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ABSTRACT

This paper describes the continuous time stochastic process for money and
inflation under which Cagan’s adaptive expectations model is optimal. It then
analyzes how data formed by sampling money and prices at discrete points in
time would behave.
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1. Introduction

In 1956 Milton Friedman [5] and Phillip Cagan [2] formulated and ap-
plied the adaptive expectaticns hypothesis. Shortly thereafter, John F. Muth

[13] solved the following "inverse optimal predictor"l/

problem: for what dis-
crete-time, univariate stochaztic process is the discrete-time version of the
adaptive expectations mechanism optimai in the sense of 4delivering linear least
squares forecasts? Much later Sargent [20] solvad the follewing extended inwvaerse
optimai predicter problem: in the ccntexﬁ of a discrete-time version of Cagan's
mecdel of portfolio balance, for what bivariate money creation, inflzticn sto-
chastic process does a discrete-time version of adaptive expectations delivar
iinear lzast squares forecasts for inflation?

This paper solves the continuous~time versicn of both of these inverse
ostimal predictor ﬁ;oblems. Ir the context of a continucus-time versizn of
Cagzn's portfolio schedule, we find the continuous-time, generzlized sicehasiio

.

process for the money supply and price lavel that makes ths a aptive expestaticns
mechaanism yleld linsar least squares forecasts for inflztien. This problem is of
interest, if only because Cagan actually formulated his model in eontinucus tine,

as have many others, even though he eventually ended up estimating an approxi-
mating discrete-time medel. In order to determine the Yoptimal™ diserste-tims
approxinating model, this paper zoes on to deducs the diserete-time proaesz feor
peint-in-tine observations on the money suppiy and the price level thnat ics
implied by that continuous~time medel which malkes adaptlve expectations raticnal
in continuous time. Tnis permiis us tc determine 2 sense in whiech tha discerate-
time adaptive expectaticns scheme czn be viewed as approxinating a model in whieh
agents are optimally forming adaptive expectations in continuous “ime. We =ra

3 o 3 TS - - Eaey IR R mayt d g = -~ .
also able %o deriva an exact formula liniking zhe disereis-cims adaptivae expecta-

AR 1 IS . iam S oA ~
CLis Vormula to the zppraximation ) = aun{«8) used by £agan,



The contintcus-Lime stochastle grozess for inflatisn =nd meorey arsa-

tion which makes adaptive expectations ootimal far sredicting inflation ipso

facto has the property that monevy creation fails to Grangsr cause [A] 1aflation
in centinuous time. However, for discrete-time samples drawn freom cthiz con-
tinuous-tirce proecess, money creation does Granger cause inflation. This is an
example of the effects of aggregaticn over tims in interrupting fGranger con-
causality paizerns that nold for continunus tine, a phenogencn thizs Sims (22
has studied. The prasent model is simple encugh Ehét Wwe 2r2 able to analyzs this
effanct quike completalry,

This paper provides an exact answer to the questions raised by Benjamin
Friedman (307] about the implications of aggregation over time for the appropriate
interpretation of existing estimates of Cagan's model. Furthermore, the machinery
of this paper readily supplies an exact, asymptotically efficient procedure for
estimating the parameters of the continuous time ve;sion of Cagan's model from
discrete time data. This exact procedure, which is briefly described in section
5, is a superior alternmative to the approximate estimator used by Mohsin Khan {317
in his empirical research which was aimed at answering Benjamin Friedman's [307
questions about time aggregation. The approximate estimator used by Khan, which
proceeds by replacing derivatives and levels in continuous time with certain
linear combinations of levels and differences in discrete time, has no particular
optimal approximating properties for the kind of continuous time inflation, money

creation process that makes Cagan's model consistent with ratiomal expectations.

It 1is our nope that the caleulaticns contained Iin this paper ars
interesting for their own sake, and zlso because they illustrate
ing the effascts of aggregation avar tims khat eould te apnlisd ¢ 2 varisiy of

linear rational exgectations medels.



2. The Continuous-Time Inverse Optimal Predictor Problem

We begin with Cagan's portfolio balance schedule in continuous time

W m(t) - p(t) = aD'B p(t) + a(e), @ <0

where p(t) is the logrithm of the price level, m(t} is the logarithm of the money
supply, a(t) is a random disturbance to the portfolio balance schedule, D+ is

the mean square right time derivate operator, and Et is the linear least squares
projection operator onto an information set that inclﬁdes at least current and
past observations on b, m, and a. We do not require that the p process be mean
gsquare differentiable but only that {ﬁtp(t+v):v 2 0} be mean square differentiable
for v > 0 and that this process have mean square right derivative at v = 0. This
right derivative is denoted D+Etpt. 2/

To obtain the solution to stochastic differential equation (1) we write

equation (1) shifted ahead v time units as

(2) m(t+v) - p(t+v) = aD+ﬁt+vp(t+v) + a(t+v).

Projecting both sides of (2) onto the t period information set gives
(3) Etm(t+v) - ﬁtp(t+v) = aDEtp(t+v) + Eta(t+v)

3/

where D is the time derivative operator. = The realizable, time invariant solu-

tion to (3) is just

-]
ﬁtp(t+v) = -aﬁtjepu[a(t+v+u) - m(t+v-u)]du
0
where ¢ = 1/0. Taking limits as v declines to zero and noting that

lim & p(t+v) = E p(t) = p(t),
vig t



we obtain

=]

4) p(t) = -pﬁtje““[a(tm) - m(t+u) ]du.
0
as the solution to (1).

We now specialize our assumptions to require that Cagan's adaptive expecta-
tions mechanism be optimal. That is, we wish to find specifications for a and m
which together with (4) imply that

f 2 (t-w
(5) Dﬁtp(t+v) = BSe Dp(u)du, 8 > 0, v > 0.
E--]
In expression (5) Dp is not necessarily required to be an ordinary stochastic
process but rather can be a generalized stochastic process so long as the in-

tegral on the right-hand-side of (5) is well defined. 4/

On the other hand,
{DEtp(t+v):v > 0} is assumed to bg an ordinary stochastic process. Thus even
though inflation may not be physically realizable, we assume that anticipated
inflation is physically realizable. Equation (5) also implies that at each
voint in time inflation is expected to be constant over the entire future.

This is true since the right-hand-side of (5) does not depend on v.

We assume that the joint process x given by

p(t)
x(t) = |m(t)

a(t)
has a time invariant Wold representation
(6) x(t) = c(D)w(t).

In equation (6) c(D) is a one-sided matrix convolution operator and w is



a continuous-time white noise vector with Ew(t) = 0 and
Ew(t)w(t=-v) " = I8 (t=v)

where 0 is the Dirac delta generalized function. 2/ We assume that (6) holds for
some t greater than or equal to a start up time T and that w(t) = 0 for t < T. &/
The requirement that (6) is a-Wold representation implies that instantaneous fore-
cast errors in forecasting an element of x(t) using past x's are a linear combin-

ation of elements in w(t).

We write the first row of (6) as

¢)) p(t) = cl(D)W(t)

The operator that shifts a time subscript v units ahead can be represented as

D . . . . . .
e . Therefore, shifting (7) forward Vv time units and taking expectations we

find

B p(t+) [cl(D)eVD]+w(t)

where | ]+ is the annihilation operator that instructs to ignore portions of
the convolution operator that are concentrated on the negative numbers. Equa-
tion (5) tells us that

W, BDcl(D)

[Dey (e ]y = —gig—

7/
for all v > 0. =/ It is verified in the appendix that the solution to this

operator equation is

D8
c, (D = 02 &

where ko is an arbitrary row vector constant. We are free to normalize ¢

and w such that



(8) p(t) = @fz,lklwl<t>

where Wy is the first element of w and kl is an’'arbitrary scalar constant.

Specification (8) implies that

(9) o' p(t+v) = -k L(8).

Substituting (9) into equation (1) we see that

(10) " a - = EDpe) +ao.

Equation (10) is a version of Cagan's model in continuous time, since

£t _g(e-
‘;&%P(t) =8 f_ o Ale u)Dp(u)du .

Equation (10) informs us that there is an exact relationship among m, p, and a.
This singularity means that the white noise vector w can have at most two elements.

We assume that the =x process has maximal rank so that w has two elements.

Partioning w and ¢ we write

) 7 e (D) ey, (D) wl(t)]

(1 ade) | = CZI(D) czz(D) Wz(t)i
L a(t) L2970 ey, (D)
where
- (D'i'B)k:L
c D) =
11 DZ
ch(D) = Q,

Substituting (1l) into equation (1) and equating coefficients on wl(t) and

wz(t) we see that



C9g (D) = ¢4, (D)

(12)
(HB)Hk aBk

@) - 5 1 _ 1
D

+ ¢

D 31D

€21

The stochastic process a is assumed not to be observed by the econometrician.
"To give equation (1) empirical content we need to say something about the dynamic

correlation between a and m. We adopt the requirement that for v > 0

(13) Ela(ttv) |a(u):u < €] = Eta(c+v)

Assumption (13) says that no other variables observed by private agents Granger

cause (help predict) a. It implies that

(14) c31(D) = k2c32(D)

- I . M N
for some scalar constant k2' 8/ Combining restrictions (14) and (12) we determine
that

dﬁkl (D+B)k1
(15) c21(D) = - + D2 + k2c22(D).

Restriction (15) is a restriction on the bivariate moving average representa-

tion for the observable process

2(t) cll(D) ch(D)] wl(tj]
|

Lagd L, o ey, by o)

€22
where we have previously imposed the restrictions that

(16) c



ch(D) = 0.

An identification question for this model is whether parameters @, 8, kl,

and kZ can be identified from the continuous-time '"reduced form'" convolutions

€110 €120 €210 Cppe 3/ It is clear that B8 and kl can be identified from (16).

In general, o and k2 can be identified from equation (15). However for a
special and convenient parameterization of c22(D), they are not identified.
Suppose that the derivative of a is a white noise. £2/ Thus

k

R
an c32(D) =3 c22(D).

When a is a Gaussian process, (17) implies that a is in fact a Brownian motion.
Substituting (17) into (15) yields
aBkl + 8k, +kk, Bk,

(18) c21(D) = 5 + 2

.

The parameters @ and k2 are not identifiable in (18). It remains true, however,

even in this case that the model imposes testable cross equation restrictions in
Bk

. 1
that D2 enters both cll and c21.

For the remaining part of this paper, as a simplifying assumption we adopt

(17) and require that

aBkl + Bkl + k2k3 = (0.
In this case
Bkl

c,, (D) = ==,
21 D2

and the moving avérage representation for p and m is



[ (48K ] _
(P(t) *——;E—l 0 wl(t)‘
(19) =
k k
1 3
a(t) .32 D | wz(t)J

In the continuous-time system (19), m fails to Granger cause p since clz(D) = 0.
However, p does Granger cause m. That these features characterize our system
is not suprising, since we comstructed (19) in order to guarantee that Cagan's
adaptive expectations mechaﬁism (5) is optimal. 1In light of equation (4), if

Cagan's mechanism is rational, there must be extensive feedback from p to m.
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3. Effects of Aggregation Over Time
We are interested in deducing the implications of our continuous-time ver-
sion of Cagan's model for point-in-time sampled, discrete-time observations

on (p, m). We shall assume that point-in-time observations on (p, m) are avail-

able at the integers t=0, 1, 2, ... . For convenience we rewrite equation (19)
r 2 N ]
p(t) Sgi%lkl 0 wl(t)
D
(19) =
p  k
m(t) §_k1 3 wz(t)
DZ D

The presence of D and D2 in the denominator of the "moving average' polynomials

on the right side of (19) indicates that (p, m) is a nonstationary process.

It turns out that the second differences of (p, m) form a stationary process

with a very simple representation. i
We consider now the discreté-time ﬁrocess that'is formed by taking second

differences of point-in-time observations on (p, m) at the integers. We first

note that the lag operator L can be represented as L = e-D. Then the first

difference operator is (1-L) = (l-e-D), while the second difference operator

is (l--L)2 = (l-e-D)z. Applying this operator to (19) gives

(1-L) 2p(t)] gl-e°D)2(3+D)k 0 wy (£) !
7. 1
D
L2 l -D, 2 -D.2
=L) Tm(t) | l-e (L-e ) | w,(t)
< S_j;fl_Skl S k3_ 2
11/

Now recall the following Laplace transform pairs:

- 1 te[0,1]
_(L:s._s_ﬁ,gs
s ( -1 te[l,2]

0 t>2

(20)
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t te[0,1]
-5, 2
(21) (l-e2 > 2-t tel1,2]
S
0 £t > 2.

Using the Laplace transforms (21) and (20) gives the desired representation:

(1-1)%p(8) =t [S@™Dw (e=m)ar + kg S8 (2-m) - 11w (e-)ar
(22) - 2 .
(-1 %m(e) = & fprv, (e-mar + k [B (2-Tyw (e-Tyar
+ k 'lw (£-T)dT - k j‘zw (t=-7)dT
30"2 31%2 :

To represent things compactly, we define

(1-1) %p(t)
y(t) =
(1-L) 2a(e)|

Then we can write (16) as

@T+Lk, 0 wy (€=7) 7

¢ |

y(o = 7 o
B'rkl k3‘ .wz(t-'r) i
(23)
B(2-m)-1]k; © w, (£=7)
+ (2 dr.
0 L8(2-Dk, sky Lw, (£-T)

Evidently, by virtue of the white noise property of w, y sampled at the in-
tegers is a first-order, bivariate moving average process with unconditional

mean Ey(t) = 0. The autocovariogram of the y process is readily compurted

12/

from —
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Ty = Ey(e)y(o)!

‘-3 T+1 0 7

- [

3r 1o w..lio 1

3(2-m)-1 0 !-vll 0 ‘ 3(2-m)-1 3 (2-7) .

f‘z ‘ 1]
= Al | R ldT
3(2-7) -1 LO v22 0 -1 |
and
1'1 = Ey(t)y(e-1)"
g(2-m-1 "0 i1 0 1 [3(T-L)+1 3(?-1)]
“Dlean  ull |
{ K v22 0 1 -
and
™ = 1= T
Top = Ey(®)y(e+l) o
I.=T =0 for j>1
J =]
where Vi ® (kl)2 and (k3)2. Evaluating the above integrals, we obtain
1.2 12
22 . =
) v, FHD - P 1
ig = . l
1.2 1.2 22
B F (=25
L2V F 2vy, (3 =1
11
(24)
r . .1
- =y g~ SN
118 D Y11 2¢F D
;l = - v
Sl L2 22
12T @ =



- 13 -

The matrix covariogram (24) of the discrete time process e contains all of
the information required to compute the Wold moving average representations
in discrete time. By studying the univariate and bivariate discrete time
Woid representations for Y.» We are able to characterize the effects of

aggregation over time. This is accomplished in the following two sections.
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We first coasidar +the univariate Wold reprasentation for She
2 2, : : R .
(1~L)"p process. From (24), (1-L)“p is a first-order moving average with

covariance generating function

(25) z2(z) = a(1yz"1 & e{0) + e{1)z

2., 2

.
where frcem (19) <(0) = 2v11(§5 + -1) . We sesk the Wold moving

F1Y o o (1
)y e(1) = v, (F8

avarage representation for {1-L)2p, which is of the form

(26) (1-L)%p(%) = (i-A L)

>

I -
ept. [:\pl < 5

with £ a discrete-time white noise that is fundamental 'for (l-L)zp; the

, i1 . 2 .
variancz of ths one-step-anhead prediction error ¢ is ¢ . From a routine

€p
. A s - . . 13/ . Sy e os
application ‘of the aspestral factorization theorem,~2' - w2 have the fallowing
2
Jformulas for A, and 0. ;
’ ‘ . \2
~n{aY ol
(27} L G vkl
B st Y te(1)
subjeet %o [A | < 1
2 2(0)
c;p = =
1+\D

Jging the preceding foramulas for o(0) and ef1) we havs

(28)

subjiset to 1A | < 1.
t

Now consider the diseorste-time inflation rate ¥ which we define as

{ 4=y METIE I » Es G- 3 b 3 - S e r A - fa .
BLY) = Pak=d) Dor o2t bhe integers,  Represantztion (26) czn then S



written
(297 (1-L)X(%) = (1~xéL)ept.

As shown by Jokhn F. Muth [13], the optimal J-step-ahead forecast of X governed by
process (29), given current and lagged values of X alcne, is the discrete-time
versicn of Cagan's adaptivs expectation schemes

(30) E[X(t+1) |X(E) ,X(E-1), n..] = (1= ) T AL

Cagan usad for approximating the continuous-time adaptive expectztinnz schame

(31) A= e .

ble 1 reports the valuss of ) _ given by

For varicus walues of B, T 5

formula (28) and Cagan's formula (31). For 2 cloze to zero, eguaticn (31}

provides a close approximation to (28). However, for large values of 3, exp(=-2)

is approximately zero, while equation (28) implies a L of approximately -.23.
This comparison 13 of interest ir tha following eontext. Suppose tha:s

cur continuous~time modél 1s corvach, and that an analvzs razsesses disnrste-

time observations on p, at integer points in time. A procedure recommended

by Nerlove [15] ard Merlove, Grethar, and Carvalho [12] would 2 5o letermins ths

optimal predicliors for ths univariate process for P, and then attribute them

- -~ oem Y la 1t B CRC K PEE B
and Carvalhs [1M},  In a2z infinicaly largs



Tadle 1

A

1.000C00
778290
.603239
L8383
.351000
.259528
. 184651
. 122966
Q71797
.022094
-.006757
-.037032
-.062746
-, 084705
- 103558
-.,119828
-.133939
-. 146237

- =, 157003

-. 166469
~-.174828
-. 132238
-.138832
-. 194722
-.204000
-.204746
-.208027
-.212899
-.215609
-.222524
-.225189
-.227632
-.229878
-.231940
-.233845
-:235605
~.237234
-.228716
-.24C150
-. 241457
-.267843

exp(=28)

1.0C0000
.778801
.h06531
LU72367
.387879
.2856505
.223130
LAT3ITTY
«1352335
. 105399
.082085
.063928
.0lg787
.038774
.030197
.023518
.013318
,2314284
011109
008652
.006733
008248
.Q08087
.003133
.002479
201630
.231503
001171
.000812
,0C0710
.000C553
0004724
030338
.COC2%1
.0C0202
200153
.00C123
.000028
.2AC0075
.206058
.0000L5
2.300608
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sample, the analyst could recover the parameter )\p given by formula (27), if he

followed Nerlove, Grether, and Carvalho's method. Using formula (28) or Table 1,
the analyst could then infer the value of B. Table 1 provides a fairly complete
characterization of Cagan's approximation (31) as a vehicle for inferring 9 from

\.
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5. Predicting Inflation Using Information on Lagged
Inflation and Lagged Money Creation
We now turn to the bivariate moving average of the discrete-time process for

inflation and money creation. A Wold moving average representation for

((1-1) Zp (), (1-L) 2m(e)) ' = y(t) is

(32) y(t) = u_+ Fu_,

where u, is a (2x1) vector discrete-time white noise with Eutut = V, where V is a
positive semidefinite matrix; u, = y(t) - ﬁy(t)lt(t-l),y(t-Z),...; and the eigen-
values of F are less than or equal to unity in absolute value. Given TO and

Tl from (24), F and V are determined by solving the following equations

(T+Fz) V(I+Fz " ) = r'lz'l # T, + T,z
- or

V + FVE /

—
[}

33)

T, = FV,

The spectral factorization theorem discussed by Rozanov [19] implies that these
equations have a unique solution with the properties indicated above. In prac-
tice, we have solved the above equationms for V and F by using an algorithm de-
scribed by Rozanov [19]. By following Rozanov's suggestions, Hansen and Sargent
[9, Appendix B] describe explicit closed-form formulas for V and F as functions
of the elements of FO and Tl.

Letting Xt = p(t) - p(t-1), Mt = ﬁ(t) - m(t-1), we can write (32) as

(l-L)X.t

(34) - u + Fu
(1-1)M, ¢ €
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By carrying out a series of calculations paralleling those of Muth [13], it is

straightforward to verify that (34) admits the alternative representation

Xt+1 Xt
_ -1
= (I+F)(L+FL) + ut+1'
My ) M,
or
X X .
t+l . - . t-1i
(35) = (I+F) T (-F)* +u .
. t+1
M i=0 M
t+1 t-i

From the fact that u is fundamental for (X,M), it can be readily verified that
there obtains the following bivariate generalization of Cagan's adaptive expec-

tations scheme:

(36) xt+j

[-~]
E RPN ST SRTRTY I (I+F) £ (-F)t

X
Mt+j : i=0 Mt

i |
FEES
=i

-

The one-step-ahead prediction error vector is Uiy? which has covariance matrix
V.

Representation (34) is usefully compared to the one constructed by Sargent
[20]. He posited a discrete-~time model of the inflation, money creation process
which makes the discrete-time version of adaptive expectations rational when
taken in conjunction with a discrete-time version of Cagan's portfolio balance
schedule. Sargent's model is the discrete-time, bivariate, first-order moving

average



(1-L)X [ ‘
t 1 0 e A 0 €1c-1
= + ‘
L(l-L)Mt 0 1 ot (1-7) -1 €or1
where (el, 62)' = € is a discrete-time vector white noise with arbitrary con-

temporaneous covariance matrix Ee = W; ¢ is fundamental for ((1-L)X,

tet
(1-L)M); and \X‘ < 1. It is evident from the first equation of (37) that
Cagan's discrete-time adaptive expectations formulation for inflatiom is rational,
given (37). 14/

In form, (37) matches (34). One of our tasks now is to study Ehe relation

between the (2x2) matrix F in (34) and the corresponding matrix
=\ 0

(1-)) -1
in (31). Notice that the eigenvalues of the matrix E are -1 and -\. It can be
proved 13/ that ;ne of the eigenvalues of F in (28) is -1. A comparison between
the value of -Kp given by equation (22) and the nonunit eigenvalue of F is one

interesting measure of the effects of time aggregation.

For various values of 8 and V where

we have calculated F and V. 1In addition, we calculated xp and czp in the uni-

variate Wold moving average representation for (1-L)X:

(1-L)X, = A=A De \xp\ <1

where ep is a fundamental white noise for (l-L)X and cz = Eez is the one-step-
| %
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ahead prediction error variance for (1-L)X. We also calculated the univariate

Wold movimng average representatioa for (l-L)M

(l—L)Mt - (1-kmL)emt

2
where em is a fundamental white noise for (1-L)M and cem = Ee¢” ig the one-step-

16/

ahead prediction error variance for (1-L)M. =

<)l 8wm~

i iscrete=-
llls the dis

time, one-step-ahead prediction error variance for predicting X on the basis of

Recall that

lagged X's and lagged M's, while v,. is the discrete-time, one-step-ahead predic-

22
tion error variance in predicting M on the basis of lagged X's and lagged M's.
Therefore, ngp-;ll)/cip is a measure of the marginal assistance of lagged M's in
predicting x, while (cgm-;zz)/czm is a measure of the marginal agsistance of
lagged X's in predicting M. These quantities, which we call '"percentage gains
in Tables 2-7, are measures of the strength of the Granger causality that occur
between the discrete-time X and M processes. We recaLl that in the c¢ontinuous-
time model (19), which we are maintaining, M fails to Granger cause X. However,
in the discrete-time model, M will in general Granger cause X due to the effects

17/

of aggregation over time. =’ The percentage gain (cz -v )ﬂ:z is a measure of

p Ll ep
the failure of the discrete-time process to reveal the Granger causality structure
of the underlying continuous-time model.

Tables 2-4 report complete characterizations of V, F, czp, cim, kp, and lm
for three values of 3, and for three settings for the "intensity’ matrix V.
Tables 5-7 give less complete characterizations of V and F for a large number of
values of 3.

One outstanding characteristic that emerges from these tables is that for

small values of 3, not only does exp(-28) approximate Xp well, but the matrix F-

approximates the matrix



<$
1]

I, B8 = .05

-.9512240

.0487756

Q
]

= 1.05084; %

1.05084; ¢

Q
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eigenvalues of F:
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Table 2

, V=
-1.200600 02840
gain = Q; Xp = .95122L

gain = 4.758; Ag = -951224

-1.0, -.951229

-.133791
-1.133790 2.73743

.0626363

gain = ,428; kp

gain .0626363

43.239; lm =

“1 00, - 1 1979”‘

V=21 € = 10.05
1.83797 -1.75125" /60.9131
F = s 7 = |
2.83797 ~2.75125 \33.8881
2 -4~ -5 4 3 TooAAl 3 H
Cip © 065.5079; % gain = 7.07%; AD T =-,241703
2 . e -
Cop = 65.5079; % gain = 22.355; N E -.281708
glganvalues ol F: 1.3, .0387212

.02840

1.0008%

st 8591

50.8631



, B = .05

( -.9512230

Table 3

-.507230E-04 10.508400 .258385

F = , T =

-QU87767 1.00005 .253385 1.008290
cgp = 10.5084; % gain = 0; Xp = 951224
02, = 1.16661; % gain = 13.563; A_ = .853612
eigenvalues of F: -1.0, -.951274

10 2
v = s, B = 2.0%

0 i

.329557 -.694458 " 46,7499 26.429¢

F = . , T =

1.329570 -1.694450 26.4839 17.2u99
0% = 47.8290; % gain = 2.256; A_ = .0626362

€p P

02 = 28.7633; % gain = 40.028; Ay = =.208744
eigenvalues of F: =1.0, -.364891

10 0
V= , B8 = 10.05

0 1

5.07515 ~5.35142 526,424 466,174
F = , V =

6.07515 -6.39143 U36.174 $16.924
cz = 655.079; % gain = 15.640; A = =.Z41708

o] B

a2 = 630.971; % gain = 33.924; A = ~.265206
eigenvaliues of F: =1.0, -.315278



Tabla 4

1 0
V= , B = .05
0 10

-.9512240 -.507996E-06 1.0508400 .0258385
F = . , ¥V =
0487755  ~1.00000 \ .0258385  10.0008¢00
2 . in = 0: % = 051221
Tgp = 1.05084; % gain = 0; X = .95122
2 . = s A =
Ocm = 10.1589; % gain = 1.5%556; lm = .984313

eigenvaliues of F: -1,0, -.951225

(1 0\ i
g =2.05
0 10/ o ’

v =
-.0540233 -.0149769 5.78062 .  2.75562)
F = , T =
.OU59670  ~1.0149800 2.75562  11.712060
02 2 4.78200; ¢ gain = .088; A_ = .0525353
ep “p
cgm = 17.9960; % gain = 34.816; A_ = .516757

.eigenvalues of F: -1.0, -.0690102

10
V= , 3 = 10.C5
0 10

.BE5057 ~.2h8513 64.8440 53,8190
F = /), T =
1,466CT0  -1.244610 \32.8190  63.7040
O"gp = €5.5079; % zain = 1.013; A_ = -.241708
02 2 356.7970: % gaia = 26.502; M = -.0787326
[l n

]

eigenvalues of -1.0, .221454



.05
.15
.25
.35

'45
055
.65
.75
.85
.95
1.00
2.00
3.0C
4.00
5.00
6.00
7.00
8000
9.00
10.00
11.00
12.00
13.C0
14,00
15.00
16.00
17 .00
18.00
19.00
20.00

exp(=8)

.951229
860708
778801
.704638
.637628
.576950
.522046
472367
427415
.386741
367879
.135335
.049787
.018316
.006738
.002479
.000912
.00G335
.000123
.000045
.000017
.000004
.000002
.0000GC1
.000000
.000000
.000000
.000000
.000000
.000000

% gain p

.000
.000
.000
.000
.001
.003
.005
010
.017
.026
.032
.396
1.216
2.253
3.297
L,251
5.090
2.817
6,445
6.389
7.462
7.876
3.240
8.562
8.850
9n 107
9.339
9.548
8.738
9.911

Table 5

V=I

% gain m

i,758
12.957
19.662
25.133
29.581
33.181
36.073
38.375
40.186
41,585
42,153
53,475
38.864
34,399
30.991
23.251
26.228
24,658
23.409
22.401
21.573
20.831
20.297
19.797
19.364
18.987
18.655
18.361
18.0983
17.863

Ap

.951224
.860537
.778220
703413
.83515¢
.572824
515811
L6358
JA415673
-371651
.351000
071797
-.062745
-.133939
-.172328
-.200000
~.216413
-.227632
-.235605
- 241487
-.245371
-.249278
-.25195¢
-, 254106
-.255850Q
-.257287
-.258483
-.25G490
-.260345
-.261077

eigenvalue
of F

-.951229
-.360708
-.778799
-.70463¢C
-.537504
--576890
-.472138
-.427030
-.386136
~-.357138
-.127017
-.026334
021749
.0873553
.082718
.072351
.078800
.083308
.0865832
.089031
.090929
.092230
.293554
.0G45GC4
.095285
.095933
.0964783
.095940
.0973235
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.05
.15
.25
-35
.45
.55
.65
.75
.85
.95
1.00
2.00
3000
L.oo
5.00
6.00
7-00
8.00
2.0C
10.G0
71.00
12.20
12.00
14,00
15.00
15,00
17 .00
18.00
16.00
20.,0C

exp(=R)

.951229
.860708
778801
.70U4688

+637628

376950
.5220456
U72387
427415
.386741
.3673879
.135335
0U9757
018315
.00567138
.502479
.20C912
.000335
.CC0123
.0000us5

. 000017

000006
.0C0002
.,000G0 |
.000020
.0ccoo0
.000000
.000000
.000000
.00G0C0a

% gain P

.000
.000
.001
.003
.010
.023
.0lué
.083
-135
.205
.248
2.120
$.169
8.312
11.104
13.460
15.421
1', 005}4
18,4286
19.58¢€
20.578
21.434
22,179
22.831
23,408
23.920
24,379
28,791
25.164
25.502

Tabie 6

(

4
1

0

0 0)
1

% gainm

13.563
30.723
3¢.841
44,530
46,743
47.568
47.620
b7.2%3
46.673
b5 .,996
L5,.64L
40.205
7.561
36.325
33.519
34,985
34 ,E06
34.323
34,105
33.931
33.750
33.872
33.573
33.489
33.416
35.352
33.296
33.246
32.202
33.162

o

.951224
.860587
773250
LT03413
.635156
.572824
515811
463584
415673
.371661
.351000
071797
-.062746
-.132939
~.174828
-.2G0000
-.218413
-.227632
-,235805
-.2k1457
-, 288871
=-.2u9278
-.25155%
-.254106
-.255850
-.257287
-.253483
-.2594990
-.260248
-.251077

eigenvalue
of F

-.95127T4
-.55178L
-.783221
-.715367
-.657499
-.608589
-.567u8Y
-.533C32
-.50%170
-.479957
-.469333
-.367138
-.339203
-.228647
-.223453
-.320572
-.313813

T =.217663

-.218871
-.315303
-.315881
-.315559
-.315509
-.315110
-.314049
-.3143817
-.314708
-.314617
-.314539
-.314473



B

.05
.15
.25
.35
.45
55
.65
.75
.85
.95
1.00
2.00
.00
4,00
5‘00
6.00
7.00
8.00
9.00
10.00
11.00
i2.00
13.00
14,00
15.00
16.G0
17.00
18.00
19.00
20.00

exp(=-R)

«951229
.860708
778801
.704688
637628
576950
.522046
JUT72367
427415
.3867u41
367879
.135335
049737
.018318
006738
.002479
.000912
.000335
.000123
.000045
.00CG17
.0NGC00s
.000002
.000001
.0000C0
.000000
.000000
.000000
.000000
.000000

% gain o

-.000
.C00
.000
.000
.000
.000
.001
.001
.002
.003
.003
.Onu
.145
.2584
<433
.575
704
319
.920

1.009

1 508?

1.157

1.218

1.272

1.321

1.385

1.405

1.441

1.474

1.504

% gain m

1.556

4,524

7-308

9.917
12.361
14,647
16.785
20.645
22.382
23.205
34,465
38.882
39.554
38.302
36.158

3.687
31.186
28.804
26.607
24.614
22.825
21.226
16.800
18.529
17.394
16.378
15.467
14.648
13.910

p

.951224
.360587
778290
.703413
635156
572824
463584
JH15673
.371661
.351000
071797
-.082746
~.133939
-.174828
-.200000
"0216"413
-.227632
-.235608
-.2k5871
-.249278
-.25135%
-.254106
-.255850
-.257287
-0258,483
-.25949C
-.260345
~.25%077

eiganvalue
of F

-.951225
-.860599
- 778341
~.7035L0
~.635403
-.57323¢
-.51643!
-~ 4BLUA T
- 416843
-.273162
-.352679
-.077933
.052230
120272
. 158938
.182532
.197325
.208339
.2158792
.221222
.225312
.228455
.230945
.232329
.23U541
.235867
.236971
-237990
.238633
1233363
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-[:x 0|

L(l«k) -1

well with \ taken to be kp or exp(-8). Further, for small 8, money creation only
very weakly Granger-causes inflation in the discrete-time data.
On the other hand, for large values of 8, exp(-3) fails to approximate *

well, and F fails to regsemble the matrix
-\ 0
(1-}) -1

In addition, for large 2, substantial Granger causality can extend frﬁm money
creation to inflation in discrete time.

For valué of Xp in the range estimated by C;gan {2] and Sargeat [20], these
results are moderately comforting, since they suggest that aggregation over time
imparts at most a very small asymptotic bias to Cagan's estimator of 3. 18/
They also are compatible with the weak evidence in discrete time for Granger
causality extending from money creation to inflation.

On the other haand, the tables also indicate that for high values of 3 the
effects of aggregation over time can be considerable. In particular, while
Cagan's approximation A = exp(-R) prevents )\ from assuming negative values,
negative A's can occur in the appropriate discrete-time model.

Fortunately, there is no need to count on the parameter 3 staying in the
range in which time aggregation effects are small. It is straightforward to

implement procedures for estimating the parameters of the continuous-time model,

2 and V, given records of discrete-time data, Equation (36) is a bivarizts novina

1

i
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average representation for {(1-L)X, (1-L)M}, which can be estimated using either
time domain or frequency domain versions of niethod of maximum likelihood. L/
The likelihood function would be maximized over the free parameters, B and V, of

the continuous-time model.



8. Conclusicas

We have produced =z continuous-time model which solwves bLhe inverse
optimal predictor probtlem for a continuous-time version of Cagan's amdsl) of
hyperinflatiop with adaptive expectations. We nave gone on tc deduce the re-
gtricticns which this continuous-time model places on discrste-time data. This
has permitted us to desecribe exact formulas linking the parameters of the diz-
crete-time representation to the parametars cf the continuous~time model. Thaese
formulas permit us to evaluate the quality of the approxinations that Cagan and
others have used in linking the discrete-time and continuous-time parameteriza-
tions.

The computaticnal techaiques used in %his paper zre useful for study-
ing the effects of aggregation ovsr Lime in a variety of dynamic models under
rational expectations. In subsequent ressarch we plan to use these tools to
study the éffects of aggragation over time in substantialiv richer Aynamic

sentexts.,
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Appendix

In this appendix we use tools discussed in Hansen and Sargent [28] to show

that the only choice of cl(D) that has a rational Laplace transform and that

satisfies
8De, (D)
vD - 1
(1) ey e T, = e
is
(a2) e (@ = Hko
D

where ko is an arbitrary row vector constant.
The fact that no .other variables Granger cause p implies that cl(D) must
take the form

cl(D) = cl(D)* ko

where cl(D)* is a scalar operator and ko is a row vector constant that

gatisfies goké = 1. Thus we can write the fundamental representation for

p as

(A3) p(t) = cl(D)* w(t)*®

where w(t)* = kow(t). The function cl(s)* is assumed to be rational which we

represent

w o lS)
1% =N (s

wiiare
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Y(s) = (s-Yl)(s-Yz)...(s-Yn)

uis) = uo(s-ul)(s-uz)...(s-um)l

Consistent with the requirements mentioned in footnote 6, we impose the
restriction that Real (Yj) is less than or equal to =zero for j =1,
2, ..., n. This guarantees that the vector function CT(S) is analytic

in the open right half plane. The assumption that p 1s physically realizable

implies that m < n.

The function

G(s,v) = scl(s)*eVs

EY

is analytic in its first argument everywhere in the complex plane except possibly
at Yl’YZ""’Yn' Let Hl(s,v), Hz(s,v),..., Hq(s,v) denote the principal parts of
G at the corresponding q distinct zeroces of Y(s). Using a result from Hansen and

Sargent [28], it follows that

[G(D,v)]+ = HI(D,V) + HZ(D,V) + ...+ Hq(D,v).

However from (Al) it is clear that Hj(s,v) cannot depend on v. It follows that

the n = 2 and v, = YZ = ). Therefore

1
o ()% = by ls=uy)
1 2 )
]
) %, VD .
Computing [Dcl(s)we ]+ we obtain

T (D-sxl)eVD-\ ]
Lo D .. D

Bv equation (al) we see. that
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(A4) - R

40 E“‘O(D"'“l)

S TR0y
D @+D)D

Equation (A4) implies that Wy o= -8 . Therefore

¢ (D)* = H-OQDZB)
D

which proves the desired result.



Footnotes

1. Linear inverse optimal coatrol and linear inverse optimal predictor problems
are analyzed in discrete time by Mosca and Zappa [12].

2. We interpret D+§tp asg expected inflation at time period t. For a more de-
tailed discussion of linear expectations differential equations of the form

given in (1) see Hansen and Sargent [28]. The approach adopted by Hansen and
Sargent avoids making distributional assumptions and instead focuses on the co-~
variance properties of the underlying vector time series process. It is assumed
that this vector process has a time invariant moving average representation in
which each of the components can be expressed as a one-sided convolution integral
of a vector white noise. An alternative approach to the one taken here is to
agsume that underlying vector time series process can be-characterized as a dif-
fusion process and to investigate what restrictions (1) implies om this diffusion.

3. The interchange of the derivative and linear least squares projection opera-
tors is justified in Hansen and Sargeat [28].

4. For a discussion of gemeralized stochastic processes see Gelfand and Vilenkin
[26]. Generalized stochastic processes are oftentimes convenient mathematical
devices for modelling processes that are not directly observed but whose properties
are inferred from observations on integral averages of thess processes. In our
example, we assume that prices are observed and the properties of inflation can

be inferred from these observations. We do not requirec that inflation be an
ordinary stochastic process.

5. Rozanov [19] uses the concept of a fundamental representation in the context of
covariance stationary stochastic processes. This notion is generalized in Rozanov
[29] to apply to nonstationary processes as well. In this more general framework
‘Rozanov refers to such a representation as a canonical representation. We restrict
ourselves to processes in which the corresponding convolution operators used to
define the fundamental representations are one-sided and have Laplace transforms
that are analytic in the open right half plane. We shall represent convolution
operators as functions of the derivative operator. We use the following operational
calculus. Let F(t) be a function or generalized function defined on te(-@ ,-%) .
Let f£(s) be the Laplace transform of F(t), which we denote by £(s) = F(L) .
Let D be the time derivative operator, and let x(t) be a stochastic process or
generalized stochastic process. Then we have '

£E(D)x(t) = j F(T)x(t-T)dT. 1In conjunction with this equality, we use the Ffollow-
-

ing Laplace transform pairs in this paper: 1/s e»1; 1/52 A I

.
1 S'eau' £
— b . 2> O
S-2 la, t>0
. { eat, £ u 0
—— i - y 2 %< 03
3-a le, :teon -



e 6 (t-a) where 8(-) is the Dirac delta generalized function; and e 855 &

u(t-a) where u(t) is the Heaviside unit step function, u(t) = 1, t 2 0, u(t) = 0,
t < 0. For descriptions of Laplace transforms, see Churchill [3] or Doetsch {4}.
For a useful treatment of the operational properties of delta functions and other
generalized functions, see Papoulis [17].

6. We adopt this start up time interpretation in order that we can accommodate
certain borderline non-covariance-stationary processes. The assumption that

T = < is appropriate only if we restrict ourselves to covariance stationary
processes.

7. This operator equation has implicitly interchanged the linear least squares
projection operator and the derivative operator. See Hansen and Sargeat {28] for a
justification of this operator equation.

8. This identification question ignores the problem of identifying the continuous-
time reduced form parameters from discrete-time data, i.e., the aliasing phenomenon.
See Hansen and Sargent [27] for a discussion of aliasing in the context of linear
rational expectations models. Christiano [25] has an extensive discussion of
identification in the context of a discrete-time version of Cagan's model.
Christiano's discussion is closely related to the comments about identification

in this paper.

9. Equation (14) is an implication of the facts that the instantaneous forecast
error in forecasting a from its own past is a linear combination of w and that

032(D) # 0.

10. This is a continuous-time version of the assumption about the disturbance
to the portfolio balance schedule considered by Sargent [20].

11. See Churchill [3] or Doetsch [4].

12. We are using the rules for taking expected values of products of integrals
of white noises that are described by Kwakernaak and Sivan [11, pp. 97- 99].

13. This theorem is discussed by Rozanov [19] in generality. Sargent [20,
pp. 265-268] provides a nontechnical discussion of factoring the covariance
generating function of a first-order moving average process.

1l4. This is because the first difference of inflation is a first-order moving
average, and because the Wold moving average representation for (1-L)X,

(1-L)M is triangular, implying that (1-L)M fails to Granger cause (1-L)X.
See Sims [23].
15, First, note that

(@+72)7(1+72) ") = T_ 2™+ Tz + Tz

and therefore the zeroes of det(F_lz-l+FOz+le) are comprised of the zeroes

of det(I+Fz) and the reciprocals of the zeroes of det(I+Fz). Next, note that
the zeroes of det (I+Fz) are minus the reciprocals of the eigenvalues of F.

By using formulas (18) it can be proved that unity is a zero of det(fiz-l+T0+flz),



which implies that -1 is an eigenvalue of F.

16. Each of these univariate moving averages was calculated by using the
covariances given in (18) together with formulas (21).

17. In a more general context, Sims [22, 23] has emphasized that }'s failing to
Granger cause % in continuous time does not imply that ; fails to Granger cause
x in discrete time.

18. See Sargent [20] for an argument that Cagan's procedure for estimating \

is statistically consistent, provided that expectations are rational and that
the money creation inflation process is given by (31).

19. Such approximations are discussed by Hannan [7], Hansen and Sargent [8], and
Phadke and Kadem [18].
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