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Abstract

Stochastic linear programs become extremely large and complex as addi-
tional uncertainties and possible future outcomes are included in their
formulation. Row and column aggregation can significantly reduce this com-
plexity, but the solutions of the aggregated problem only provide an
approximation of the true solution. In this paper, error bounds on the value
of the optimal solution of the original problem are obtained from the solu-
tion of the aggregated problem. These bounds apply for aggregation of both

random variables and time periods.






1. Introduction

Stochastic linear programming models of dynamic decision making problems
become extremely complex as the numbers of stochastic random variables and
time periods increase. ‘Techniques for solving these problems have been
limited to simplified versions of the full problem. For example, Ashford [1]
and Beale, Forrest, and Tomlin [3] have proposed an algorithm for the specific
structure of production planning problems. Also, in Birge [4], a method for
general problems is implemented but with only up to three stages or time

periods.

In large, long range problems with general structure, it appears that
some approximation technique is needed. In this paper, we use the aggre-
gation method of Zipkin [9, 10] to reduce the multi-stage problem to one
which can more easily be solved. We assume that penalties exist that provide
us with the framework for bounds on the value of the full problem. We assume
that the model is sufficiently general to allow for an infinite time-horizon and
for continuously distributed random right-hand side vectors.

In Section 2 of the paper, the problem is outlined and our initial
assumptions are presented. Section 3 presents our main results for aggre-
gating over random variables and time periods. Section 4 presents alternative

assumptions for the bounding conditions, and Section 5 summarizes our results.
2, The Multi-Stage Problem and Assumptions

Beale [2] and Dantzig [5] first proposed that uncertainties in linear
programs be incorporated into stochastic linear programs. This formulation later
evolved into the multi-stage stochastic program. This problem has many appli-

cations in decision making problems (see, for example, Dempter [6] and Wets[8]),

and may be formulated as
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where X, eRE represents decisions made in time period t after the reali-
m n, m,
zation of random vectors il, 52,..., Et where Et e R, c, ER,beR",
mt X nt T[lt X nt_l
At € R , and Bt e R . P 1is a discount factor that may be used

to yield a finite sum when T approaches infinity.

In our analysis, we assume that c.=¢ for all t, At = A for all t,
and Bt = B for all t. This may be done for general problems by increasing
the number of variables in each time period and bounding those which do not
appear in a specific period. We also note that our model is not completely
general in that uncertainties only appear in the right-hand side. Again,
we may formulate general problems with constraint uncertainties in this manner

(Birge [4]), but the number of variables will grow very quickly.

In computing bounds for (1), we will aggregate realizations of a
single random variable within a time period and over several time periods.

Our approach follows Zipkin [9, 10], and we will use consistent notation



where possible. Tn order to use Zipkin's results, we first must make
certain assumptions about the values of the optimal primal and dual variables

in (1), x* and m*, respectively.

Assumption 1. There exists some set of upper bound vectors, U t=1, 2,..., T,

such that X, (iz, 53,....,Et) < s for all t and all Ez, 53,...., Et.

Assumption 2. There exists a partition of xt(iz, 53,...,€t) and At:

xt(EZ’ €3s'~-, 'Et) = (zt(€2’ £3’".’£t)’ yt(EZ’ 533-"9€t)) and At = [At:"I]’

such that

B 1% (Bps Eyppees )+ AZ €y, Egsens, £)

- ceoe <
yt(EZ’ €3" ’gt) - gt,
for all t, and where theobjective function coefficients of Ve in (1) are

penality functions, - Ps where p_ > 0.

t
These two assumptions restrict the class of problems to which we apply
our results, but they are sufficiently general to include most realistic
examples., For instance, most problems can be essentially bounded by some
criteria as in Assumption 1. Assumption 2 is stating that a feasible solu-
tion always exists as is true in almost all properly formulated models. In

Section 4, more general conditions are given that enhance the class of appli-

cable problems.

3. Aggregation Bounds
Aggregations will be performed both for rows and columns over random
variables and time periods. We define partitions of the colums and rows

in (1) such that o = {Sa} where ) Sa is the set of all columns and
o)



P = {RB} where () Rg is the set of all constraints,
B

We then assign weighting functions to these partitions, gu and fB,

such that for all columns a(y) in %x’

ﬁ“ a(md@®) = 1,

a(n) € S,

where ga(a(n)) > 0, and, for all rows B(n) in RB’

/fB(B(n))d(B(n)).= 1,

g(n) ¢ RB

where fB(B(n)) > 0. These weighting functions are generalizations of the

weighting vectors used by Zipken. They are used here because the columns
and rows in (1) are not necessarily discretely represented. If discrete
distributions are assumed then the weighting functions take on point mass
values and become weighting vectors,

We will first partition (1) so that random variables are aggregated

together, For this problem, we have a discrete number of partitions. We

define

Si = {Columns corresponding to xl(i)},
and

Sen 4" {Columns corresponding to xt(Ez, 63,...,€t) i)},
for t = 1, 2,...,T. The rows are then taken as

R, = {Rows corresponding to the right-hand sides, bi},

R4y = {Rows corresponding to the right-hand sides, Et(l) },
for t = 1, 2,.4., T,



The weighting functions then correspond exactly to the distribution

functions on the random variables. We then formulate the expected value

aggregate problem of (1) as

T o
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Problem (2) is a vastly simplified linear program from (1). The
optimal primal and dual solutions of (2) are (X*, II*) = ((2%, Y*), II¥).
From these values, we obtain a fixed weight approximate solution of (1),

————

(x, M =z, ¥), T, where

~ ok
Zt(gz’ E3""’ Et) - Zt dF(Ez’ £3"°°’ gt),

~ *
T (Eys Egrenes ) = T dF(Ey Egpenns £,

and §t(52, 53,...., ét) is defined such that X is feasible in (1). This
definition is necessary because some infeasibilities may have been caused by

aggregating rows in (2). We can now state bounds on the optimal solution
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o* of (1), We let ¢ = e, ¥ + E[ Zp ¢ zt(gz, 53,..., at)].
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Proposition 1. Given Assumptions 1 and 2, for the optimal values ¢* of (1)

and $ as defined above,

’ (3)

+ T n t % ) ¢
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and the third term in the maximand vanishes for t = T, and
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Proof: The bounds essentially represent penalties for primal and dual
infeasibilities. They are direct extensions of Proposition 2 in [10]. To
obtain this, we must only show that the assumptions for that proposition are

met. Those assumptions in our case generalize to

a) For some partition o' = {S&,} of the columns of (1), and for
a positive function, d(xi), defined for all %5 and for
nonnegative values, {pa.} for all o', there exists an optimal

solution x*lof (1) such that

[ d(xi) x; dxi,f Pyt for all a', and

X, 1x€8',
1 o



b) For some partitionP' = {KBJ} of the rows of (1), for a positive
function e(ﬂj), defined for ﬂj for all rows, and for nonnegative
values {qB?} for all BJ, there exists an optimal dual solution

™ of (1) such that

f e(Trj) Tr;c dﬂj < qB" for all B'.

T,:jeS!
i J '

Our Assumption 1 clearly implies (a) above since xt(Ez, 63,...., &t) < u

for all t,.

To show (b), we note that the feasibility of m* implies by Assumption 2
that - Py + ﬁ: <0 or ﬂt < Py for all t, implying (b). Given these
assumptions, we obtain the bounds in (3) as straight forward generalizations

of the results in [10].

Although Problem (2) is much simpler than (1), there may still be
difficulties in solving it because of the number of periods. We propose
a further simplification by aggregating variables for future time periods.
We will only present results for the most extreme aggrégation in which all
of periods 2 through T have been collapsed into a single second period.
Other cases involving some partial aggregation of these periods are als§
possible. For our partition, we let Si for i =1, 2,...,n be defined as

for (2) and let

8 4q = {Columns corresponding to xt(Ez, 53,..., Et)(l) for all

€ and t}.

We let Ri be the same for i =1, 2,...,m, and define

Rn+i = {Rows corresponding to the right-hand sides, Et(i)

for all £ and t}.



The weighting functions consist of both distribution functions and time

period factors Y(t) for the colummns and §(t) for the rows such that

T

Zy(t) =1, and
t=2

T

L 8(t) = 1.
t=2 :

To obtain the two period aggregate problem from (1), we use (2) and find

N A A
max o= ¢ Xl +C X2
subject to A"%l+ A ﬁQ < b (3)
BR, +A%, < I
X, X, 20,
where
T
¢ = Ty pt_lc,
t=2
. T T
A= 7% S()y(t) A+ T &8(t)o(t-1)B + 8(2)B; and
t=2 =3
~ T
£ = T §(B)E. .



Problem (3) is a simplified version of (2). The weighting factors Y(t)

and 9(t) may be used to discount the future or emphasize effects in certain
periods. From the optimal primal and dual solutions, (ﬁ*, ﬁ*) = (2*, ?*), ﬁ*)
of (3), we obtain a fixed weight aggregation solution of (1) for t > 1,

G, ™ =((z, 5, D, by

1]

N>
{

7 By Egpeees ) = By Y(OGF(E,, Egpunes E);

3>
|

A%k
= gy By B = T SOEFE,, Eyene, £

and §t(£2, E4s+2+5 £) again defined such that X is feasible in (1). For
T

@ =c%X +E [ Z pt c z (E.s E.9eees &.)] we obtain the bounds of the
1 oo 2 °3 t

following proposition.

Proposition 2. The optimal ¢* of (1) is bounded by

A — ) A +
¢ - <o¥<P+e,

where
T n

e = 3 ${ max{p’ ¢, - §(O)T* A - §(t+1)T
. J t
t=1 j=1

1:+1B 0}

:ZX. L] .X:t+1

)1,

.t
P AR (B, Egsunns By

where 0 is substituted for 6(T+l)ﬁ%+l B and where 6(1) = 1, and

‘pt(j)dF(gza 53’-'0: E )]-

t+l
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Proof: These inequalities follow directly as in the proof of Proposition 1

from the definitions of the variables. ﬂl

Other combinations of these two forms of aggregation may also be used.
One may, for instance, aggregate time periods without aggregating random
variables. Conditional means may be used for aggregating random variables

and other groups of variables within time periods may be aggregated.

4, Alternative Assumptions.

Assumptions 1 and 2 in the previous section may not yield adequate
bounds on the optimal solution value. These penalties and variable bounds
may not be readily apparent, and it may be necessary to look for alterna-
tive assumptions. In this section, we describe certain assumptions that

may make the bounds we have presented more useful,

We first let G = {gk:'k = 1,...,K} be a partition of {1, 2,...,n} and
and P = {ﬁ§: §<1,...L} be a partition of {1, 2,...m}. The propositions

above allow us to replace Assumptions 1 and 2 with new conditions.

A
Proposition 3. If there exists a partition O such that

L L (B, +A,)>0, (4.1)
iesr  jeRk) <+ 3T
k
L I . (B, +A.) >0, (4.2)
sy jeR() T
and I () >0 for all £, (4.3)
jeR(k)

where R(k) C {1, 2,...,m} for each k= l,...,K, then Assumption (a) is

satisfied,
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Proof: For x* feasible in (1), we must have

* * t
<
th__1+Axt_€,

n
-t
so I (B,, x¥ (i) +A,, x*(1)) < ¢ {j), for all j and t. Clearly,
j=1 1 t-1 ji t -
the conditions of (4.1) , (4.2), and (4.3) satisfy the conditions in

Assumption (a) for all t. .

Proposition 4., If there exists a partition 5 of {1, 2,...,m} such that

) I A~ (B,, +A.)<0, (5.1)
jeRy ie5(R) R
z z B.. +A,,) <0 d 5.2
i rses o T3t TR S0 ©2
'3 (2)
) c, < 0, (5.3)
ieg A, T
(2)

where S(@) g {1, 2,.¢.,n} for each 2 =1, 2,...,f,, then Assumption (b)

is satisfied.

*
Proof: For m dual feasible in (1), we need

t * *
<
p c = A llB 0,

or
* * t
- - < -
TTt( A) + Trt+l( B) <-pc.

Since Trite > 0 for all t for (1), conditions (5.1), (5.2), and (5.3) lead

to Assumption (b). .
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It may still be difficult to determine whether the alternative condi-
tions (4) and (5) can be met, but they can be checked for different subsets
of the rows and columns. For the partitions, 8 = {{1,...,n}} and
% = {{1,...,m}}, the conditions may be checked individually for each row
or column, respectively.

When it can be shown that these conditions are satisfied, new bounds
involving € and et may be found for problems (3) and (4). They may also

suggest different aggregation schemes to reduce the error.

5. Conclusion

The principle of aggregation has been applied to multi-stage stochastic
linear programs and bounds have been found on the value of the optimal
solution. The procedure assumes that the primal and dual variables are

bounded by external penalties, We also presented alternative assumptions

that may hold in specific cases.

These bounds are a posteriori in their requiring the solution of the
aggregated problem. A priori bounds may also be found as in [10]. These

bounds would follow the same derivation as we have given here,

For both a posteriori and a priori bounds, the bounds may be made
much tighter by using specifics of the problem. Queyranne and Kao [7] have
for example applied aggregation to a stochastic programming example in
manpower planning and used the characteristics of that problem to provide
precise results. We anticipate that many applications may have a special

structure that will allow for more precise bounding than in the results

presented here.
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