma 3.2. It proves that the smallest eigenvalue for the two-grid
scheme applied to the symmetric part of the matrix is also a lower bound for the real
part in the nonsymmetric case. Moreover, this result holds for any P . From there,
analyzing the nonsymmetric case looks easy. This is probably true for convection-
diffusion problems with constant flow. However, consider the stencils given in the
previous section, and average those of A and AT to get that of the symmetric part.
It is close to that associated with a diffusion problem

−∂xax∂xu− ∂yay∂yu = f

with coefficients

ax = ν + h |vx| ay = ν + h |vy| .

For variable flows and dominating convection (ν � h|v|), this diffusion tensor varies
continuously on the grid, and, according to the region of the domain, the anisotropy
ratio ax/ay may be very large, very small, or moderate. Hence, even reduced to the
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symmetric part, the problem presents some unusual features that may prevent fast
convergence of multigrid methods.

However, the results in [24, 25] suggest that, with aggregation-based multigrid
schemes, it is possible to efficiently bound below the eigenvalues for such symmetric
problems with varying coefficients. The general idea is as follows. Theorem 3.2 of
[24] has been restated in Lemma 3.3 above. To apply it, one first needs a proper
splitting of the symmetric part AS into two nonnegative definite matrix. When AS

is an M-matrix with nonnegative row sum, this splitting is easy to obtain: regarding
the offdiagonal part, Ab gathers the connections that are internal to the aggregates
(i.e., between two nodes of a same aggregate), and Ar the other ones; on the other
hand the diagonals are such that Ar has zero row sum and therefore Ab has the same
row sum as AS . In other words, Ab is obtained from AS by discarding and lumping
to the diagonal the entries that are in the block offdiagonal part with respect to the
partitioning in aggregates. This lumping ensures that both Ab and Ar are weakly
diagonally dominant and hence nonnegative definite.

Then (see (3.10)) the main quantity involved in the lowest eigenvalue analysis
can be controlled if the parameter μ(k) associated with each aggregate is efficiently
bounded. And this parameter depends only on the corresponding diagonal block
in Ab, i.e., on quantities “local” to the aggregate: the “local” matrix entries and
the row sum at “local” nodes. Observe that the lumping process mentioned above
tends to make these diagonal blocks Ab|Gk

ill-conditioned, or even singular with zero
row sum when the row sum of AS is zero at every node of the aggregate. But, for
regular aggregates (k > 0), it does not mean that μ(k) is unbounded since the matrix
D|Gk

(I − 1Gk
(1T

Gk
D|Gk

1Gk
)−11T

Gk
D|Gk

) is also, by construction, singular with the

constant vector in its kernel. This is not true for μ(0) , in fact, because nodes in G0

are kept outside the aggregation and actually not represented anymore on the coarse
grid. Therefore, smoothing iterations alone should be sufficient to efficiently damp
the error at these nodes, which, in this analysis, is reflected by the requirement that
the corresponding block Ab|G0 is well-conditioned. In practice, as will be seen below,
this requirement can be checked via a strong diagonal dominance criterion.

Theorem 3.4 below formally states the result that can be obtained from these
considerations together with the above lemma. It extends to the nonsymmetric case
the approach followed in Theorem 2.1 of [25] in the symmetric case. This is, however,
not a mere extension because here we restrict ourselves to damped Jacobi smoothing,
whereas in [25] the focus is on a class of more sophisticated SPD smoothers.

Theorem 3.4. Let A = (aij) be an n × n nonsingular M-matrix with row and
column sums both nonnegative and such that AS = 1

2 (A+AT ) is positive definite. Let
Gk, k = 0, . . . , nc , be some partitioning of [1, n] , and define P and BTG by (3.2) and
(3.5), respectively, where D = diag(A) , Ac = PTAP , and where ω is some positive
number. Let λi be any eigenvalue of B−1

TGA .
(1) There holds λi = 1 or

(3.11) |λi − ω| ≤ ω .

(2) For any subset G of [1, n] , let AS |G be the submatrix of AS correspond-
ing to indices in G , and let ΣG be the |G| × |G| diagonal matrix with (ΣG)ii =∑

j /∈G |aG(i)j+ajG(i)

2 | , where G(i) is the ith element in G . Set A
(S)
G = AS |G − ΣG ,

DG = diag(AS |G) , and define, if |G| > 1 ,

(3.12) μ(G) = ω−1 sup
v/∈N (A

(S)
G )

vTDG(I − 1G(1
T
GDG1G)

−11T
GDG)v

vTA
(S)
G v

,
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where 1G = (1, 1, . . . , 1)T is a vector of size |G|.
If, for a given κ̄TG , there holds

(3.13) aii ≥ κ̄TG

κ̄TG − ω−1

⎛⎝ n∑
j=1,j �=i

|aij + aji|
2

⎞⎠ ∀i ∈ G0

and, for k = 1, . . . , nc , either |Gk| = 1 or

(3.14) μ(Gk) ≤ κ̄TG ,

then

(3.15) �e(λi) ≥ min

(
1 ,

1

κ̄TG

)
.

Eventually, if, in addition, ω ≥ 0.5 and κ̄TG ≥ 1 , then, defining ραopt by (3.6), there
holds

(3.16) ραopt ≤
√
1− 1

2ω κ̄TG
.

Proof. Statements Lemma 3.1(4) and Lemma 3.2(3) prove (3.11). On the other
hand, statement Lemma 3.2(4) proves (3.15) if κS as in (3.9) satisfies κS ≤ κ̄TG .
To show this, we apply Lemma 3.3 using the splitting AS = Ab + Ar , where, for

k = 0, . . . , nc , the diagonal block of Ab corresponding to the subset Gk is A
(S)
Gk

. Since
AS has nonnegative row sum and nonpositive offdiagonal entries, the definition of

A
(S)
Gk

indeed entails that both Ab and Ar are then weakly diagonally dominant; hence
they are symmetric nonnegative definite and the splitting satisfies the assumptions
of Lemma 3.3. This latter, together with (3.14), then yields the required result,
providing that

ω−1 max
v∈�|G0|

vTDG0v

vTA
(S)
G0

v
≤ κ̄TG ,

and this latter inequality follows from the fact that ω κ̄TG A
(S)
G0
− DG0 is diagonally

dominant and hence nonnegative definite: using (3.13), one obtains

(ω κ̄TG A
(S)
G0
−DG0)ii = (ω κ̄TG − 1) aG0(i)G0(i) − ω κ̄TG

⎛⎝∑
j /∈G0

|(AS)G0(i)j |
⎞⎠

≥ ω κ̄TG

⎛⎝ ∑
j �=G0(i)

|(AS)G0(i)j | −
∑
j /∈G0

|(AS)G0(i)j |
⎞⎠

= ω κ̄TG

⎛⎝ ∑
j∈G0 , j �=G0(i)

|(AS)G0(i)j |
⎞⎠

=
∑
j �=i

|(ω κ̄TGA
(S)
G0
−DG0)ij | .

Regarding (3.16), we assess the spectral radius for the specific scaling factor α =
(2ω)−1 ; that is, we use

ραopt ≤ max
λ∈σ(B−1

TGA)
|1− (2ω)−1 λ|
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and show that the right-hand side is itself bounded by (1− 1
2ω κ̄TG

)1/2 . From (3.11),

it follows that, for any eigenvalue λi different from 1, |(2ω)−1 λi − 1
2 | ≤ 1

2 , and this is
also true for the eigenvalue λi = 1 by virtue of the condition ω ≥ 0.5 . On the other
hand, with κ̄TG ≥ 1 , (3.15) entails �e(−1λi) ≥ κ̄−1

TG . Hence,

|1 − (2ω)−1 λi|2 = | 12 − (2ω)−1 λi|2 + 3
4 − (2ω)−1�e(λi) ≤ 1

4 − (2ωκ̄TG)
−1 + 3

4 ,

yielding the required result.
This theorem can be used in two ways. First, one may develop an a posteriori

analysis of any given aggregation scheme by assessing or computing the smallest κ̄TG

meeting assumptions (3.13) and (3.14). In particular, for constant coefficient problems
and a regular (“geometric”) aggregation pattern, it should not be too difficult to derive
analytical bounds along the lines of the results in [24]. Such an a posteriori analysis
may also, to some extent, explain the good results obtained in [28] with a heuristic
aggregation method. Indeed, with the latter methods the aggregation is driven by
the strong couplings, and the examples analyzed in [24] suggest that this is indeed a
sensible way to obtain meaningful bounds from the assessment of the μ(Gk) .

In this work we focus, however, on the second approach, where the theorem is
used hand in hand with a dedicated algorithm which builds the aggregates Gk in
such a way that μ(Gk) is guaranteed below a given threshold. This approach has
already been developed in [25] for the symmetric case, and since μ(Gk) is based
on the symmetric part anyway, we can essentially reuse these results; that is, reuse
the aggregation algorithm developed there. However, a few adaptations are needed
because the damped Jacobi smoother considered here is different from the smoother in
[25]. These adaptations are given in the next section together with a general reminder
of the approach.

4. Aggregation algorithm. Here we give the aggregation procedure with only
a few comments, referring the reader to [25] for more details and motivations. Note
that, regarding conditions (3.13), (3.14) that are to be met to allow the application
of Theorem 3.4, only the product ω κ̄TG matters. Hence, without loss of generality,
we fix ω to 0.5 and keep only κ̄TG as an adjustable parameter.

In fact, the procedure is a compound of three algorithms. Inspired from [28],
the approach is based on a few successive applications of a pairwise algorithm, which
attempts to form aggregates of size 2. Moreover, for technical reasons, the pairwise al-
gorithm for the initial step and the pairwise algorithm for the further steps are slightly
different. Hence we have an “initial pairwise aggregation algorithm” (Algorithm 4.2),
a “further pairwise aggregation algorithm”(Algorithm 4.3), and a “multiple pairwise
aggregation algorithm”(Algorithm 4.1), the last of which makes explicit the connec-
tion between the successive passes.

As seen in Algorithm 4.1, one starts thus with Algorithm 4.2. In the latter, G0

is first set according to condition (3.13), and this subset is fixed once for all. Then,
whenever possible, pairs—that is, aggregates Gk of size 2—are formed in such a way
that μ(Gk) is as small as possible and anyway below the chosen threshold κ̄TG . The
nodes with which one cannot form any valid pair give rise to aggregates of size 1;
that is, they are transferred as is to the coarse grid. It is shown in Appendix A
that the given expression for μ({i, j}) indeed matches the definition (3.12) (with
ω = 0.5) when G contains only two nodes. On the other hand, the conditions that
aii − si + ajj − sj ≥ 0 and that μ({i, j}) (in fact its denominator) be positive have
been added in view of the possibility of having in practice some columns with negative
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Algorithm 4.1 (multiple pairwise aggregation) .

input : n× n matrix A

threshold κ̄TG

maximal number of passes npass

target coarsening factor τ

output : nc and sets G0 , . . . , Gnc

corresponding aggregation matrix Ac

(1) First pass: Apply initial pairwise aggregation Algorithm 4.2

to matrix A with threshold κ̄TG ;

Output: n
(1)
c , G0 and G

(1)
1 , . . . , G

(1)
nc ;

(2) Form A(1) ← PTAP with P defined via (3.2)

with respect to G
(1)
1 , . . . , G

(1)
nc

(3) Iterate: for s = 2, . . . , npass

(3a) Next passes: Apply further pairwise aggregation Algorithm 4.3

to matrix A with threshold κ̄TG, ñc = n
(s−1)
c ,

G̃k = G
(s−1)
k , k = 1, . . . , n

(s−1)
c , and Ã = A(s−1) ;

Output: n
(s)
c , G

(s)
1 , . . . , G

(s)
nc ;

(3b) Form A(s) ← PTAP with P defined via (3.2)

with respect to G
(s)
1 , . . . , G

(s)
nc

(3c) if ( nnz(A(s)) ≤ nnz(A)
τ ) goto step 4

(4) nc ← n
(s)
c , Gk ← G

(s)
k , k = 1, . . . , nc and Ac ← A(s)

Algorithm 4.2 (initial pairwise aggregation) .

input : n× n matrix A = (aij)

threshold κ̄TG

output : nc and sets G0 , . . . , Gnc

(0) Initialize : G0 =
{
i
∣∣∣ aii ≥ κ̄TG

κ̄TG−2

(∑n
k=1,k �=i

|aij+aji|
2

)}
(1) U ← [1, n]\G0

nc ← 0

si ← −
∑

j �=i
aij+aji

2 for all i ∈ U

(2) Iterate : while U �= ∅ do
(2a) Select i ∈ U

(2b) Find j ∈ U\{i} such that aij �= 0 ,

aii − si + ajj − sj ≥ 0 and

μ({i, j}) =
2
(

1
aii

+ 1
ajj

)−1

−aij+aji

2 +
(

1
aii−si

+ 1
ajj−sj

)−1

is positive and minimal

(2c) nc ← nc + 1

(2d) if ( μ({i, j}) ≤ κ̄TG ) Gnc = {i, j} ; U ← U\{i, j}
else Gnc = {i} ; U ← U\{i}
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Algorithm 4.3 (further pairwise aggregation) .

input : n× n matrix A = (aij)

threshold κ̄TG

tentative ñc and sets G̃k, k = 1, . . . , nc

corresponding ñc × ñc matrix Ã = (ãij)

output : nc and sets G1 , . . . , Gnc

(1) Initialize : U ← [1, ñc]

nc ← 0

s̃i ← −
∑

k∈Gi

∑
j /∈Gi

aij+aji

2 for all i ∈ U

(2) Iterate : while U �= ∅ do
(2a) Select i ∈ U

(2b) Set T = { j | ãij �= 0 and ãii − s̃i + ãjj − s̃j ≥ 0

and 0 < μ̃({i, j}) ≤ κ̄TG }, where

μ̃({i, j}) =
2
(

1
ãii

+ 1
ãjj

)−1

− ãij+ãji

2 +
(

1
ãii−s̃i

+ 1
ãjj−s̃j

)−1

(2c) nc ← nc + 1

(2d) if ( T �= ∅ )

Select j ∈ T with minimal μ̃({i, j})
if ( μ(G̃i ∪ G̃j) ≤ κ̄TG )

Gnc = G̃i ∪ G̃j ; U ← U\{i, j}
else T ← T \{j} ; goto step 2b

else Gnc = G̃i ; U ← U\{i}

sum (i.e., si > aii or sj > ajj). Then Theorem 3.4 does not apply anymore, but we

implement the following heuristic: keep the same rules to define the submatrix A
(S)
G

associated to a tentative aggregate G , and use the same criterion based on (3.14) to

accept or reject the tentative aggregate, providing that A
(S)
G is nonnegative definite;

otherwise, the aggregate is always rejected; see Appendix A for a proof that A
(S)
G is

indeed nonnegative definite if and only if the conditions expressed in Algorithm 4.2
are met.

To obtain larger aggregates, Algorithm 4.1 computes the auxiliary coarse grid ma-
trix Ã = (ã)ij corresponding to this initial pairwise aggregation. Then Algorithm 4.3
is applied to form pairs in this matrix, that is, pairs of aggregates from the previous
pass. This latter algorithm is essentially the same as Algorithm 4.2, with a few adap-
tations. In fact, one cannot compute cheaply μ(G) if |G| is larger than 2. Therefore,
Algorithm 4.3 uses μ̃({i, j}) as an estimate of μ(G) and thus tries to minimize this
estimate instead of the true value. However, the condition (3.14) is well checked in

the initial matrix. This is cheap because A
(S)
G is nonnegative definite and satisfies

(3.14) for a given κ̄TG if and only if the matrix

ω κ̄TG A
(S)
G −DG

(
I − 1G(1

T
GDG1G)

−11T
GDG

)
is nonnegative definite, which can be confirmed by checking that its Cholesky fac-
torization exists (no pivot is negative). On the other hand, we show in Appendix A
that μ̃({i, j}) as defined in Algorithm 4.3 is a lower bound on μ(G) . Hence, it is
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sensible to use it as a cheap estimate, whereas this justifies that the algorithm takes
into consideration only those pairs for which μ̃({i, j}) is below the chosen threshold.

We did not state explicitly how is selected the unknown in U at step 2a of the
pairwise aggregation algorithms. For a given unknown i , there may also be several
neighbors j for which μ({i, j}) or μ̃({i, j}) is minimal. If no rules are specified, the
resulting aggregation may be sensitive to the ordering of the unknowns and/or the
way offdiagonal entries are stored. Regarding this issue, we proceed verbatim as in
[25]. In short (see [25] for details and discussion), we first compute a Cuthill–McKee
(CMK) permutation [9] of the top level matrix. Then Algorithm 4.2 is applied giving
always (at both steps 2a and 2b) priority to the node with the smallest number in
this CMK permutation.

For the subsequent application of Algorithm 4.3, we note, however, that the
ordering in the auxiliary matrix Ã is driven by the order in which the pairs have been
formed during the previous pass; i.e., it is driven by the CMK permutation of the top
level matrix. Hence it is no more useful to compute such a permutation. A similar
effect is obtained by giving priority to the node with the smallest number in the
current ordering. Moreover, the order in which the aggregates are formed then also
reflects the initial CMK permutation. Therefore the same policy can be consistently
applied during all successive passes of Algorithm 4.3, and further also in Algorithm 4.2
at all coarser levels. Hence, to summarize, the priority is based on the ordering in a
CMK permutation during the very first application of Algorithm 4.2, and in all other
cases the nodes are processed according their order; i.e., priority is always given to
the node with smallest index.

5. Numerical results.

5.1. Illustration of theoretical results. We first illustrate how the aggrega-
tion procedure works. In this view we consider the PDE (1.2) on the unit square with
Dirichlet boundary conditions everywhere and convective flow as in Example 3.1.4
from [13] (remapped to the unit square; see Problem 2D1 below for complete speci-
fication). This flow has zero divergence and is highly varying both in direction and
magnitude, as illustrated on Figure 1.

On Figure 2, we depict the aggregation produced by applying Algorithm 4.1 to
the matrix resulting from the five-point upwind finite difference approximation of this
problem with viscosity ν = 10−3 , using a uniform mesh with mesh size h = 1/64 .

Direction of the flow Magnitude
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0.25

Fig. 1. Direction and magnitude of the flow for Problem 2D1.
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First level aggregation Second level aggregation

Fig. 2. Coarsening for Problem 2D1 with h = 1/64 and ν = 10−3 ; dark (red) boxes correspond
to nodes in G0, whereas light gray (green) boxes correspond to aggregates; in the right picture
(aggregation generated at the second level), nodes that are not in any box are those in G0 at previous
level and hence no longer represented in the coarse grid matrix.

The parameters used are as follows: threshold κ̄TG = 10 , number of passes npass = 2
and target coarsening factor τ = 4. These choices were indeed found among the
most effective in the context of more realistic simulations as reported in the next
subsections. We depict the first and the second level aggregation, the latter being
obtained from the application of Algorithm 4.1 (with the same parameters) to the
coarse grid matrix resulting from the first application. Note that the column sum
turns out to be nonnegative everywhere in this example.

Next we illustrate the results of Theorem 3.4. For the same example, considering
both the fine grid matrix (first level) and the first coarse grid matrix obtained as
indicated above (second level), we depict in Figure 3 the eigenvalues of B−1

TGA with
BTG defined by (3.5) (one damped Jacobi postsmoothing step with ω = 0.5). We also
depict the region which has to contain these eigenvalues, according to both (3.11)
and (3.15), and we eventually depict the limit of the convex hull of the eigenvalues of
ωD−1A . This allows us to see that the coarse grid correction is indeed necessary to
move the eigenvalues away from the origin.

We turn then to a more efficient smoothing scheme, although not covered by
the theory. Namely, we consider Gauss–Seidel smoothing, more precisely one for-
ward Gauss–Seidel sweep for presmoothing and one backward Gauss–Seidel sweep
for postsmoothing, that is, the preconditioner BTGS defined from I − B−1

TGSA = T
with respect to the iteration matrix (3.1), where ν1 = ν2 = 1 and M1 = low(A) ,
M2 = upp(A) (with, as usual, R = PT and Ac = PT AP ). The eigenvalues of
B−1

TGSA are depicted in Figure 4, with, again, the convex hull of the eigenvalues of
the matrix preconditioned by the action of the smoother alone, that is, the eigenval-
ues of M−1A , where M−1 = M−1

1 + M−1
2 −M−1

2 AM−1
1 gathers the actions of the

pre- and postsmoother. (Hence M = low(A)D−1upp(A) corresponds to symmetric
Gauss–Seidel preconditioning.)

Now, considering, for example, right preconditioning, the convergence is fully
characterized by the eigenvalues only if the preconditioned matrix AB−1

TGS is normal,
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First level Second level
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Fig. 3. One damped Jacobi smoothing step; +: σ(B−1
TGA) ; ----: limit of the region of inclusion

guaranteed by Theorem 3.4; ��: limit of the convex hull of σ(ωD−1A) .
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Fig. 4. Gauss–Seidel smoothing; +: σ(B−1
TGSA) ; ��: limit of the convex hull of σ(M−1A) ; ----:

boundary of the ε-pseudospectrum of ABTGS for ε = 1/20 .

that is, has orthogonal eigenvectors. Otherwise, there may be some significant gap
between the actual convergence and the one expected on the basis of, for example,
the spectral radius of the iteration matrix with optimal scaling (3.6). Such “nonnor-
mality” effects tend to be pronounced for discretized convection diffusion problems;
see the analyses in [15, 20] and [39, Chapter 25]. One way to assess them is to com-
pute, beside the spectrum, the so-called pseudospectrum. There are several equivalent
definitions of the latter [39, Chapter 2]; here we recall only the most intuitive one:
the ε-pseudospectrum σε(C) of a square matrix C is the set of z ∈ C such that
‖(z I − C)−1‖ ≥ ε−1 .

Summarizing roughly the analysis in Chapter 26 of [39], effective convergence
of GMRES [36] (or other norm minimizing methods) is guaranteed if the ε–pseudo-
spectrum is bounded and away from the origin. Apply this now to the right precondi-
tioned matrix AB−1

TGS . Observe ‖(z I−AB−1
TGS)

−1‖ is infinite at an eigenvalue. Hence
the requirement to have eigenvalues bounded and away from the origin is turned into
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Fig. 5. Gauss–Seidel smoothing; ----: ‖(I − αoptAB−1
TGS)

k‖ ; -·-: (ρ(I − αoptAB−1
TGS))

k .

a stronger requirement: to have the whole region where ‖(z I − AB−1
TGS)

−1‖ is large
bounded and away from the origin. To check this, we also depicted in Figure 4 the
boundary of the ε-pseudospectrum for ε = 1/20, that is, the boundary of the region in
which ‖(z I − AB−1

TGS)
−1‖ is larger than 20. One sees that this region is, as desired,

away from the origin and reasonably close to the convex hull of the spectrum.
Regarding the convergence of GMRES with right preconditioning, recall also that

after k steps the residual satisfies

‖rk‖ = min
Pk: pol. deg. k s.t. Pk(0)=1

‖Pk

(
AB−1

TGS

)
r0‖ ,

where r0 is the initial residual. Hence

‖rk‖
‖r0‖ ≤ ‖

(
I − αAB−1

TGS

)k ‖
for any α . In Figure 5, we plot this quantity as a function of k , for the α that
minimizes the spectral radius of I − αAB−1

TGS . This spectral radius is then equal to
the asymptotic convergence factor ρsopt of a fixed point iteration with optimal scaling
defined in (3.6). In Figure 5, we also plot (ρsopt)

k as a function of k , as it represents
in some sense an “ideal” convergence curve. One sees that the bound on the effective
convergence rate given by ‖(I−αAB−1

TGS)
k‖ follows this latter with only a slight delay

of about two iterations.
Both this latter observation and the pseudospectrum depicted in Figure 4 suggest

that our approach not only is effective with respect to the eigenvalues, but also al-
lows us to master the nonnormality effects often associated with convection-diffusion
problems.

5.2. Large scale problems. Here we want to further assess the potentialities
of the method to solve large two- and three-dimensional problems. In this view we
consider the following set of test examples, defined by the PDE (1.2) with f = 0 ,
Dirichlet boundary conditions (Γ0 = ∂Ω) with g0 = 0 everywhere except g0 = 1
on the right boundary in two-dimensional cases and on the top boundary in three-
dimensional ones. In all cases, we consider the five point (two-dimensional) or seven
point (three-dimensional) upwind finite difference approximation on a uniform mesh
with mesh size h in all directions. The domains and convective flows are as follows:
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Problem 2D1. Ω = unit square, v(x , y) =

(
x(1− x)(2 y − 1)
−(2 x− 1)y(1− y)

)
.

Problem 2D2. Ω = unit square, v(x , y) =

(
cos(πx) sin(πy)
− sin(πx) cos(πy)

)
.

Problem 2D3. Ω = unit square, v(x , y) =

(
sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

)
if x , y ≤ 1

2 and v(x , y) = 0 otherwise.

Problem 3D1. Ω = unit cube, v(x , y , z) =

⎛⎝ 2x(1− x)(2 y − 1)z
−(2 x− 1)y(1− y)

−(2x− 1)(2y − 1)z(1− z)

⎞⎠ .

Problem 3D2. Ω = unit cube, v(x , y, , z) =

⎛⎝ sin(2πx) cos(πy) cos(πz)
− cos(2πx) sin(πy) cos(πz)
− cos(2πx) cos(πy) sin(πz)

⎞⎠
if x ≤ 1

2 and v(x , y, z) = 0 otherwise.

Problem 3D3. Ω = unit cube, v(x , y, , z) =

⎛⎝ (y − 0.5)(z − 0.5)
(x− 0.5)(z − 0.5)
−2(x− 0.5)(y − 0.5)

⎞⎠
if |(x , y, z)− (0.5 , 0.5 , 0.5)| ≤ 2

5 and v(x , y, z) = 0 otherwise.

The flow for Problem 2D1 is illustrated in Figure 1. The flow is similarly varying and
rotating in other examples, while being sometimes zero in part of the domain.

In each case, we recursively apply the aggregation algorithm to generate the
needed hierarchy of coarse systems and associated prolongations. We uniformly use
the parameters indicated above: threshold κ̄TG = 10 , number of passes npass = 2,
and target coarsening factor τ = 4 .

The coarsening is stopped when the number of unknowns is below 40n1/3 . This is
indeed sufficiently small to make negligible (relatively to fine grid operations) the time
needed to perform an exact factorization of the matrix with a sparse direct solver.
In the present case we use MUMPS [22]. Occasionally (mainly for Problem 3D2),
the coarsening becomes slow from a certain stage. This seems due to columns with
negative sum: the corresponding nodes are often not aggregated by our algorithm,
and these nodes are then transferred as is to the coarser grid. To avoid an excessive
increase of the complexity in such cases, when it is detected that the number of
nonzero entries in the matrix is reduced by a factor less than 2 from one grid to the
next, then the coarse grid matrix is factorized when the number of unknowns is below
400n1/3 . Note that these choices were performed in a fully automatic way, the solver
being called in a black box fashion. Note also that, as illustrated later in this section,
it is actually harmless to pursue the coarsening until the number of unknowns is fairly
small, with the exception of those few problems being when the coarsening is slow
from a certain stage. In these cases a fairly small size cannot be attained without
changing the aggregation algorithm, for instance, introducing some heuristics to better
deal with situations where the column sum is negative at a significant fraction of the
nodes.

The coarsening scheme is combined with Gauss–Seidel smoothing and the K-cycle
to define a multigrid preconditioner. The smoothing scheme is the one described
above. Using the K-cycle means that, at each level of the hierarchy, a two-grid
preconditioner is defined in which the coarse grid system is solved approximately with
a few steps of a Krylov subspace iterative method; this definition is then recursive
because for this inner iteration we use the two-grid preconditioner on that coarser level;
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Table 1

Computational complexities and number of iterations.

CA CW #Iterations
Problem ν S1 S2 S3 S1 S2 S3 S1 S2 S3

2D1 100 1.3 1.3 1.3 1.9 2.0 2.0 10 9 9
10−2 1.4 1.3 1.3 2.1 2.0 2.0 12 10 9
10−4 1.8 1.9 1.9 3.5 3.8 3.7 16 18 22
10−6 1.6 1.6 1.6 2.8 2.9 3.0 14 14 14

2D2 100 1.3 1.3 1.3 2.0 2.2 2.1 10 9 9
10−2 1.5 1.4 1.3 2.6 2.5 2.1 19 22 11
10−4 1.5 1.5 1.5 2.6 2.6 2.6 12 16 21
10−6 1.4 1.4 1.4 2.5 2.5 2.5 7 8 10

2D3 100 1.3 1.3 1.3 2.0 2.0 2.0 9 10 10
10−2 1.5 1.4 1.3 2.4 2.3 2.0 14 13 10
10−4 1.4 1.4 1.5 2.3 2.4 2.5 13 14 14
10−6 1.4 1.4 1.4 2.2 2.2 2.3 17 18 15

3D1 100 1.3 1.3 1.3 1.9 2.0 2.0 8 8 8
10−2 1.6 1.6 1.6 3.2 3.5 3.7 11 11 11
10−4 1.7 1.7 1.7 3.6 3.9 4.0 11 11 11
10−6 1.6 1.6 1.6 3.4 3.6 3.8 14 15 17

3D2 100 1.4 1.4 1.3 2.4 2.2 2.3 8 8 8
10−2 1.5 1.5 1.5 3.0 3.1 2.9 11 11 12
10−4 1.5 1.5 1.5 3.2 3.3 3.0 12 12 12
10−6 1.5 1.5 1.5 3.2 3.1 3.2 13 15 16

3D3 100 1.3 1.3 1.3 1.9 2.0 2.0 8 8 8
10−2 1.6 1.6 1.6 3.0 3.3 3.7 11 12 13
10−4 1.6 1.5 1.5 3.2 3.3 3.4 12 13 14
10−6 1.5 1.5 1.5 3.1 3.2 3.4 13 14 15

see, e.g., [28] for details and algorithms. Here we use a simple Galerkin projection that
makes the residual orthogonal to the search vectors, as does the conjugate gradient
method in the symmetric case.2

We use the generalized conjugate residual (GCR) method [12] as the main itera-
tive method on the finest level. This Krylov subspace method provides the minimal
residual norm solution and allows for variable preconditioning [41]. To avoid exces-
sive memory requirements, the method is restarted each 10 iterations. In all cases we
use the zero vector as initial approximation, and iterations were stopped when the
relative residual error was below 10−6 . Note that such an extensive use of Krylov sub-
space methods has also been advised to enhance the robustness of geometric multigrid
methods when applied to convection-diffusion problems; see [32, 33].

Each problem was tested for viscosity ν ranging from 1 (diffusion dominating)
to 10−6 (convection dominating), and different mesh sizes according to the following
table:

2D problems 3D problems

h−1 n h−1 n
S1 600 3.6 105 80 5.1 105

S2 1600 2.5 106 160 4.1 106

S3 5000 2.5 107 320 3.3 107

Basic statistics are reported in Table 1 and timing results in Table 2. Test reported
here and in the next subsection were run on a computer with two Intel XEON L5420

2This turns out to be slightly faster on average than the GCR method used in [28] and has
become the default in the AGMG software [26].
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Table 2

Setup time, solution time and total time reported here per million of unknowns (with Ttotal =
Tsol + Tsetup).

Tsetup Tsol Ttot
Problem ν S1 S2 S3 S1 S2 S3 S1 S2 S3

2D1 100 0.9 0.8 1.1 2.1 2.1 2.2 3.1 2.9 3.3
10−2 1.0 0.8 1.1 2.6 2.4 2.2 3.6 3.2 3.4
10−4 1.6 1.5 1.9 5.3 6.7 8.7 6.8 8.2 10.5
10−6 1.4 1.1 1.5 3.9 4.3 4.6 5.3 5.5 6.1

2D2 100 1.0 0.8 1.2 2.3 2.4 2.3 3.3 3.2 3.5
10−2 1.1 0.9 1.1 5.2 6.3 2.9 6.3 7.2 4.1
10−4 1.1 1.0 1.3 2.9 4.5 6.3 4.0 5.6 7.6
10−6 1.1 1.0 1.3 1.8 2.0 2.6 2.9 3.0 3.9

2D3 100 1.0 0.8 1.2 2.0 2.4 2.5 3.0 3.2 3.7
10−2 1.1 0.9 1.1 3.5 3.4 2.5 4.5 4.4 3.7
10−4 1.0 0.9 1.3 3.1 3.7 4.0 4.1 4.7 5.3
10−6 1.1 0.9 1.3 4.1 4.7 4.1 5.2 5.6 5.3

3D1 100 1.4 1.9 2.3 1.9 2.1 2.3 3.3 4.1 4.6
10−2 1.7 2.5 2.9 4.2 5.1 5.6 5.9 7.5 8.5
10−4 1.9 2.8 3.1 4.7 5.8 6.0 6.6 8.6 9.2
10−6 1.9 2.6 3.1 5.6 7.4 9.3 7.5 10.0 12.4

3D2 100 1.3 2.0 2.3 2.4 2.6 2.7 3.7 4.6 5.0
10−2 1.5 2.2 2.6 4.1 4.8 5.7 5.6 7.0 8.3
10−4 1.6 2.3 2.8 4.8 5.6 6.1 6.4 7.9 8.9
10−6 1.6 2.4 2.8 5.1 7.3 8.7 6.7 9.7 11.5

3D3 100 1.3 1.9 2.3 2.0 2.2 2.4 3.2 4.1 4.6
10−2 1.6 2.4 2.9 4.0 5.3 6.5 5.6 7.7 9.4
10−4 1.7 2.5 2.9 4.6 5.8 6.8 6.3 8.3 9.6
10−6 1.6 2.5 3.0 4.9 6.3 7.6 6.5 8.8 10.5

processors at 2.50GHz and 16Gb RAM memory.
In Table 1, we give both the standard operator complexity and the weighted com-

plexity, respectively defined as

CA =

L∑
�=1

nnz(A�)

nnz(A1)
, CW =

L∑
�=1

2�−1 nnz(A�)

nnz(A1)
,

where nnz(A�) is the number of nonzero entries in A� , A1 standing for the fine grid
matrix, A2 for the first coarse grid one, etc (L is the number of levels). Compared
with the operator complexity, the weighted complexity incorporates the factor 2�−1

to take into account that two inner iterations are performed at each level; hence CW
correctly reflects the cost of one fine grid iteration step [25]. It therefore characterizes
the success or failure of the approach, together with the number of iterations which
informs about the convergence speed.

One sees that small viscosities tend to induce somewhat larger weighted com-
plexities; CW is nevertheless equal to at most 3.7, i.e., less than twice the value 2,
which is the standard bound on the weighted complexity that is obtained when the
coarsening is as desired, that is, reduces the number of nonzero entries by a factor
of 4 from one level to the next. Diffusion-dominating problems also lead to faster
convergence, and, for small viscosities, one sees that in some cases the number of
iterations slightly increases with the mesh size. Recall, however, that the size S3 is
fairly large and with about 100 times more unknowns than the size S1. On the other
hand one may observe that CA remains below 2 in all cases, which indicates that the
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Table 3

Weighted computational complexity, number of iterations, and total time per million of un-
knowns for Problem 3D1 with size S2.

κ̄TG 8 9 10 11 12 14 16 20 30

npass = 2
CW 10.0 5.2 4.0 3.5 3.2 2.9 2.8 2.7 2.6

#Iterations 15 15 15 16 16 18 18 19 19
Ttot 15.4 11.6 10.1 9.7 9.2 9.4 9.0 9.2 9.1

npass = 3
CW 7.2 4.2 3.2 2.7 2.4 2.1 2.0 1.8 1.6

#Iterations 15 16 16 18 19 20 21 24 26
Ttot 15.5 12.5 10.8 10.5 10.0 9.4 9.2 9.2 8.8

additional memory needed to store the preconditioner does not exceed the memory
needed to store the system matrix.

Regarding timings, the setup time varies between 0.8 and 3.1 seconds per mil-
lion of unknowns. It is always below the solution time, which varies between 2.1
and 9.3 seconds per million of unknowns, for a total time ranging between 3.1 and
12.4 seconds per million of unknowns.

Eventually, it is interesting to check the influence of the main parameters of our
coarsening algorithm. This is done in Table 3 for Problem 3D1 with size S2. Note that
in these tests the coarsening is pursued until the number of coarse unknowns does not
exceed 10, making the performance of the algorithm even more critical. As expected,
relaxing the constraints by increasing the threshold and/or the number of passes is
beneficial with respect to the weighted complexity but may result in somewhat slower
convergence, whereas the solution time is remarkably stable, except when going to
smaller threshold κ̄TG .

5.3. Comparison with other methods. Here we first compare our new method
as described in the previous subsection (referred to as AggGar) with the following
competitors.

1. AGMG 2.3, the 2.3 version of the AGMG software [26], which implements an
aggregation-based method similar the one in this paper except that the aggregation
procedure is based on the heuristic method described in [28].

2. The classical AMG method from [38] as implemented in the HSL Library [17].
Note that the comparison of solution time is meaningful because this library meets the
highest quality standards, and also because we integrated it into the same software
infrastructure as those used for testing aggregation-based methods, using the same
top-level iterative method and only substituting calls for setup and preconditioner
application for those provided by the library.

3. For two-dimensional problems, the sparse direct solver available in MATLAB
via the “\” command.

Results are reported in Table 4 (results for ν = 1 are omitted because they are
nearly identical to those obtained for ν = 10−2). One sees that the theoretically
well founded coarsening approach presented in Algorithms 4.1–4.3 allows us to obtain
faster code on average with more stable performances than with the heuristic aggre-
gation algorithm used in AGMG 2.3. The difference, however, is not that dramatic,
probably because the coarsening driven by the minimization of μ({i, j}) or μ̃({i, j})
is, in practice, not far from the coarsening driven by the strongest negative coupling
used in [28] (observe that μ or μ̃ decreases when the offdiagonal coupling becomes
more negative).
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Table 4

Total time for the different solvers, reported per million of unknowns.

ν = 10−2 ν = 10−4 ν = 10−6

S1 S2 S3 S1 S2 S3 S1 S2 S3

Problem 2D1
AggGar 3.6 3.2 3.4 6.8 8.2 10.5 5.3 5.5 6.1

AGMG 2.3 5.3 6.0 6.4 29.9 8.3 10.4 6.7 7.6 8.0
AMG 3.5 3.5 4.1 36.8 16.8 6.6 208.1 – –

MATLAB “\” 14.9 21.5 15.5 30.2 30.4 67.3

Problem 3D1
AggGar 5.9 7.5 8.5 6.6 8.6 9.2 7.5 10.0 12.4

AGMG 2.3 7.2 8.9 10.2 8.5 12.9 15.9 8.4 12.9 17.6
AMG 12.8 13.8 2.6e3 5.3e4 – – 1.2e5 – –

On the other hand, AMG performs well for moderate ν . However, for ν = 10−6

in two-dimensional cases and ν = 10−4 , 10−6 in three-dimensional ones, it turns out
that the coarsening breaks down at some early stage; the coarsest grid matrix is then
very large, hence its factorization is no longer feasible or slows down the whole process,
even using the highly efficient sparse direct solver that comes with the HSL Library.
Note for completeness that the slowness of AMG for the largest three-dimensional
example with ν = 10−2 is not due to a coarsening failure, but probably to the fact
that the code starts swapping because the memory requirements exceed the available
RAM memory (16 Gb as indicated above).

Eventually, the comparison with MATLAB “\” is interesting because this method
is known to be practically scalable and very hard to beat for two-dimensional prob-
lems, as long as there is enough memory. Indeed, for the two-dimensional Poisson
problem approximated by five point finite difference (SPD matrix), results reported
in [25] show that this method requires 6.2 and 6.6 seconds per million of unknowns
for sizes S1 and S2, respectively, and breaks down because of insufficient memory
only for size S3. Somewhat surprisingly, using to the nonsymmetric version to solve
the two-dimensional convection-diffusion problem requires more than twice the time
and seems to entail a significant loss of scalability. Even more surprisingly, a stronger
degradation is observed for very small viscosity. Hence we have the unexpected result
that, despite some variations in performances, our aggregation-based AMG method
is actually more robust than a reference direct solver.

In addition, it is also interesting to compare our approach with “smoothed ag-
gregation AMG” [6, 7, 37, 42]. Unfortunately, we did not find an implementation
that could be easily integrated into our software infrastructure and therefore allow a
fair comparison of solution times. In particular, the most robust version for challeng-
ing convection-diffusion problems seems the one developed in [7], but the high-level
MATLAB implementation used to produce the numerical results in this paper is, as
written in [7], “not an environment that is reasonable for timing.” However, Problem
2D1 is among the test problems in this paper (under the name “recirc”), as well as in
[37], where other versions of smoothed aggregation AMG are tested. Then we decided
to repeat the experiments in these papers, and give the results for our method next
to those for other approaches as published in [7, 37]. Note that we adapted our tests
to the specifications in these papers, regarding the stopping criterion, the right-hand
side, and even the discretization stencil, which in [7] is slightly different from that
presented in section 2. Note also that because the results reported in [7, 37] do not
correspond to very fine meshes, we also changed the default in our code, and coarsen-
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Table 5

Number of iterations for Problem 2D1, using the specifications from [37] (problem recirc).

h−1 = 512 (V-cycle for NSA, SA, and EMIN)

ν 2.5 10−2 2.5 10−3 2.5 10−4 2.5 10−5 2.5 10−6

AggGar 14 26 22 18 21
NSA 92 189 – – –
SA 9 12 33 – –

EMIN 9 10 21 65 119

ν = 2.5 10−6 (W-cycle for EMIN)

h−1 64 128 256 512 1024
AggGar 15 17 19 21 21
EMIN 22 38 55 65 61

ing is here pursued until the number of coarse unknowns does not exceed 10. Hence
good results of AggGar cannot be explained by the fact that the method truncates to
only a few levels for the given problem sizes.

In Table 5, we compare our results with those in [37]; NSA stands for “nons-
moothed aggregation” and may be seen as representative of what can be obtained
with a naive implementation of plain aggregation, using an aggregation procedure
tailored for classical smoothed aggregation and resorting to the V-cycle, i.e., ignoring
the K-cycle. SA stands for classical smoothed aggregation along the lines of the sem-
inal work for symmetric problems [42], and EMIN for the particular nonsymmetric
variant developed in [37]. The first part of the table is not completely meaningful
because results in [37] are for V-cycle variants that should be cheaper per iteration
step than AggGar. However, as acknowledged in this paper, all of these variants
clearly lack scalability. This motivated the authors of [37] to perform further tests
with the W-cycle, the clear winner being then EMIN. The second line of the table
compares AggGar with these latter results. Possibly, even with the W-cycle, the
weighted complexity is somehow smaller for EMIN as it is for AggGar in the most
difficult examples, but, on the other hand, the smoothing procedure used for EMIN
is twice more costly than the smoothing procedure in AggGar.

In [7], the quantity reported is the number of work units needed to reduce the
error by a factor of 10 (i.e., to gain one digit of accuracy), using as convergence
factor the mean convergence factor for the last 5 iterations in a sequence of 25; one
work unit represents the cost of one fine grid residual iteration. We computed the
same quantity for AggGar, estimating the number of work units from the flop count
reported by the program (whereas in [7] the number of work units per iteration is
estimated from complexities). Results are reported in Table 6, where SA and αSA
refer to the particular nonsymmetric variants developed in [7], which thus differ from
the SA and αSA methods in [6, 42]; note that αSA is an “adaptive” variants that
requires a significant amount of preprocessing.

6. Conclusions. We have developed a theoretical analysis that applies to any
M-matrix with row and column sums both nonnegative. This allows us to cover linear
systems arising from the upwind finite difference discretization of convection-diffusion
equations with divergence-free, but possibly variable, convective flow. An aggregation
procedure has been proposed that allows us to automatically match the conditions
that guarantee the convergence of a model two-grid scheme. More realistic two-grid
schemes and the recursive use of the approach to solve fairly large problems have been



AGGREGATION-BASED AMG FOR NONSYMMETRIC PROBLEMS A2313

Table 6

Number of work units per digit of accuracy for Problem 2D1, using the specifications from [7]
(problem recirc).

h−1 = 64 h−1 = 128

ν 3.9 10−2 3.9 10−4 3.9 10−6 1.9 10−2 1.9 10−4 1.9 10−6

AggGar 13.3 25.4 17.9 14.2 29.8 20.2
SA [7] 16.2 40.8 40.7 20.1 76.6 68.6

αSA [7] 9.9 27.0 42.0 10.7 48.7 69.4

investigated through numerical experiments. The results suggest that the proposed
technique can indeed lead to a fast and robust solver. Some sensitivity with respect to
the viscosity parameter is observed, as well as, for small viscosities, some dependency
with respect to the mesh size. These effects are, however, limited and in fact less
pronounced than for a reference direct solver and other algebraic multigrid methods.

Software. The results of this research have been integrated into the AGMG
software [26], whose version 3.1.2 is nearly identical to the code used to run the
numerical experiments in sections 5.2 and 5.3.

Appendix A. We first show that the conditions aii − si + ajj − sj ≥ 0 and

μ({i, j}) > 0 used in step (2b) of Algorithm 4.2 are met if and only if A
(S)
{i,j} is

nonnegative definite. Consider an aggregate G = {i, j} , and let si = −
∑

k �=i
aik+aki

2 ,

sj = −
∑

k �=j
ajk+akj

2 , α = −aij+aji

2 . In this context,

A
(S)
{i,j} =

(
aii − si + α −α
−α ajj − sj + α

)
= α

(
1 −1
−1 1

)
+

(
δ1

δ2

)
,

where δ1 = aii − si and δ2 = ajj − sj .
Noting 12 = 1{i,j} = (1 1)T , a necessary and sufficient condition for this matrix

being nonnegative definite is 1T
2 A

(S)
{i,j}12 ≥ 0 together with det

(
A

(S)
{i,j}

) ≥ 0 , yielding

the conditions δ1+δ2 ≥ 0 and α(δ1+δ2)+δ1δ2 ≥ 0 , latter of which is itself equivalent
to the requirement μ({i, j}) > 0 , since (1/δ−1

1 + 1/δ−1
2 )−1 = (δ1δ2)/(δ1 + δ2) .

We now show that the expression used for μ({i, j}) in step (2b) of Algorithm 4.2

matches the definition (3.12) when A
(S)
{i,j} is nonnegative definite. One has

DG(I − 1G(1
T
GDG1G)

−11T
GDG)

=

(
aii

ajj

)(
I −

(
1
1

)
(aii + ajj)

−1 (1 1
)(aii

ajj

))
=

aii ajj
aii + ajj

(
1 −1
−1 1

)
.

Hence, for nonnegative definite A
(S)
{i,j} , (3.12) amounts to

μ(G) = ω−1

aii ajj
aii + ajj

α + inf(v1,v2) �=(1,1)

(
v1 v2

)⎛⎝δ1
δ2

⎞
⎠
⎛
⎝v1
v2

⎞
⎠

(
v1 v2

)⎛⎝ 1 −1
−1 1

⎞
⎠

⎛
⎝v1
v2

⎞
⎠

.
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From there, one recovers the expression in step (2b) of Algorithm 4.2, noting that the
infimum on the right-hand side is equal to zero if any of the δi is zero, and, otherwise, is
obtained for (v1 , v2) = (−δ2 , δ1) (using again (1/δ−1

1 +1/δ−1
2 )−1 = (δ1δ2)/(δ1+ δ2)).

Eventually, we show that the expression used for μ̃({i, j}) in Algorithm 4.3 is a
lower bound on μ(Gi∪Gj) (as defined in (3.12)), where Gi and Gj are the aggregates

corresponding to nodes i and j (respectively) in the auxiliary coarse grid matrix Ã .

Let s̃i =
∑

k �=i
|ãik+ãki|

2 , s̃j =
∑

k �=j
|ãjk+ãkj |

2 , α̃ =
|ãij+ãji|

2 . Also let

Ã
(S)
{i,j} =

(
ãii − s̃i + α̃ −α̃
−α̃ ãjj − s̃j + α̃

)
, D̃{i,j} =

(
ãii

ãjj

)
.

Repeating the above reasoning then proves

(A.1) μ̃({i, j}) = ω−1 sup
v/∈N

(
Ã

(S)

{i,j}
)

vD̃{i,j}
(
I−12(1T

2 D̃{i,j}12)
−1

1T
2 D̃{i,j}

)
v

vT Ã
(S)

{i,j}v
.

On the other hand, let

Pf =

(
1Gi

1Gj

)
.

In Appendix B of [25], it is shown that

Ã
(S)
{i,j} = Pf

T A
(S)
Gi∪Gj

Pf ,

whereas it is clear from (3.3) that when the offdiagonal entries are nonpositive, then a
diagonal entry in the aggregated matrix cannot be larger than the sum of the diagonal
entries in the corresponding aggregate; hence

D̃{i,j} ≤ D{i,j} = Pf
T DGi∪GjPf .

From this latter relation, using the same arguments as in the proof of inequality (39)
in [29, Corollary 2.2], one can show the first of the following inequalities, the other
ones being straightforward, noting that 1Gi∪Gj = Pf12 :

sup
v/∈N

(
Ã

(S)

{i,j}
)

vD̃{i,j}
(
I−12(1T

2 D̃{i,j}12)
−1

1T
2 D̃{i,j}

)
v

vT Ã
(S)

{i,j}v

≤ sup
v/∈N

(
Ã

(S)

{i,j}
)

vD{i,j}
(
I−12(1T

2 D{i,j}12)
−1

1T
2 D{i,j}

)
v

vT Ã
(S)

{i,j}v
.

= sup
v/∈N

(
Pf

TA
(S)
Gi∪Gj

Pf

)
vPf

TDGi∪Gj

(
I−1Gi∪Gj

(
1T
Gi∪Gj

DGi∪Gj
1Gi∪Gj

)−1
1T
Gi∪Gj

DGi∪Gj

)
Pfv

vT Pf
TA

(S)
Gi∪Gj

Pfv

≤ sup
w/∈N

(
A

(S)
Gi∪Gj

)
wTDGi∪Gj

(
I−1Gi∪Gj

(
1T
Gi∪Gj

DGi∪Gj
1Gi∪Gj

)−1
1T
Gi∪Gj

DGi∪Gj

)
w

wTA
(S)
Gi∪Gj

w

= ω μ(Gi ∪Gj) .

The required result then follows from (A.1).
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