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AGGREGATION· DISAGGREGATION ALGORITHMS FOR DISCRETE STO· 
CHASTIC SYSTEMS 

Grzegorz Reyman and Jan van tier Walt Eindhoven 

Zusammenfassung 

In dieser Arbeit wird ein Aggregation - Disaggregation Verfahren vorgestellt fUr einen Markov 
Entscheidungsprozess mit entlichen Horizont und zwei-dimensional Zustands- und Aktionsrliume. Die 
zweite Dimension entMlt eine gleiche Art von Information und Aggregation hierin ist natUrlich und ein­

fach. Die Kwalitlit des Verfahrens ist illustriert mit einem Beispiel. 

Abstract 

In this paper an aggregation - disaggregation method is formulated for a finite horizon Markov decision 
process with two-dimensional state and action spaces. This second dimension of the state and the 

action contains a similar type of information in which aggregation is both natural and simple. The qual­

ity of the approach is illustrated by an example. 

1. Introduction 

In practice Markov decision mCKlels typically give rise to very large state spaces. Then straight­

forward computation of an optimal strategy is out of the question. but sometimes decomposition or 
aggregation and disaggregation might work very well. See e.g. Courtois [1]. Whitt [5]. Mendelssohn [2] 
and Schweitzer et al. [3]. 

In this paper we consider a finite horizon Markov decision model with two dimensional state and action 
spaces, which due to one of the two dimensions are large. Aggregation in this dimension in the action 
space leeds to the same aggregation in the state space. Typical examples are models with a limited 
resource which is used for the actions and for which the state contains the remaining amount of 
resource, or models where in a certain time a total production level has to be achieved. The action 
contains the production for the next period and the state information about what already has been pro­
duced. 

A simple example of the latter is the following. In the next 20 hours we have to produce 4288 items on 
a machine. The production speed of the machine can be varied between 0 and 320 per hour. The 
machine may however breakdown and the probability of a breakdown increases if the production speed 
is increased. Repair times can be reduced at additional costs. If at the end of the planning period not all 
4288 items are ready. penalty costs are incurred. Assuming the machine breaks down only at the end of 
an hour. we obtain a fairly standard Markov decision problem. 
Let the action set be 
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{ (r .0). (p .0), (p .64). (p .128), .... (p ,320) } 

where r stands for repair and P for produce, then the state space will be 

{ (d ,0). (d ,64), (d .128) ••.• , (d ,4288), (u ,0), (u .64), (u .128), ...• (u ,4288) } 

with d denoting that the machine is down and u that it is up. In this case, however. the outcome of the 

optimization may be poor. On the other hand, if the action set is taken to be 

( (r ,0), (p ,0), (p ,1) ..... (p ,320) } , 

the state space will be 

{ (d .0), (d .1) .... , (d ,4288), (u ,0), (u ,1) ..... (u ,4288) ) • 

the computed solution will be optimal but at the cost of an enormous increase in computing time. 

It is clear that one has to find a balance between accuracy and computing time, in particular if we real­

ize ourselves that the model used is not a perfect description of reality. In problems of this type an 

aggregation-disaggregation approach may work well (cf. Veugen et al. [4]). 

The remainder of this paper is organized as follows. In Section 2 the model is introduced. Section 3 
contains four aggregation-disaggregation algorithms and in Section 4 the performance of the presented 

algorithms is compared for the 20 hour production planning problem formulated above. 

2. Model 

We consider a finite horizon Markov decision problem with T periods: O.l .... ,T-i. The state and 

action spaces of the problem are two dimensional and denoted by IxX and A xU respectively. The sets 

I and A are small compared to X = {O,I .... ,N} and U = [0,1, ... ,M 1 . The aggregation will be performed 
onX andU. 

Think of x in the state space pair (i ,x) as the used amount of resource or the number of items already 

produced. and of the u in the action pair (a.u) as the amount of resource used for the execution of a 
or the number of items to be produced in the next period. 

This interpretation of x and u suggests the following simple ttansition structure. If in the state (i,x) 
the action (a.u) is taken the system makes a ttansition to the state U ,x+u) with a probability Pij(U) • 
with LjPtj(U)= 1 . So only states U.y) , with y=x+u can be reached. As a result of the action (a.u) 

in (i,x) there is an immediate reward r (i ,x ,a ,u) • 

Further a terminal reward V o(i ,x) is obtained if. as a result of the last action. the system is in the state 

(i ,x) at the time N • ego to cover used resource or shortage. 

We denote by VT(i,x ,1t) the expected reward for the initial state (i,x) when the strategy 1t is used. 

Then an optimal Markov strategy can be obtained by the following dynamic programming recursion : 

For n=O,l .... ,T-I compute for all (i ,x)elxX 

V,,+l(i,x) = max { r(i,x,a.u)+ LjPij(U)V"U,x+u) ] 
",11 

(1) 

The Markov strategy 1t. = if T -hfT -2 .... /0)' with f" : I XX -+A xU and f" (i ,x) maximizing the right 
hand side in (1). is optimal. 

Often at time n only a subset of the states need to be considered. For example in the production prob­

lem the initial state is (machine works. 0 produced) thus at time 1 only states (i,x) with Q:;x~320 are 
possible. Also the set of possible actions in a state may be a subset ofAxU . For simplicity of 
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notation we will have the same state and action space for all n . 
From the form of the transition probabilities it follows that aggregation in the set U leads to an aggre­

gation in the set X. For example considering only multiplies of k for u means that x will be a multiple 
of k as well. given it is a multiple of k initially. This is the simplest form of aggregation: restriction 

to multiples. Choose k and define X == [O.k.2k •...• ak } and U == {O.k.2k ••.. ,~k } with Cl (~) the largest 
integer with ak<5.N (~<5.M) respectively. Solve the recursive scheme (1) with [xX replaced by [xX 
and (a,u)eAxU . Sometimes a value for k can be chosen for which the solution is close to optimal 

and the computing time remains acceptable. 
In the next section we present four aggregation-disaggregation algorithms for the case the above simple 
approach fails. 

When describing these algorithms the following notation will be useful, 

X, == {O ,2' .2'2' ,3'2' •...• Cl'2'} 

with Cl the largest integer for which Cl'2' <5. N • Similarly we define U" 

3. Aggregation - Disaggregation algorithms 

In this section we subsequently consider four aggregation-disaggregation algorithms. 

3.1. Algorithm A 

The simplest form of aggregation-disaggregation (AD) is AD in the action space only. For each 

u and for each state (i, x) a separate AD routine is executed to obtain V~+l (i ,x). For 

n == 0, 1 • . . . • T -1 and (i, x)e [xX the value V~+l (i ,x) is computed as follows. 

Consider a sequence of aggregations in the action space, say UL , UL - 1 , • . • • U 10 U 0 • First compute in 
the state (i,x) for each a the best u e UL ,i.e., determine 

(2) 

Denote this maximizing u by ut(i ,x.,a ,n) . Next, compare this u with two neighboring values in UL - 1 • 

So, using the notation 

UI (U):=={u-2' ,u.u+2'}(jU, • ueU'+l' (3) 

this next step can be written as 

max (r(i,x.,a,u)+LjPij(U)V~(j,x+u)}. 
ue UL _1 (ut(;;;c ,4,11.» 

Call the maximizer ut-l (i ,x .,a ,n) and repeat the procedure for I == L -2, L -3 . . . . . 1 by computing 

max (r(i,x,a,u)+LjPij(U)V~(j,x+u)}. 
ueU1(ut! (i;;c,a,ll» 

And finally we obtain 

V~+l (i,x) == max max ( r(i,x.,a .u)+ LjPij(U)V~(j ,x+u)} . 
4 ueUr/.ut(i;;c,a,ll» 

(4) 

Denote this maximizing pair by (a ,u f (i ,x ,n) . Once we have computed the V~(i,x) for all, or merely 
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the initial, (i.x) we have a supposedly optimal value and the various (a ,u t (i .x ,n) together constitute 

the supposedly optimal strategy. 
Two remarks have to be made. First note that the ut need not to be unique. So we need a tie-break 
rule, for instance pick the smallest one. Secondly, and far more important, we see that this algorithm 

will not necessarily find the optimal value and optimal strategy, since the procedure described above 

may only find a local optimum in some sense. It is not guaranteed that the obtained strategy is nearly 

optimal. However. in most realistic examples the behavior of the various cost and probability functions 

is more or less continuous. So it is likely that if we take a modest value of L to begin with, the algo­

rithm will work well. An attempt to safeguard against bad solutions is to extend the sets 

U,(UA.l (i.x ,a,n» with other values of u around values which were not too bad in the previous step. 

We will come back to this idea in algorithm D. 

3.2. Algorithm B 

This second AD algorithm can be seen as a repeated version of algorithm A for various aggrega­

tion levels in the state space. In the first step the problem is considered to have state space IxXL and 

action space AxUL . In the second step the problem has state space IxXL- 1 and action space AXUL_1 

and is solved by algorithm A starting with action space A xUL • In the final, L-th. step algorithm A is 

executed with state space I XX and A xU as action space . Hopefully not all steps have to be executed. 

We intend to stop as soon as the computed optimal values V/ J- 1 and V/·, for the given initial state 

(io.xo) are sufficiently close. (It is assumed that xoeX, for all I). 
Formally B runs as follows: 
Step 1 

Calculate for n=O.l .... ,T -1 and all (i ,x)e/xXL 

until we get V/·1(io.xo> • 

Step I. /:;;2, ... (algorithm A with state space IxXL-1+1 and action space AXUL-l+1) 

For n=O.I •... ,T -I and (i ,x}elxXL- 1+1 compute v!.+i (i,x) as follows. 
For each a first determine 

and denote the minimizer by Ui"(i ,x ,a ,n) . 
Next compute for m=L-l .... J.,-1+2 

(5) 

(6) 

(7) 
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And finally 

V!.ti(i.x) = max max (r(i.x,a,u)+LjPij(U)V!·IU.x+u)}. (8) 
a ueUL_I+l(..f~+2(i,x,a,n» 

Stop 
if V/·l-1(i o.xo) and V/·1(io.xo) are sufficiently close, where (io.xo) is the initial state. 

3.3. Algorithm C 

C can be seen as a refinement of B. Instead of merely a repetition of A's, as B is, we also use the 

information about which values of u were good for a, that has been obtained in the previous step. 

Formally C runs as follows. 

Step 1 

Calculate for n=O,l •... ,T-l ,for all (i ,x)elxXL for each a 

(9) 

and denote the maximizer by uf(i.x,a,n) • 

Compute 

(10) 

Step 1 , 1=2,3, ... 

First construct for each n=O,l, ... ,T-l and each triple (i.x,a)elxXL-l+lxA the set Ul-1+1 (i.x,a,n) 

of possible values for u in the maximization. If xeXL_1+Z then 

Ul-l+1 (i .x,a ,n) = UL-l+z(ul-l+z (i ,x ,a,n» (11) 

If, however, xeXL_1+Z then UL-I+Z(i.x,a,n) has not been determined in the previous iteration. 
Therefore the information is used that has been obtained for the neighbors of (i.x) : (i ,x_:zL-I+l) 
and (i .x+:zL-L+l). So for xeXL-1+Z 

uf-l+1 (i .x ,a ,n ) (12) 

:= UL-l+1(u£'-l+2c(i .x-2L-l+I.a,n »UUL-l+I(UL-l+z(i ,x+2L-1+1,a,n» 

Next compute for each a 

(13) 
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and denote the maximizing u by UL-l+l (i ,x ,a ,n ). 

Finally compute 

V;.;{(i,x)=max max (r(i,x,a,u)+LjPij(U)V;·'U,x+u)}. 
a ueUE_I+! (i,x,a,1l) 

(14) 

Stop if Vi·I-1(io,xo) and vi-'(io,xo) are sufficiently close. 

None of these three algorithms is guaranteed to produce an optimal or even nearly optimal solution. As 
argued before the structure of the problem is such that one might hope for a reasonably good solution 

provided the level of aggregation L is not too large to begin with. The Figure 1 shows the major prob­

lem for the method. 

1 2 3 4 

Figure 1 

If at a certain stage the points indicated as 0,1, ... ,4 are calculated, the optimal one seems to be 1. From 
then on only the interval (0,2) will be considered whereas the optimal value lies between 2 and 3 ! 
To diminish the risk of making mistakes of this kind we suggest to increase the sets wherein we search 
for the best values of u. In algorithm D below this is done by taking into consideration also neighbor­
hoods of u '8 which were only nearly optimal in the previous step. We formulate D as an extension of 

algorithm C. 

3.4. Algorithm D 

Algorithm D is executed in exactly the same way as algorithm C with the exception that the sets 

UC defined in (11) and (12) are constructed differently. 
Step 1 

Calculate for n=O,l, ... ,T-l , for all (i,x)elxXL for each a 

(15) 
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and construct the set uf.2(i,x,a.,n) of values for u which nearly maximize (15). Nearly means 
that they come within £1 of the optimum. 

Compute v;>+l as in (10). 

Step 1 • 1=2,3, ... 

First construct the sets uf.:.l+l (i.x,a.,n) of values of u that have to be considered. 

For xeXL_1+2 define 

uf.:.l+di,x,a.,n) = U UL-I+l(U) (16) 
.. eufl+1 (i,x.a,n) 

For XeXL-I+2 define 

UD 1 (' ) UD 1 (' .... 1_-1+1 ) UD 1 (' .... L-/+1 ) L':'/+1 l,x ,a.,n = L':"+I' ,x-c ,a.,n U L':'/+l Z ,x+c ,a.,n. (17) 

Next compute for each a 

(18) 

and construct the sets Uf.:.l+l (i ,x,a ,n) of actions which maximize (18) within t, . UD.2 will be a 
subset of UD .!. 

Finally compute v;>A analogously to (14) 

(19) 

4. Numerical results 

The four algorithms have been tested on the production problem mentioned in the introduction : 
producing 4288 items in 20 hours. The detailed description of the problem is as follows. 

The state set 1= {0,1} where 0 indicates that the machine is down and 1 that it is available for 
production 

If the machine is down there are 3 actions. 0 : do nothing, 1 : normal repair, 2 : fast repair 

In state 1 there is only one action, 0 : produce, but the production rate can be varied between 0 
and 320 per hour. 
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If the machine is down. the costs of the normal repair are 15, the costs of the fast repair 60. The 
probability that at the end of the hour the repair tmns out to be successful is 1/5 for a normal 
repair and 1/2 for a fast repair. 

The failure probability pPo(u) depending on the production rate is given in Figure 2 

.20 

o u 
PIO(U) = 8000-20u 

.05 

200 320 

The shortage costs at the end of the planning period are 2 per item. If at the end of the 20 hours 
the machine is down there is a terminal cost of 20. 

When presenting the results. two things are important : the accuracy of the final result and the comput­
ing time needed to get this result. 
To obtain the exact solution we solved the problem with X and U=(O,1,2 .... .4288}. In the aggregation 
we used grid sizes 64,32,16,8.4,2 and 1 if necessary. 
The number of states in Xl varies as follows 

I 0 1 2 3 

Number of states 4289 2145 1073 537 
in Xl 

The exact result : 

Minimal cost 480.08 

Computing time 3142.4 
(All computing times are given in seconds on a VAX nn50 ). 
The results for the algorithms A.B,C and D are as follows. 

4 5 6 

269 135 68 
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grid Minimal costs 

A B C D 

64 500.03 500.03 500.03 500.03 

32 486.54 486.54 486.54 486.54 

16 481.22 481.22 481.22 481.22 

8 480.37 480.37 480.37 480.37 

4 480.17 

2 480.09 

1 480.08 

total 
computing 552.5 63.5 18.9 31.2 

time 

In algorithms B,C and D we stopped when the difference between two successive iterations was less 

than 1%. In D the sets of nearly optimal u values consisted of these actions for which the relative 

difference from optimality was within 1 %. 

The complete, exact, solution of the problem with state space [xXL and action space A xUL for 

L = 6,5,4 and 3 (grids 64,32,16 and 8) gave exactly the same result as A,B,C and D in a computation 

time 80.6. 

As we see from the results, the structure of the problem is such that the fact that the algorithms check 

only a subset of all u values in the grid does not lead to any loss of optimality. Oearly, one may come 

up with cases which the problem, signalled in Figure I, of looking in the wrong area, does give an 

increase in costs. 

5. Conclusions 

We have presented four aggregation-disaggregation algorithms for Marlcov decision processes in 

which aggregation in the action space leads to the same level of aggregation in the state space. 

The algorithms have been tested on a simple production problem. Although more numerical experience 

is wanted we are convinced that in particular algorithm D is a very accurate and fast heuristic. 
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