

Aggregation-disaggregation algorithms for discrete stochastic
systems
Citation for published version (APA):
Reyman, G., & Wal, van der, J. (1987). Aggregation-disaggregation algorithms for discrete stochastic systems.
(Memorandum COSOR; Vol. 8730). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/9de77793-d6c2-44b8-b675-873eec618560

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

Memorandum COSOR 87-30

Aggregation - disaggregation algorithms
for discrete stochastic systems

by
Grzegon Reyman and Jan van der Wal

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Eindhoven, October 1987
The Netherlands

AGGREGATION· DISAGGREGATION ALGORITHMS FOR DISCRETE STO·
CHASTIC SYSTEMS

Grzegorz Reyman and Jan van tier Walt Eindhoven

Zusammenfassung

In dieser Arbeit wird ein Aggregation - Disaggregation Verfahren vorgestellt fUr einen Markov
Entscheidungsprozess mit entlichen Horizont und zwei-dimensional Zustands- und Aktionsrliume. Die
zweite Dimension entMlt eine gleiche Art von Information und Aggregation hierin ist natUrlich und ein

fach. Die Kwalitlit des Verfahrens ist illustriert mit einem Beispiel.

Abstract

In this paper an aggregation - disaggregation method is formulated for a finite horizon Markov decision
process with two-dimensional state and action spaces. This second dimension of the state and the

action contains a similar type of information in which aggregation is both natural and simple. The qual

ity of the approach is illustrated by an example.

1. Introduction

In practice Markov decision mCKlels typically give rise to very large state spaces. Then straight

forward computation of an optimal strategy is out of the question. but sometimes decomposition or
aggregation and disaggregation might work very well. See e.g. Courtois [1]. Whitt [5]. Mendelssohn [2]
and Schweitzer et al. [3].

In this paper we consider a finite horizon Markov decision model with two dimensional state and action
spaces, which due to one of the two dimensions are large. Aggregation in this dimension in the action
space leeds to the same aggregation in the state space. Typical examples are models with a limited
resource which is used for the actions and for which the state contains the remaining amount of
resource, or models where in a certain time a total production level has to be achieved. The action
contains the production for the next period and the state information about what already has been pro
duced.

A simple example of the latter is the following. In the next 20 hours we have to produce 4288 items on
a machine. The production speed of the machine can be varied between 0 and 320 per hour. The
machine may however breakdown and the probability of a breakdown increases if the production speed
is increased. Repair times can be reduced at additional costs. If at the end of the planning period not all
4288 items are ready. penalty costs are incurred. Assuming the machine breaks down only at the end of
an hour. we obtain a fairly standard Markov decision problem.
Let the action set be

2

{ (r .0). (p .0), (p .64). (p .128), (p ,320) }

where r stands for repair and P for produce, then the state space will be

{ (d ,0). (d ,64), (d .128) ••.• , (d ,4288), (u ,0), (u .64), (u .128), ...• (u ,4288) }

with d denoting that the machine is down and u that it is up. In this case, however. the outcome of the

optimization may be poor. On the other hand, if the action set is taken to be

((r ,0), (p ,0), (p ,1) (p ,320) } ,

the state space will be

{ (d .0), (d .1) , (d ,4288), (u ,0), (u ,1) (u ,4288)) •

the computed solution will be optimal but at the cost of an enormous increase in computing time.

It is clear that one has to find a balance between accuracy and computing time, in particular if we real

ize ourselves that the model used is not a perfect description of reality. In problems of this type an

aggregation-disaggregation approach may work well (cf. Veugen et al. [4]).

The remainder of this paper is organized as follows. In Section 2 the model is introduced. Section 3
contains four aggregation-disaggregation algorithms and in Section 4 the performance of the presented

algorithms is compared for the 20 hour production planning problem formulated above.

2. Model

We consider a finite horizon Markov decision problem with T periods: O.l ,T-i. The state and

action spaces of the problem are two dimensional and denoted by IxX and A xU respectively. The sets

I and A are small compared to X = {O,I ,N} and U = [0,1, ... ,M 1 . The aggregation will be performed
onX andU.

Think of x in the state space pair (i ,x) as the used amount of resource or the number of items already

produced. and of the u in the action pair (a.u) as the amount of resource used for the execution of a
or the number of items to be produced in the next period.

This interpretation of x and u suggests the following simple ttansition structure. If in the state (i,x)
the action (a.u) is taken the system makes a ttansition to the state U ,x+u) with a probability Pij(U) •
with LjPtj(U)= 1 . So only states U.y) , with y=x+u can be reached. As a result of the action (a.u)

in (i,x) there is an immediate reward r (i ,x ,a ,u) •

Further a terminal reward V o(i ,x) is obtained if. as a result of the last action. the system is in the state

(i ,x) at the time N • ego to cover used resource or shortage.

We denote by VT(i,x ,1t) the expected reward for the initial state (i,x) when the strategy 1t is used.

Then an optimal Markov strategy can be obtained by the following dynamic programming recursion :

For n=O,l ,T-I compute for all (i ,x)elxX

V,,+l(i,x) = max { r(i,x,a.u)+ LjPij(U)V"U,x+u)]
",11

(1)

The Markov strategy 1t. = if T -hfT -2 /0)' with f" : I XX -+A xU and f" (i ,x) maximizing the right
hand side in (1). is optimal.

Often at time n only a subset of the states need to be considered. For example in the production prob

lem the initial state is (machine works. 0 produced) thus at time 1 only states (i,x) with Q:;x~320 are
possible. Also the set of possible actions in a state may be a subset ofAxU . For simplicity of

3

notation we will have the same state and action space for all n .
From the form of the transition probabilities it follows that aggregation in the set U leads to an aggre

gation in the set X. For example considering only multiplies of k for u means that x will be a multiple
of k as well. given it is a multiple of k initially. This is the simplest form of aggregation: restriction

to multiples. Choose k and define X == [O.k.2k •...• ak } and U == {O.k.2k ••.. ,~k } with Cl (~) the largest
integer with ak<5.N (~<5.M) respectively. Solve the recursive scheme (1) with [xX replaced by [xX
and (a,u)eAxU . Sometimes a value for k can be chosen for which the solution is close to optimal

and the computing time remains acceptable.
In the next section we present four aggregation-disaggregation algorithms for the case the above simple
approach fails.

When describing these algorithms the following notation will be useful,

X, == {O ,2' .2'2' ,3'2' •...• Cl'2'}

with Cl the largest integer for which Cl'2' <5. N • Similarly we define U"

3. Aggregation - Disaggregation algorithms

In this section we subsequently consider four aggregation-disaggregation algorithms.

3.1. Algorithm A

The simplest form of aggregation-disaggregation (AD) is AD in the action space only. For each

u and for each state (i, x) a separate AD routine is executed to obtain V~+l (i ,x). For

n == 0, 1 • . . . • T -1 and (i, x)e [xX the value V~+l (i ,x) is computed as follows.

Consider a sequence of aggregations in the action space, say UL , UL - 1 , • . • • U 10 U 0 • First compute in
the state (i,x) for each a the best u e UL ,i.e., determine

(2)

Denote this maximizing u by ut(i ,x.,a ,n) . Next, compare this u with two neighboring values in UL - 1 •

So, using the notation

UI (U):=={u-2' ,u.u+2'}(jU, • ueU'+l' (3)

this next step can be written as

max (r(i,x.,a,u)+LjPij(U)V~(j,x+u)}.
ue UL _1 (ut(;;;c ,4,11.»

Call the maximizer ut-l (i ,x .,a ,n) and repeat the procedure for I == L -2, L -3 1 by computing

max (r(i,x,a,u)+LjPij(U)V~(j,x+u)}.
ueU1(ut! (i;;c,a,ll»

And finally we obtain

V~+l (i,x) == max max (r(i,x.,a .u)+ LjPij(U)V~(j ,x+u)} .
4 ueUr/.ut(i;;c,a,ll»

(4)

Denote this maximizing pair by (a ,u f (i ,x ,n) . Once we have computed the V~(i,x) for all, or merely

4

the initial, (i.x) we have a supposedly optimal value and the various (a ,u t (i .x ,n) together constitute

the supposedly optimal strategy.
Two remarks have to be made. First note that the ut need not to be unique. So we need a tie-break
rule, for instance pick the smallest one. Secondly, and far more important, we see that this algorithm

will not necessarily find the optimal value and optimal strategy, since the procedure described above

may only find a local optimum in some sense. It is not guaranteed that the obtained strategy is nearly

optimal. However. in most realistic examples the behavior of the various cost and probability functions

is more or less continuous. So it is likely that if we take a modest value of L to begin with, the algo

rithm will work well. An attempt to safeguard against bad solutions is to extend the sets

U,(UA.l (i.x ,a,n» with other values of u around values which were not too bad in the previous step.

We will come back to this idea in algorithm D.

3.2. Algorithm B

This second AD algorithm can be seen as a repeated version of algorithm A for various aggrega

tion levels in the state space. In the first step the problem is considered to have state space IxXL and

action space AxUL . In the second step the problem has state space IxXL- 1 and action space AXUL_1

and is solved by algorithm A starting with action space A xUL • In the final, L-th. step algorithm A is

executed with state space I XX and A xU as action space . Hopefully not all steps have to be executed.

We intend to stop as soon as the computed optimal values V/ J- 1 and V/·, for the given initial state

(io.xo) are sufficiently close. (It is assumed that xoeX, for all I).
Formally B runs as follows:
Step 1

Calculate for n=O.l ,T -1 and all (i ,x)e/xXL

until we get V/·1(io.xo> •

Step I. /:;;2, ... (algorithm A with state space IxXL-1+1 and action space AXUL-l+1)

For n=O.I •... ,T -I and (i ,x}elxXL- 1+1 compute v!.+i (i,x) as follows.
For each a first determine

and denote the minimizer by Ui"(i ,x ,a ,n) .
Next compute for m=L-l J.,-1+2

(5)

(6)

(7)

5

And finally

V!.ti(i.x) = max max (r(i.x,a,u)+LjPij(U)V!·IU.x+u)}. (8)
a ueUL_I+l(..f~+2(i,x,a,n»

Stop
if V/·l-1(i o.xo) and V/·1(io.xo) are sufficiently close, where (io.xo) is the initial state.

3.3. Algorithm C

C can be seen as a refinement of B. Instead of merely a repetition of A's, as B is, we also use the

information about which values of u were good for a, that has been obtained in the previous step.

Formally C runs as follows.

Step 1

Calculate for n=O,l •... ,T-l ,for all (i ,x)elxXL for each a

(9)

and denote the maximizer by uf(i.x,a,n) •

Compute

(10)

Step 1 , 1=2,3, ...

First construct for each n=O,l, ... ,T-l and each triple (i.x,a)elxXL-l+lxA the set Ul-1+1 (i.x,a,n)

of possible values for u in the maximization. If xeXL_1+Z then

Ul-l+1 (i .x,a ,n) = UL-l+z(ul-l+z (i ,x ,a,n» (11)

If, however, xeXL_1+Z then UL-I+Z(i.x,a,n) has not been determined in the previous iteration.
Therefore the information is used that has been obtained for the neighbors of (i.x) : (i ,x_:zL-I+l)
and (i .x+:zL-L+l). So for xeXL-1+Z

uf-l+1 (i .x ,a ,n) (12)

:= UL-l+1(u£'-l+2c(i .x-2L-l+I.a,n »UUL-l+I(UL-l+z(i ,x+2L-1+1,a,n»

Next compute for each a

(13)

6

and denote the maximizing u by UL-l+l (i ,x ,a ,n).

Finally compute

V;.;{(i,x)=max max (r(i,x,a,u)+LjPij(U)V;·'U,x+u)}.
a ueUE_I+! (i,x,a,1l)

(14)

Stop if Vi·I-1(io,xo) and vi-'(io,xo) are sufficiently close.

None of these three algorithms is guaranteed to produce an optimal or even nearly optimal solution. As
argued before the structure of the problem is such that one might hope for a reasonably good solution

provided the level of aggregation L is not too large to begin with. The Figure 1 shows the major prob

lem for the method.

1 2 3 4

Figure 1

If at a certain stage the points indicated as 0,1, ... ,4 are calculated, the optimal one seems to be 1. From
then on only the interval (0,2) will be considered whereas the optimal value lies between 2 and 3 !
To diminish the risk of making mistakes of this kind we suggest to increase the sets wherein we search
for the best values of u. In algorithm D below this is done by taking into consideration also neighbor
hoods of u '8 which were only nearly optimal in the previous step. We formulate D as an extension of

algorithm C.

3.4. Algorithm D

Algorithm D is executed in exactly the same way as algorithm C with the exception that the sets

UC defined in (11) and (12) are constructed differently.
Step 1

Calculate for n=O,l, ... ,T-l , for all (i,x)elxXL for each a

(15)

7

and construct the set uf.2(i,x,a.,n) of values for u which nearly maximize (15). Nearly means
that they come within £1 of the optimum.

Compute v;>+l as in (10).

Step 1 • 1=2,3, ...

First construct the sets uf.:.l+l (i.x,a.,n) of values of u that have to be considered.

For xeXL_1+2 define

uf.:.l+di,x,a.,n) = U UL-I+l(U) (16)
.. eufl+1 (i,x.a,n)

For XeXL-I+2 define

UD 1 (') UD 1 (' 1_-1+1) UD 1 (' L-/+1) L':'/+1 l,x ,a.,n = L':"+I' ,x-c ,a.,n U L':'/+l Z ,x+c ,a.,n. (17)

Next compute for each a

(18)

and construct the sets Uf.:.l+l (i ,x,a ,n) of actions which maximize (18) within t, . UD.2 will be a
subset of UD .!.

Finally compute v;>A analogously to (14)

(19)

4. Numerical results

The four algorithms have been tested on the production problem mentioned in the introduction :
producing 4288 items in 20 hours. The detailed description of the problem is as follows.

The state set 1= {0,1} where 0 indicates that the machine is down and 1 that it is available for
production

If the machine is down there are 3 actions. 0 : do nothing, 1 : normal repair, 2 : fast repair

In state 1 there is only one action, 0 : produce, but the production rate can be varied between 0
and 320 per hour.

8

If the machine is down. the costs of the normal repair are 15, the costs of the fast repair 60. The
probability that at the end of the hour the repair tmns out to be successful is 1/5 for a normal
repair and 1/2 for a fast repair.

The failure probability pPo(u) depending on the production rate is given in Figure 2

.20

o u
PIO(U) = 8000-20u

.05

200 320

The shortage costs at the end of the planning period are 2 per item. If at the end of the 20 hours
the machine is down there is a terminal cost of 20.

When presenting the results. two things are important : the accuracy of the final result and the comput
ing time needed to get this result.
To obtain the exact solution we solved the problem with X and U=(O,1,24288}. In the aggregation
we used grid sizes 64,32,16,8.4,2 and 1 if necessary.
The number of states in Xl varies as follows

I 0 1 2 3

Number of states 4289 2145 1073 537
in Xl

The exact result :

Minimal cost 480.08

Computing time 3142.4
(All computing times are given in seconds on a VAX nn50).
The results for the algorithms A.B,C and D are as follows.

4 5 6

269 135 68

9

grid Minimal costs

A B C D

64 500.03 500.03 500.03 500.03

32 486.54 486.54 486.54 486.54

16 481.22 481.22 481.22 481.22

8 480.37 480.37 480.37 480.37

4 480.17

2 480.09

1 480.08

total
computing 552.5 63.5 18.9 31.2

time

In algorithms B,C and D we stopped when the difference between two successive iterations was less

than 1%. In D the sets of nearly optimal u values consisted of these actions for which the relative

difference from optimality was within 1 %.

The complete, exact, solution of the problem with state space [xXL and action space A xUL for

L = 6,5,4 and 3 (grids 64,32,16 and 8) gave exactly the same result as A,B,C and D in a computation

time 80.6.

As we see from the results, the structure of the problem is such that the fact that the algorithms check

only a subset of all u values in the grid does not lead to any loss of optimality. Oearly, one may come

up with cases which the problem, signalled in Figure I, of looking in the wrong area, does give an

increase in costs.

5. Conclusions

We have presented four aggregation-disaggregation algorithms for Marlcov decision processes in

which aggregation in the action space leads to the same level of aggregation in the state space.

The algorithms have been tested on a simple production problem. Although more numerical experience

is wanted we are convinced that in particular algorithm D is a very accurate and fast heuristic.

6. References

[1] Courtois, P.-J. (1977), Decomposability: Queueing and Computer System Application, Academic
Press, New York.

[2] Mendelssohn, R. (1982), An iterative aggregation procedure for Markov decision processes,

Operations Reseach .2!!, 62-73.

[3] Schweitzer, P J., Puterman, M. and K.W. Kindle (1981), Iterative aggregation - disaggregation

procedures for solving discounted semi-Markovian reward processes, Working paper series, No.

8123, Graduate School of Management, University of Rochester.

10

[4] Veugen, L.M.M., Van der Wal, J. and J. Wessels (1985), Aggregation and disaggregation in Mar

kov dicision models for inventory control, EJOR 20, 248-254.

[5] Whitt, W. (1978,1979), Approximations of dynamic programs I and II, MOR ,3., 231-243 and 4.
179-185.

	Voorbeeld
	1. Introduction
	2. Model
	3. Aggregation - Disaggregation algorithms
	4. Numerical results
	5. Conclusions
	6. References

