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Abstract. In the Database-As-a-Service (DAS) model, clients store their
database contents at servers belonging to potentially untrusted service
providers. To maintain data confidentiality, clients need to outsource their
data to servers in encrypted form. At the same time, clients must still
be able to execute queries over encrypted data. One prominent and fairly
effective technique for executing SQL-style range queries over encrypted
data involves partitioning (or bucketization) of encrypted attributes.

However, executing aggregation-type queries over encrypted data is a
notoriously difficult problem. One well-known cryptographic tool often
utilized to support encrypted aggregation is homomorphic encryption; it
enables arithmetic operations over encrypted data. One technique based
on a specific homomorphic encryption function was recently proposed in
the context of the DAS model. Unfortunately, as shown in this paper,
this technique is insecure against ciphertext-only attacks. We propose
a simple alternative for handling encrypted aggregation queries and de-
scribe its implementation. We also consider a different flavor of the DAS
model which involves mixed databases, where some attributes are en-
crypted and some are left in the clear. We show how range queries can
be executed in this model.

1 Introduction

The Database-As-a-Service (DAS) model was introduced by Haĉigümus, et al. in
[1] and, since then, has received a lot of attention from the research community.
DAS involves clients outsourcing their private databases to database service
providers (servers) who offer storage facilities and necessary expertise. Clients,
in general, do not trust service providers with the contents of their databases
and, therefore, store the databases in encrypted format. The central challenge
is how to enable an untrusted service provider to run SQL-style queries over
encrypted data.

In [1], Haĉigümus, et al. suggested a method for supporting range queries
in the DAS model. Since encryption by itself does not facilitate range queries,
[2] involves bucketizing (partitioning) attributes upon which range queries will
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be based. This involves dividing the range of values in the specific domains of
the attribute into buckets and providing explicit labels for each partition. These
bucket labels are then stored along with the encrypted tuples at the server.
Based on the same bucketization strategy, the follow-on work in [3] addresses
aggregation queries in DAS by proposing the use of a particular homomorphic
encryption function. In general, homomorphic encryption is a technique that
allows entities who only possess encrypted values (but no decryption keys) to
perform certain arithmetic operations directly over these values. For example,
given two values E(A) and E(B) encrypted under some homomorphic encryption
function E(), one can efficiently compute E(A + B). It is easy to see that such
functions can easily support SUM operations over a desired range of values.

Fig. 1. Database-As-a-Service Overview

In this paper we show that the homomorphic encryption scheme in [3] is inse-
cure by demonstrating its suspectability to a ciphertext-only attack. This makes
it possible for the server (or any other party with access to the encrypted data)
to obtain the corresponding cleartext. We propose a very simple alternative for
handling aggregation queries at the server, which does not involve homomorphic
encryption functions. We further describe the protocols for formulating and exe-
cuting queries as well as updating encrypted tuples. We then focus on a variant
of DAS which has not been explored thus far: the so-called mixed DAS model,
where some attributes are sensitive (and thus stored encrypted) while others are
not (and are thus left in the clear).

Organization: This paper is organized as follows: Section 2 describes the salient
features of the DAS model and the bucketization technique. Section 3 introduces
homomorphic encryption functions and describes our attack on the scheme in [3].
Section 4 describes our simple solution for supporting aggregation-style queries
in the DAS model. and Section 5 addresses query processing in the mixed-DAS
model. Section 6 overviews related work and Section 7 concludes the paper.

2 The DAS Model

The Database-As-a-Service (DAS) model is a specific instance of the well-known
Application-As-a-Service model. DAS was first introduced by Haĉigümus, et al.
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[1] in 2002. It involves clients storing (outsourcing) their data at servers ad-
ministered by potentially untrusted service providers. Although servers are re-
lied upon for the management/administration and availability of clients’ data,
they are generally not trusted with the actual data contents. In this setting,
the main security goal is to limit the amount of information about the data
that the server can derive, while still allowing the latter to execute queries over
encrypted databases. (A related issue is how to maintain authenticity and in-
tegrity of clients’ outsourced data; this has been addressed by the related work
in [4,5,6].)

Before outsourcing, a DAS client is assumed to encrypt its data under a set of
secret keys. These keys are, of course, never revealed to the servers. The client
also creates, for each queri-able attribute, a bucketization index and accompa-
nying metadata to help in formulating queries. For every encrypted tuple, each
attribute index is reflected in a separate label (bucket id) which is given to the
server. Table 1 shows an example of partitioning for a salary attribute. Clients
maintain the metadata describing the partitions.

Table 1. Bucketization

employee.salary
Partition ID

[0,25K] 41
(25K, 50K] 64
(50K, 75K] 9
(75K, 100K] 22

Although the term “DAS client” generally refers to an organizational entity,
the actual client who queries the outsourced data may be a weak device, such as
a cell-phone or a PDA. Thus, it is important to minimize both bandwidth and
computation overhead for such clients.

2.1 Bucketization

There are two basic strategies for selecting bucket boundaries: equi-width and
equi-depth. With the former, each bucket has the same range. Table 1 is an exam-
ple of equi-width bucketization where each partition covers 25K. However, if the
attribute is distributed non-uniformly, this bucketization technique essentially
reveals (to the server) the accurate bucket-width histogram of the encrypted
attribute. In contrast, equi-depth bucketization attempts to avoid this problem
by having each bucket contain the same number of items, thereby hiding the
actual distribution of values. The downside of this approach is that, in the pres-
ence of frequent database updates, the equi-depth partition needs to be adjusted
periodically. This requires additional (and non-trivial) interaction between the
server and the client (database owner).

Although useful and practical, bucketization has an unavoidable side-effect
of privacy loss since labels (bucket id-s) disclose some information about the
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cleartext. Unless there are as many buckets as there are distinct values in the
domain of an attribute, some statistical information about the underlying data
is disclosed through bucket id-s. Some recent results [7,8] analyze and estimate
the loss of privacy due to bucketization. These results show that, although some
degree of privacy is invariably lost (since statistical information is revealed), only
very limited information can be deduced from encrypted tuples and associated
labels [8].

eid age salary
12 40 58K
18 32 65K
51 25 40K
68 27 76K

(a)

etuple(encrypted) eidid ageid salaryid ageh salaryh

%j#9*&JbB@... 72 51 9 52 73
P 5g4*H$j0aO... 72 3 9 29 65

X!f(63¡gl0̈3... 26 33 64 90 43
,f3+Wb5P@r-Cs... 85 33 22 81 38

(b)

Fig. 2. Relation employee in (a) plaintext form and (b) encrypted and bucketized form

Figure 2 (a) shows a subset of a table employee with the attributes: employee
id, age, and salary. The encrypted version of the table, stored at the server, is
shown in Figure 2 (b). It contains the fields: etuple, bucket identifiers each of
the original attributes, and additional ciphertext values denoted by fieldnameh

that will be utilized when the server computes aggregation queries (see Sec-
tion 3). If the server aggregates data during range queries, it will be unable to
include values from encrypted tuples. It should therefore be possible for the ser-
vice provider to execute certain commands upon the sets selected during range
queries, and the next section describes the use of homomorphic encryption which
allows arithmetic operations directly over ciphertexts.

2.2 Query Processing

A client’s SQL query is transformed, based upon metadata, into server-side and
client-side queries (Qs and Qc). The first is executed by the server over encrypted
data. The results are returned to the client where they are decrypted and serve as
input to the second query. When Qc is run at the client, it produces the correct
results. As described below, the results from executing Qs form a superset of
those produced by Qc. In other words, after the decryption of the tuples returned
by Qs, Qc filters out extraneous tuples.

The use of bucketization limits the granularity of range limits in server-side
queries. This is because the server cannot differentiate between tuples within
the same bucket (i.e., tuples with identical labels). Therefore, server-side queries
are further decomposed into certain and maybe queries, denoted by Qs

c and Qs
m,

respectively. The former will select tuples that certainly fall within the range
specified in the query and its results can be aggregated at the server. Qs

m selects
etuples corresponding to records that may qualify the conditions of the range
query, but which cannot be determined without decryption and further selection
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by the client. This query’s result set consists of the etuples from the border
buckets in the range query. Upon receiving the two result sets the client runs
query Qc to produce the final results.

Figure 3 illustrates the procedure whereby a client query Q is decomposed
into Qc, Qs

c, Q
s
m. Using Table data as an example, if a query specified the range

of salaries between $30-75K, then Qs
c would identify bucket 9 and Qs

m bucket
64. This query-splitting necessitates post-processing by the client – running Qc

against the results returned by the server after running Qs. We refer to [2] for
details about the query-splitting.

Client Server

Q → Qc, Qs
c, Q

s
m

Qs
c, Q

s
m

−−−−−−−−−−−−−−−−−−−→
Execute
queries

Query results for Qs
c

←−−−−−−−−−−−−−−−−−−−
Query results for Qs

m

←−−−−−−−−−−−−−−−−−−−
Run Qc over Qs

c & Qs
m

Fig. 3. Transformation of Client Query

3 Querying over Encrypted Data

The bucketization technique described above enables a server to run range
queries over encrypted tuples. However, we have yet to describe any useful func-
tions that can be computed in conjunction with such range queries. This section
focuses on aggregation queries over encrypted data. More specifically, we are
interested in mechanisms for computing the most rudimentary (and popular)
aggregation function: SUM over a set of tuples selected as a result of a range
query.

3.1 Homomorphic Encryption

A homomorphic encryption function allows manipulation of two (or more) ci-
phertexts to produce a new ciphertext corresponding to some arithmetic func-
tion of the two respective plaintexts, without having any information about the
plaintext or the encryption/decryption keys. For example, if E() is multiplica-
tively homomorphic, given two ciphertext E(A) and E(B), it is easy to compute
E(A ∗ B). Whereas, if E() is additively homomorphic, then computing E(A +
B) is also easy. One well-known example of a multiplicatively homomorphic
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encryption function is textbook RSA.1 An example of an additively homomor-
phic encryption function is Paillier [10].

In more detail (as described in [3]) a homomorphic encryption function can
be defined as follows:

Assume A is the domain of unencrypted values, Ek an encryption func-
tion using key k, and Dk the corresponding decryption function, i.e.,
∀a ∈ A, Dk(Ek(a)) = a. Let α and β be two (related) functions. The
function α is defined on the domain A and the function β is defined on
the domain of encrypted values of A. Then (Ek, Dk, α, β) is defined as a
homomorphic encryption function if Dk(β(Ek(a1), Ek(a2), ..., Ek(am))) =
α(a1, a2, ..., am). Informally, (Ek, Dk, α, β) is homomorphic over domain
A if the result of the application of function α on values may be obtained
by decrypting the result of β applied to the encrypted form of the same
values.

Homomorphic encryption functions were originally proposed as a method for per-
forming arithmetic computations over private databanks [11]. Since then, they
have become part of various secure computation schemes and more recently, ho-
momorphic properties have been utilized by numerous digital signature schemes
[12,4]. As mentioned above, some encryption functions are either additively or
multiplicatively homomorphic. An open problem in the research community is
whether there are any cryptographically secure encryption functions that are
both additively and multiplicatively homomorphic. (It is widely believed that
none exist.)

3.2 Homomorphic Function in [3]

The homomorphic encryption function proposed in [3] is based upon the so-
called Privacy Homomorphism (PH) scheme [11]. PH is a symmetric encryption
function with claimed security based on the difficulty of factoring large composite
integers (similar to RSA). PH encryption works as follows:

– Key Setup:
k = (p, q), where p and q are large secret primes. Their product: n = pq is
made public.

– Encryption: Given plaintext (an integer) a,
Ek(a) = C = (c1, c2) = (a (mod p)+R(a)×p, a (mod q)+R(a)× q), where
a ∈ Zn and R(x) is a pseudorandom number generator (PRNG) seeded by x.

– Decryption: Given ciphertext (c1, c2),
Dk(c1, c2) = (c1 mod p)qq−1 + (c2 mod q)pp−1 (mod n)

This encryption function exhibits both additive and multiplicative properties
(component-wise). The addition of “noise” – through the use of R(x) – is done

1 In practice, RSA encryption is not homomorphic since plaintext is usually padded
and encryption is made to be plaintext-aware, according to the OAEP specifications
[9].
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in multiples of p and q, respectively, which is meant to make encryption non-
deterministic and make it more difficult for an attacker to guess the secret key k.
However, as we show below, this actually makes it easier to attack this encryption
scheme through their extensions to the original homomorphic scheme.

There are several types of textbook-style attacks against encryption functions
[13]. At the very least, an encryption function is required to withstand the most
rudimentary attack type – ciphertext-only attack. Such an attack occurs when
the adversary is able to discover the plaintext (or worse, the encryption key)
while only having access to ciphertexts (encrypted values). We now show that
the above PH-based encryption is subject to a trivial ciphertext-only attack,
which results not only in the leakage of plaintext, but also in recovery of the
secret keys. The attack is based on the use of a well-known Greatest Common
Divisor (GCD) algorithm.

To make the attack work we make one simple assumption: that there are
repeated (duplicate) plaintext values. This assumption is clearly realistic since
it holds for most typical integer attributes, e.g., salary, age, date-of-birth, height,
weight, etc. Of course, PH encryption ensures that identical plaintext values are
encrypted into different ciphertexts, owing to the addition of noise.

We denote a repeated plaintext value by M and two corresponding encryptions
of that value as C′ = (c′1, c

′
2) and C” = (c1”, c2”). Let R′ and R” represent the

respective random noise values for the first half of each ciphertext. Recall that:
c′1 = M (mod p) + R′ × p and c1” = M (mod p) + R” × p. Then, we have:
c′1 − c1” = R′ × p − R” × p = (R′ − R”) × p.

Since R′ and R” are relatively small2 factoring (c′1 − c1”) is trivial. Hence,
obtaining p (and, likewise, q) is relatively easy. Moreover, we observe that, even
if factoring (c′1 − c1”) were to be hard (which it is not), it is equally trivial
to compute the greatest common divisor of (c′1 − c1”) and n. Note that p =
GCD(n, c′1 − c1”) = GCD(pq, (R′ − R”)p).

This attack can be performed by the server by simply iterating through pairs of
ciphertexts corresponding to a single database attribute, until a pair of duplicate-
plaintext ciphertexts are found. In general, given t ciphertexts (for a given at-
tribute), the server would have to perform at most O(t2) GCD computations
before computing p and q. Once p and q are obtained, decrypting all ciphertexts
is an easy task.

There are other weaknesses associated with the homomorphic scheme pro-
posed in [3]. An extension is for accommodating encryption of negative numbers
stipulates how values should be transformed prior to encryption. However, when
such ciphertexts are multiplied, decryption simply fails! A separate issue arises
due to the use of noise introduced through the use of R(x). This function pro-
duces a pseudo-random number used as a multiplicative coefficient of p and q,
both of which are already large integers. Therefore, the resulting ciphertexts
increase in size, taking significant storage at the server.

2 If Ri values were large, then the resulting ciphertexts would become even larger than
their current size, especially since encryption does not include the noise component
in its modular reductions.
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3.3 Other Homomorphic Encryption Functions

Since the encryption function proposed in [3] is insecure, it is worthwhile to in-
vestigate whether there are other homomorphic encryption functions that can
replace it. Recent cryptographic literature contains several encryption schemes
that exhibit the additively homomorphic property. (Note that we are not as in-
terested in multiplicatively homomorphic property because multiplication is not
as frequent as addition in aggregation queries). Candidates include cryptosys-
tems proposed by Paillier [10], Benaloh [14], the elliptic-curve variant of ElGamal
[15] and Okamoto/Uchiyama [16]. One common feature of these schemes is that,
unlike PH encryption, they are all provably secure public-key cryptosystems
based upon solid number-theoretic assumptions. An unfortunate consequence is
that ciphertexts tend to get rather large, and the operation of combining cipher-
texts can be computationally intensive. This is problematic when dealing with
computationally weak clients, such as cellphones or PDAs.

One very different alternative is a symmetric encryption function recently
proposed by Castelluccia, et al. [17] in the context of secure aggregation in
sensor networks. This function requires no number-theoretic assumptions, is very
efficient and incurs only a minor ciphertext expansion [17]. It is based on a
variant of a well-known counter (CTR) mode [13] of encryption and can be used
in conjunction with any block cipher, such as Triple-DES or AES [18,19]. (The
only notable difference is that it uses an arithmetic addition operation, instead
of exclusive-OR to perform the actual encryption. The keystream is generated
according to the normal counter mode.)

All of the above homomorphic encryption functions are secure, when used
correctly. However, we show – in Section 4 – that there are simpler mechanisms
for achieving aggregation over encrypted data.

4 Proposed Approach

With the exception of total summation queries, most aggregation queries are
typically predicated upon a range selection over one or more attributes. However,
if all tuple attributes are encrypted, aggregation is impossible without some form
of bucketization or partitioning. Assuming a bucketization scheme (as described
in Section 2.1), we now describe a trivial alternative for supporting aggregation-
style queries. This technique does not require any homomorphic encryption and
demands negligible extra storage as well as negligible amount of computation.

Our approach involves the data owner pre-computing aggregate values, such
as SUM and COUNT, for each bucket, and storing them in encrypted form at the
server. This allows the server, in response to a bucket-level aggregation query, to
directly reply with such encrypted aggregate values, instead of computing them
on-the-fly at query processing time. The encrypted bucket-level aggregate values
can be stored separately. Table 2 shows sample table with SUM and COUNT
values per salary attribute bucket, based on the data in Table 1.

The number of rows in this table is the same as the number of buckets for
the bucketized attribute. During execution of a range query, the server simply



Aggregation Queries in the Database-As-a-Service Model 97

Table 2. Aggregate values stored per bucket

employee.salary.aggregates
Bucket ID SUM COUNT

41 Enc(930) Enc(15)
64 Enc(1020) Enc(13)
9 Enc(774) Enc(9)
22 Enc(568) Enc(6)

looks up the appropriate values from the aggregate table and returns them to
the client. This frees the server from expensive computation with homomorphic
encryption functions and also obviates any security risks.

We recognize two drawbacks in the proposed technique: (1) extra storage
for encrypted aggregates, and (2) additional computation following database
update operations. The first is not an actual concern since extra space is truly
negligible in comparison to that stemming from ciphertext expansion in either
PH-based or public key homomorphic encryption functions. The second does
present a slight complication which we address below. The main benefit is that
the server is relieved from adding ciphertexts during query execution, removing
this computational overhead.

4.1 Aggregation Query Processing

We now describe the processing of aggregation-style range queries using the pro-
posed technique. As before, each query is partitioned into client- and server-side
sub-queries Qc and Qs, respectively. Qc is basically the original query and Qs

is its bucket-level “translation” and split into Qs
c and Qs

m (certain and maybe
queries). However, unlike bucket-level range queries, aggregation queries result
in the server returning one or more bucket-level encrypted aggregate values as
the query response to Qs

c. Qs
m executes as in [1] (described in Section 2.2) and

returns the etuples belonging to bordering buckets which may be part of the
final query response. For example, consider the following query:

SELECT SUM, COUNT from employee WHERE
(employee.salary ≥ 30K) and (employee.salary ≤ 75K)

The corresponding server-side query Qs would be: SELECT SUM, COUNT from
employee.salary.agg WHERE (id=64) or (id=9)

The corresponding query reply would consist of:

1. Enc(1020) and Enc(13) for bucket id 64
– as well as:

2. etuples for all tuples with bucket id 9

As a final step, the client needs (1) decrypt, filter and aggregate the etuples, (2)
to decrypt and sum up the respective bucket aggregates, and (3) combine results
from the two steps to compute correct aggregates.
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4.2 Handling Updates

Whenever a data owner updates its outsourced database to modify, delete or
insert tuples involving bucketized attributes, the aggregate values need to be
updated as well. An update query may therefore require two communication
rounds with the server: the stored aggregate values need to be returned by the
server in the first round, and then updated and returned by the data owner in
the second round. In between the two rounds, the owner modifies the aggregate
values accordingly (i.e., computes new SUM and/or new COUNT). This proce-
dure is shown in figure 4, where a client inserts a new tuple and updates the
salary aggregate table simultaneously.

We use the term data owner as opposed to client to capture the fact that
there may be many clients who are authorized to query the outsourced data
(and who have appropriate decryption keys). Whereas, the there might be only
one owner, i.e., the entity authorized to modify the database. Thus, while an
owner is always a client, the opposite is not always true.

We also note that the two-round interaction shown in figure 4 is not nec-
essary if there is only one owner (but many clients). Recall that, for
each database, its owner as well all other clients are required to store cer-
tain metadata (bucketization scheme) for each bucketized attribute. The size
of the bucketization metadata is proportional to the number of buckets. Con-
sequently, it is reasonable to require the (single) owner to store up-to-date
bucket-level aggregate values for each bucketized attribute. (In other words,
the additional storage is insignificant as it at most doubles the amount of meta-
data.) Consequently, the first round of communication (as part of update) is
unnecessary.

Client Server

SELECT SUM, COUNT
from employee.salary.agg WHERE id == 9

−−−−−−−−−−−−−−−−−−−−−−−−→
E(774), E(9)

←−−−−−−−−−−−−−−−−−−−−−−−−
D(SUM)

D(COUNT )
SUM+=66K
COUNT++

E(SUM), E(COUNT ), new tuple
−−−−−−−−−−−−−−−−−−−−−−−−→

ACK
←−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. Owner/Client inserts new tuple
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5 Mixed Databases

Up until this point we have discussed a DAS model in which all the client’s data
is encrypted. We now look at execution of aggregation queries in a novel DAS
flavor, where some attributes are encrypted and some are left in the clear. We
label this as a mixed database. Such databases provide de facto access control
since individuals not in possession of decryption keys cannot access sensitive
data. Differentiating between confidential and non-confidential attributes also
reduces the computational load related to encryption at both the server and
client.

An interesting aggregation query in a mixed database specifies a range over
a plaintext value while aggregating an encrypted attribute. Table 3 illustrates a
mixed database where the emp id and age attributes are kept in the clear while
salary is encrypted. A potential query asks for the total salary of all employees
within a certain age group. Such queries cannot be executed with the proposed
solution in Section 4, because the attribute over which the range is defined is
not bucketized (since it is not encrypted). Instead, this plaintext attribute either
has an index built over it or not. In the former case the index is utilized to
select the matching tuples, while in the latter, a complete table scan is necessary
during query execution. It still remains necessary for the server to aggregate over
encrypted data, and we therefore return our focus to homomorphic encryptions
functions. Next we compare and analyze the homomorphic functions introduced
in Section 3.3 to determine the most appropriate candidate function for the
mixed DAS model.

5.1 Additive Homomorphic Encryption Scheme Candidates

We are interested in comparing provably secure additive homomorphic encryp-
tion schemes. Criteria used to evaluate schemes included the size of their cipher-
texts, the cost of adding ciphertexts, and that of decryption. Cost of encryption
is of less importance since it is a one-time offline computation performed by the
data owner, and has no effect on query response time.

The four homomorphic encryption schemes that we consider are Paillier [10],
Benaloh [14], Okamoto-Uchiyama (OU) [16] and the elliptic-curve variant of
ElGamal (EC-EG) [15]. [20] describes each of these schemes in greater detail.
The privacy homomorphism in [3] does not qualify as a viable candidate because
of its weak security, which is pointed out in Section 3.2. Castelluccia et al.’s
secret key homomorphic scheme [17] requires that additional data be returned
to the client for decryption. This data consists of unique identifiers for each
aggregated ciphertext and is proportionate in length to the number of aggregated
values. Such bandwidth overhead diminishes the value of data aggregation, and
we therefore omit this scheme from our pool of candidates3.

3 It is possible to remove the additional bandwidth overhead by storing additional
encrypted data at the server, but a description of this technique is outside the scope
of this paper.
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Table 3. Mixed Database

faculty.salary
emp id age salaryh

31 52 87
32 45 12
33 38 41

5.2 Analysis and Comparison of Cryptoschemes

When comparing cryptosystems built upon different mathematical structures
(EC-EG operates over elliptic curves while the OU and Benaloh work over mul-
tiplicative fields), it is important to devise a common computational unit of
measurement for purposes of fair comparison. We choose that unit to be 1024-
bit modular multiplications and follow the same methodology for comparison as
in [21]. The fundamental operation in EC-EG is elliptic curve point addition.
[20] describes how to derive the equivalent number of modular multiplications
to that of an elliptic curve point addition. The number of 1024-bit modular
multiplications will define the computational cost of summing ciphertexts at the
server and decryption of aggregate values at the client.

Table 4. Performance Comparison of Additive Homomorphic Cryptosystems

Scheme Addition Decryption Bandwidth
Paillier 4 1536 2048
EC-EG 1 16384 328

OU 1 512 1024
Benaloh 1 131072 1024

Table 4 shows the comparison of the three homomorphic cryptosystems. The
size of ciphertexts reflects both the overhead of storage at the server and trans-
mission of aggregate values. It is measured in bits. The cost of homomorphic
addition (summing two ciphertexts) and decryption is measured by the number
of 1024-bit modular multiplications required by the operations.

The parameters for each of the four cryptosystems have been selected such
as to obtain an equal 1024-bit level of security. For Paillier, Benaloh and OU,
primes p and q are selected such that |n| = 1024, while EC − EG uses one of
the standard (IEEE) ECC curves over F163 defined in [22]. Random nonces are
assumed to be 80-bits4.

The decryption cost for Benaloh and EC-EG depend on the size of the aggre-
gated values to be decrypted. These values in turn are a result of the size of the
attribute aggregated and the number of values aggregated. Both cryptosystems
employ a baby-giant step algorithm during decryption. These algorithms work
4 Random nonces are used in cryptosystems to make them non-deterministic, in that

encryption of identical plaintexts will yield different ciphertexts.
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by searching for the plaintext in its possible value range, while using tables of
pre-computed values (at regular intervals) to speed up the search. The size of
these tables directly affect the efficiency of the search in that the larger the tables
the faster the search. When deriving the results in Table 4, we assumed aggre-
gation of 10,000 20-bit bit values (e.g. up to million dollar salaries). Let max
denote the number of bits required to represent the largest possible aggregate
value. In our case, max = 34. As is common with baby-giant step algorithms,√

max pre-computed values are stored in a table, and
√

max
2 computations are

required for the search (on average). This means that 217 computations will
be required during Benaloh and EC-EG decryption, along with pre-computed
tables of 2.6MB and 16.7MB, respectively.

5.3 Recommendations

OU and Paillier clearly stand out amongst the four candidate schemes, mainly
due to their lower decryption costs. This is of importance since decryption will
be performed by clients, which may be computationally limited devices (e.g. cell
phone). Between the two, OU is the preferred choice in each of the measured
performance categories. This is a result of Paillier’s cryptosystem requirement
of a larger group structure (2048 versus 1024 bits), resulting in greater storage
and bandwidth overhead, as well as more expensive computations. The large
cost difference in summation of ciphertexts (4 to 1 ratio) also plays a significant
role, since this operation will be executed very frequently by the server. We
therefore declare OU to be the algorithm of choice for aggregation queries in
mixed-databases.

EC-EG and Benaloh are poor candidate choices because of their extremely
high decryption costs and the large storage requirements (at clients) associ-
ated with their baby-giant step algorithms. This poor performance reflects the
database environment in which they are evaluated, where tables may contain
several thousand tuples, creating a large value space to search through (dur-
ing decryption). The two algorithms are seemingly good choices in alternative
settings that only require a few number of small values to be aggregated (e.g.
certain sensor networks) [20].

6 Related Work

The Database-As-a-Service (DAS) model was introduced by Haĉigümus, et al.
in [1] and, since then, has received a lot of attention from the research commu-
nity. The specific technique of bucketizing data to support range queries over
encrypted tuples was described in [2]. Bucketization involves dividing the range
of values in the specific domains of the attribute into buckets and providing ex-
plicit labels for each partition. Recent work [7,8] analyze and estimate the loss
of privacy due to bucketization. Since statistical information is revealed, some
degree of privacy is invariably lost, but these results show that only very limited
information can be deduced from the encrypted tuples and their corresponding
bucket identifiers [8].
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[11] is the first work describing homomorphic encryption functions (referred to
as a Privacy Homomorphisms (PHs) by the respective authors). Such functions
were originally proposed as a method for performing arithmetic computations
over private databanks. [3] suggests a specific homomorphic encryption function
to use within a DAS model that utilizes bucketization. The additional function-
ality provided by this function expands upon the range of queries that can be
executed by the DAS server, specifically supporting a set of aggregation opera-
tions (SUM, COUNT and AVG).

An alternative DAS flavor involves the use of a Secure Coprocessor (SC) to aid
with processing of server-side queries. A SC is a computer that can be trusted
with executing its computations correctly and unmolested, even when attackers
gain physical access to the device. It also provides tamper resistance, allowing for
secure storage of sensitive data such as cryptographic keys. [23] describes a high-
level framework for incorporating a SC in a DAS setting, including the query
splitting between the client, server and SC, and suggest [24] as a SC candidate.

7 Conclusion

In conclusion, we proposed an alternative technique to homomorphic encryption
functions to support aggregation queries over encrypted tuples in the Database-
as-a-Server Model. The previously suggested solution in [3] was shown to be
insecure. Our technique if simple and reduces the computational overhead asso-
ciated with aggregation queries on both the server and client. Next we explored
mixed databases, where certain attributes are encrypted while others are left in
the clear. Additively homomorphic encryption functions are needed to support
basic aggregation queries for such databases. We analyzed and compared a set
of homomorphic encryption candidates and selected our preferred algorithm.
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