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Résumé. 2014 Le modèle hiérarchique récemment introduit pour décrire le mécanisme d’agrégation
cinétique par collage d’amas est étudié numériquement pour des dimensions d supérieures à d = 2.
La dimension fractale des amas, D, estimée à partir de leur rayon de giration, vaut 1,42 ± 0,03;
1,78 ± 0,05; 2,02 ± 0,06; 2,25 ± 0,15 pour d = 2, 3, 4, 5 respectivement. Ces résultats sont compa-
rés avec ceux du modèle d’agrégation par diffusion limitée et avec ceux des polymères, linéaires
et branchés, à l’équilibre.

Abstract 2014 The hierarchical model recently introduced to describe the mechanism of kinetic aggre-
gation by clustering of clusters is investigated numerically in dimensions d &#x3E; 2. The fractal dimen-
sion of the clusters, D, is evaluated from their radius of gyration and estimated to be 1.42 ± 0.03,
1.78 ± 0.05, 2.04 ± 0.08, 2.30 ± 0.20 for d = 2, 3, 4, 5 respectively. These results are compared with
those of diffusion limited aggregation and with those of linear and branched polymers at equilibrium.
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Several theoretical models have been introduced recently to describe the growth of clusters
by aggregation of Brownian particles. The most extensively studied model is the « diffusion
limited aggregation » (DLA) model [1-3], in which single particles stick, one by one, on an immo-
bile growing cluster after diffusing in a purely random walk fashion in empty space. Monte Carlo
simulations have been performed on this model for space dimensions ranging from d = 2 to
d = 6 [2]. All the numerical results available for the fractal dimension D of the cluster agree
very well with the analytical mean-field-like result [3], D = (d2 + 1 )/(d + 1), without an upper
critical dimension.
An alternative model, the « kinetic clustering of clusters » (CICI) model [4, 5] has been proposed

to describe the process of fl6ccfil’ati6n. In CICI, clusters of particles, as well as single particles,
are allowed to diffuse together and any kind of clusters stick on contact. Monte Carlo simu-
lations [4, 5] on CICI in d = 2 show that the resulting clusters are much more ramified than in
DLA. More recently we have introduced an idealized version of CICI, the « hierarchical model » [6],
in which only clusters of exactly the same number of particles stick together in a process similar
to DLA. We have argued that this model is equivalent to CICI in its low concentration scaling
regime. Results in d = 2 agree perfectly well with direct simulations [6]. The advantage of the
hierarchical model is that it is numerically more precise and less time consuming than direct
simulations.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyslet:01984004505021100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyslet:01984004505021100


L-212 JOURNAL DE PHYSIQUE - LETTRES

In this letter, we report the first investigation of CICI in space dimension larger than d = 2,
by a systematic use of the hierarchical model up to d = 5. Preliminary results of direct simula-
tions on CICI in d = 3 found that the fractal dimension is close to that of linear polymers [4, 7].
With the higher accuracy of the method used here, we can conclude that the numerical values
for D stay slightly (but clearly) above those of linear polymers except at d = 4 where D = 2
is within the error bars. Moreover, it is found that the difference between CICI and DLA becomes
more pronounced when the dimension increases.

In the hierarchical model successive generations of independent clusters of N = 2, 4, 8... 2k
particles are built iteratively starting from a collection of No particles. Let us assume that, at the
(k - l)th iteration a generation of nk _ 1 = No/2k ~ 1 independent clusters of Nk _ 1 = 2k-l par-
ticles each, is available. These clusters are grouped into No/2k pairs of clusters. Then, each pair
generates a new cluster of Nk = 2k particles by the following growth process. One cluster of the
pair is centred at the origin of a hypercubic lattice in d dimension. The other one is released at a
site chosen at random on a large hypersphere of radius Ro centred at the origin. Then, this cluster
undergoes a random walk on the lattice, jumping, at each step, to one of the 2 d neighbouring
sites, with equal probability. In this motion, the cluster stays rigid and does not rotate. The diffu-
sion stops when at least one particle of the moving cluster becomes nearest neighbour with a par-
ticle of the other. The reunion of the two clusters then forms a cluster of the new generation.
If the moving cluster diffuses too far from the origin, say, a distance Rm, it is released again on
the hypersphere of radius Ro, and this is repeated.
We have calculated the radius of gyration R of each cluster with the usual formula :

where the summation covers all the sites of the cluster and where Ri joins the origin and site i.

The square of the radius of gyration is averaged over all the samples of a given generation and
an estimation of the statistical error is given by the standard deviation of the results.

Moreover, we have systematically varied the cut-off parameters Ro and Rm to see their influence
on the numerical results. It is enough to choose Ro only slightly larger than R1 + R2, where R1
and R2 are the maximum radii of the two coalescing clusters. The only source of error is due to
the fact that we are obliged to choose a lattice site which is generally not strictly located on the
hypersphere. In practice Ro = Rl + R2 + 8 is sufficient [8]. Also, the numerical results do not
depend on R,~, as long as it is chosen sufficiently large. Rm = 3 Ro is a typical value above which
the numerical results are reproduced within the error bars.

For d = 2, 3, 4, we have performed 20 trials all starting with No = 4 096 particles and we have
stopped after five iterations (after seven iterations for d = 2 [6]) such that 20 x 128 = 2 560 inde-
pendent clusters of 32 particles were built. From the standard deviation of R 2 we estimate that
the absolute error on R is smaller than 0.02 for N = 32. For d = 5 we have performed only
5 trials and the error is almost twice as large.
The numerical results for log R versus log N are reported in figure 1. The exact d = 1 result

R 2 = (N 2 - 1)/12 is also reported for the sake of comparison. The fractal exponent D defined by

must be given by the inverse of the estimated asymptotic slope of those curves (N -~ oo). In order
to estimate D we have calculated an effective fractal dimension obtained when comparing succes-
sive sizes N1 and N2 = 2 N1

and we have reported Deff as a function of N 1-1 in figure 2. From these plots, we estimate the
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Fig. 1. - Results for the radius of gyration R as a function of the number of particles N (log-log plot). The
exact curve d = 1 is shown for the sake of comparison.

Fig. 2. - Results for the effective fractal exponent D err calculated by comparing sizes Ni and N2 = 2 N1
and plotted against N1 1. The exact curve d = 1 is shown for the sake of comparison.

extrapolated D values to be 1.42 ± 0.03, 1.78 ± 0.05, 2.04 ± 0.08, 2.30 ± 0.20 for d = 2, 3,
4,5 respectively. These results are reported in figure 3. For the sake of comparison we have drawn,
on the same figure, the analytical result D = (d2 + 1)/(d + 1) for DLA [3] and the mean field
results : D = (d + 2)/3 for d  4, D = 2 for d &#x3E; 4 for linear polymers at equilibrium [9] and
D = 5(d + 2) for d  8, D = 4 for d &#x3E; 8 for branched polymers [10].
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Fig. 3. - The numerical results for the fractal exponent D of the CICI model (extrapolated values of Fig. 2)
are shown by the open circles with statistical error bars. The dotted line corresponds to Muthukumar’s
result for DLA [3], the full line to the Flory’s result for polymers (P) [9] and the dashed-dotted line to the
mean-field result for branched polymers (BP) [10].

On figure 3, one observes that the curves D(d) are completely different for CICI and DLA.
While for DLA D(d) shows a positive curvature and tends rapidly to its asymptotic form,
D = d - 1, the curve for CICI shows a marked negative curvature [11].
Thus the difference between DLA and CICI which we already noticed on the d = 2 result

becomes more and more pronounced when the space dimension increases. For example, a marked
difference is observed when considering the 2 d projection of the clusters for d = 3 with D =1.76 ±
0.03(2.5) for CICI (DLA) : thus CICI is still ramified in 2 d projection whereas DLA is compact.
The comparison with linear polymers merits further attention. To get an idea of how well

the numerical results for D. for CICI converge, an analogous analysis has been done for the self-
avoiding walk. To do so, we have generated independent polymers connecting up to 32 sites
on a hypercubic d-dimensional lattice. This was done in the most simple fashion : starting from
the origin, we built the polymer iteratively i.e. after occupying N - 1 sites, we choose with the
same probability the Nth site to be any neighbouring site of the free end, avoiding double occu-
pancy. If this new site is occupied, the chain is discarded and a new polymer is built, again starting
from the origin. We performed 106, 500 000, 300 000, 40 000 trials for d =2, 3, 4, 5 respectively,
for which 16, 483, 2 491, 1 063 independent polymers of 32 sites were built. The average radius
of gyration has been calculated in the same way as CICI and is plotted in figure 4. We have done
the same kind of analysis as before by using only the results for N = 2, 4, 8, 16, 32. The values
for Deff are plotted in figure 5. Even, if the results here are less precise than for CICI, one can.observe
a qualitative difference between figure 2 and figure 5. In figure 5, while for d ~ 4, the convergence
is quite good, in d = 4 the extrapolation is much poorer, presumably because d = 4 is the upper
critical dimension, where logarithmic terms slow down the convergence. From the data of
figure 2, no indication is found of slowed convergence for CICI, except perhaps for the case d = 5.
In both cases, for all dimensions considered, Deff grows with increasing size, suggesting that
the actual Deff(N) represents a lower limit for the true exponent D = D,~ff(N = oo).



L-215CLUSTERING OF CLUSTERS IN d &#x3E; 2

Fig. 4. - Results for the radius of gyration R as a function of the number of particles N (log-log plot) in
the case of a direct simulation on linear polymers.

Fig. 5. - Results for the effective fractal exponent D~ f f in the case of polymers.

In conclusion, we have reported simulations on the hierarchical model for CICI for d = 2, 3,
4, 5. We have found that the fractal dimension behaves completely differently from DLA and D
lies closer to the fractal dimension of linear polymers. In the range of d that were modelled, D lies
between linear and branched polymers. We hope that these numerical calculations will stimulate
the search of an analytical formula for the curve D(d) of CICI.
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