
Aggressive flight of fixed-wing and quadrotor
aircraft in dense indoor environments

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Bry, Adam et al. “Aggressive Flight of Fixed-Wing and Quadrotor
Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research 34.7 (2015): 969–1002.

As Published http://dx.doi.org/10.1177/0278364914558129

Publisher Sage Publications

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/106948

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106948
http://creativecommons.org/licenses/by-nc-sa/4.0/

Aggressive Flight of Fixed-Wing and Quadrotor

Aircraft in Dense Indoor Environments

Adam Bry∗, Charles Richter∗, Abraham Bachrach and Nicholas Roy

In the International Journal of Robotics Research (IJRR), 37(7):969-1002, June 2015.

Abstract

In this paper, we describe trajectory planning and state estimation
algorithms for aggressive flight of micro aerial vehicles in known, obstacle-
dense environments. Finding aggressive but dynamically feasible and
collision-free trajectories in cluttered environments requires trajectory op-
timization and state estimation in the full state space of the vehicle, which
is usually computationally infeasible on realistic time scales for real vehi-
cles and sensors. We first build on previous work of van Nieuwstadt and
Murray [51] and Mellinger and Kumar [38], to show how a search process
can be coupled with optimization in the output space of a differentially
flat vehicle model to find aggressive trajectories that utilize the full ma-
neuvering capabilities of a quadrotor. We further extend this work to
vehicles with complex, Dubins-type dynamics and present a novel trajec-
tory representation called a Dubins-Polynomial trajectory, which allows
us to optimize trajectories for fixed-wing vehicles. To provide accurate
state estimation for aggressive flight, we show how the Gaussian particle
filter can be extended to allow laser range finder localization to be com-
bined with a Kalman filter. This formulation allows similar estimation
accuracy to particle filtering in the full vehicle state but with an order of
magnitude more efficiency. We conclude with experiments demonstrating
the execution of quadrotor and fixed-wing trajectories in cluttered envi-
ronments. We show results of aggressive flight at speeds of up to 8 m/s
for the quadrotor and 11 m/s for the fixed-wing aircraft.

1 Introduction

Micro aerial vehicles (MAVs) have received considerable attention during the
last decade due to their large and growing range of applications, including de-
ployment as inexpensive mobile sensor platforms for monitoring, reconnaissance
and mapping operations. Hence, most MAVs are limited to flight at altitudes
well above ground-level obstacles, foliage and buildings, where basic path plan-
ning techniques and GPS are sufficient for navigation. The practical uses of
MAVs would expand considerably if they were capable of flying at high speeds
and among obstacles at low altitudes, enabling them to take detailed measure-
ments of the street level of a city or the terrain in wilderness areas and cover
significantly more ground than the conservative motions of many current aerial
robots. Our purpose in this research is to enable quadrotor and fixed-wing
vehicles to perform agile flights in obstacle-dense environments for these appli-
cations.

∗These authors contributed equally to this work.

1

The two major algorithmic challenges that must be solved to enable aggres-
sive flight are trajectory planning and state estimation. These challenges are
especially difficult due to the limited computational resources that can be car-
ried aboard a small MAV. Though sensing and computational hardware have
advanced considerably, MAVs are still very restricted by their limited payload.
Autonomous cars currently rely on a large number of heavy sensors including
3D LIDARs, which are infeasible to carry aboard small flying platforms. Fur-
thermore, processing the high volume of data produced by these sensors and
planning long range trajectories given these observations of the world typically
requires much more computation than a small multicopter or fixed-wing vehicle
is capable of carrying. Therefore, while many planning, estimation and control
algorithms for autonomous vehicles have been described in the literature, we
must adapt these algorithms in order to achieve truly aggressive flight perfor-
mance with computation and sensing that fit aboard a MAV.

To address the trajectory planning challenge, we exploit the property of dif-
ferential flatness, which consists of an algebraic mapping from the state and
input space of a dynamical system to a different set of output variables and
their derivatives. This special property enables efficient algebraic calculation
of the control inputs needed to exactly execute a given trajectory. Differen-
tially flat representations pair naturally with trajectories that are expressed as
polynomials because polynomials are differentiable and are easily constrained
to maintain continuity of derivatives, yielding smooth trajectories.

While the quadrotor and fixed-wing vehicles are fundamentally different in
their capabilities, they both have nonlinear dynamics models that are differ-
entially flat. Polynomial trajectories for quadrotors have been demonstrated
in the literature [38], and we extend this existing work in several ways. First,
we use a fast low-dimensional search algorithm to automatically generate way-
points through the environment and use those waypoints as constraints in a
polynomial optimization routine rather than hand-selecting waypoints. Next,
we reformulate the existing constrained polynomial optimization method as an
unconstrained quadratic program, yielding a method that is much more numer-
ically stable for complex and long-range trajectories. Finally, we address the
questions of selecting vehicle speeds along the trajectory subject to actuator
constraints.

To plan aggressive trajectories for a fixed-wing aircraft, we present a novel
trajectory formulation that builds upon Dubins curves. The high-level motion
capabilities of a fixed-wing aircraft are well approximated by straight lines and
circular arcs [34]. However, simple Dubins paths have discontinuous curvature
at the intersection of segments, yielding paths that are dynamically infeasible for
a real airplane. Therefore, we represent trajectories as underlying Dubins curves
combined with polynomial transverse offsets from those Dubins curves. We re-
fer to trajectories with this representation as Dubins-Polynomial trajectories.
This strategy allows us to plan in the space of straight lines and circular arcs,
and then approximate the resulting path with a polynomial that is constrained
to maintain continuity of derivatives up to the necessary order, resulting in
smooth and dynamically feasible trajectories. Furthermore, by parameterizing
our trajectories as transverse offsets from Dubins curves, we isolate the trans-
verse motions of the aircraft that correspond to roll dynamics and can easily
optimize the polynomial to minimize roll rates and roll accelerations.

In order to execute aggressive trajectories accurately using our control sys-

2

tems, we need to estimate the vehicle state at arbitrary orientations encountered
during agile flight maneuvers. To meet this challenge, we present a novel formu-
lation of the Extended Kalman filter (EKF), which uses exponential coordinates
of rotation to update its estimate of vehicle orientation and to propagate un-
certainty about that orientation. In addition to the IMU, the primary sensor
for localization onboard both the quadrotor and the fixed-wing vehicle is a 2D
planar LIDAR. Incorporating the information provided by this sensor from ar-
bitrary vehicle orientation is one of the key challenges in our state estimation
method. In order to efficiently project the nonlinear laser measurement update
of the vehicle position back through the state estimate, we integrate the laser
range-finder measurement as a pseudo-measurement on a partition of the state
space. The pseudo-measurement is computed from a Gaussian particle filter
(GPF) state update [32]. This technique dramatically reduces the number of
particles required compared to a basic implementation of a GPF, which in itself
provides a marked improvement over a conventional particle filter [49]. Our
algorithm enables accurate state estimation and realtime performance on an
single-core Intel Atom processor running onboard the vehicle. The choice of
filter formulation has the additional benefit of being platform independent. We
use the identical sensors and filter algorithm on the quadrotor and the fixed-wing
airplane without any modification.

We have conducted flight tests using our state estimation, planning, and
control algorithms to perform autonomous flight in constrained indoor spaces
with the quadrotor and fixed-wing vehicles. We give results of the fixed-wing
vehicle completing a seven minute flight at 10 m/s through a parking garage with
approximately 0.25 m clearance between the wingtips and the environment, as
well as several aggressive flights between obstacles in a gymnasium. We also give
results of the quadrotor completing multiple flights in obstacle-dense office-type
spaces, traveling through doors, down hallways, and between hanging lights at
up to 8 m/s.

The rest of this paper is organized as follows. We first describe the high-level
approach to trajectory planning using polynomials coupled with a differentially
flat model. Then we describe the state estimation algorithms that are common
to both the quadrotor and fixed-wing aircraft. Next, we describe vehicle-specific
aspects of trajectory planning and experimental results for both platforms. For
the quadrotor, we show how the output of a low-dimensional path planner can be
used to automatically generate waypoints that will be connected by polynomial
trajectory segments, and we also discuss a method for ensuring that the result-
ing trajectory is both collision free and dynamically feasible given the input
limits of the vehicle. We then describe the Dubins-Polynomial trajectory for-
mulation that extends existing polynomial trajectory planning to Dubins-type
vehicles. We have separated this section from the general discussion of plan-
ning for differentially flat vehicles due to the unique demands of a fixed-wing
dynamics model. While we describe a method for fully automated planning for
the quadrotor, we have not extended our technique to include the correspond-
ing automatic waypoint generation capability for the fixed-wing aircraft. We
leave it as a potential future extension of this work using a low-dimensional
planner for Dubins-type vehicles ([11, 26]) Finally, we offer some discussion and
conclusions.

Some of the results presented in this paper have appeared in our prior
work. The quadrotor trajectory planning techniques and experimental results

3

appeared in [45]. The state estimation algorithms used in both the quadrotor
and fixed-wing experiments appeared in [8]. The Dubins-Polynomial trajectory
parameterization we use for the fixed-wing aircraft is a new contribution of this
paper, and the corresponding experimental results represent a considerable ad-
vance in the experimental capabilities for fixed-wing aircraft flying outside of
motion capture environments among obstacles.

2 Related Work

While many trajectory planning approaches exist in the literature, there has yet
to emerge a single algorithm capable of finding and optimizing a trajectory for
an agile 12-DOF vehicle through a complex real-world environment using only
several seconds of computation. Yet, there is a strong need for such algorithms to
be developed for MAVs, which have limited computational resources and limited
flight time to accomplish their missions. We address this technical gap using a
combination of capabilities from control theory and robotic motion planning.

2.1 Trajectory Planning

Trajectory planning research has given rise to successful demonstrations of aerial
vehicles maneuvering at the limits of their dynamic capabilities. The control
community has addressed the trajectory generation problem by casting it as a
nonlinear optimization problem. In contrast, the robotics community has typi-
cally solved motion planning problems using the tools of discrete or randomized
search over sequences of feasible actions. While both approaches are capable of
generating similar solutions, they have different advantages and disadvantages
depending on the application scenario.

Trajectory optimization has a long history in the control literature [7]. These
problems can take many forms, but the overall concept is to optimize some se-
quence of inputs to a dynamical system using the tools of optimization, subject
to constraints imposed by the differential equations of motion, control inputs,
and obstacles in the environment. Often, the objective function will be to
minimize time of traversal, energy usage, or some penalty weighting the relative
costs of deviation from a goal state and the use of control inputs (i.e., LQR). Re-
cently, these tools have been applied to generate extremely dynamic maneuvers
for quadrotor helicopters [22] in motion-capture environments. For comparison,
Barry et al. report 3-5 minutes of computation time [5] to optimize a 4.5 m tra-
jectory for a 12-state, 5-input airplane maneuvering between several cylindrical
obstacles using direct collocation with the SNOPT optimization software [4].

One disadvantage to conventional numerical trajectory optimization ap-
proaches is that obstacles in the world enter the problem as constraints, which
must be represented analytically in the problem formulation. When the world is
represented as an occupancy-grid map (common in robotics applications), tra-
jectory optimization may become very cumbersome, although promising work
has recently emerged in this area [44, 47]. In our case, the set of obstacles
is stored in a 3D occupancy grid map containing millions of cells, rendering
these approaches infeasible without significant effort to handle this source of
complexity.

4

For the important subset of nonlinear systems that are differentially flat, the
trajectory optimization problem can be mapped into a different set of variables
called the flat output variables. There are several potential benefits of working
in the flat output space. In particular, the states and inputs of a differentially
flat system can be mapped algebraically to the the flat output variables and a
number of their derivatives. Since derivatives are needed, it is natural to ex-
press the evolution of the flat output variables as a sequence of differentiable
trajectories such as polynomials or B-splines. Trajectory optimization over the
parameters of such splines may result in a lower-dimensional or otherwise more
efficient solution [39]. The property of differential flatness combined with poly-
nomial trajectories has led to efficient computation of very high performance
trajectories for quadrotors [38] and is the topic of much of this paper. We
discuss the benefits of differential flatness in the planning context in Section 4.

Roboticists have often favored search-based approaches to motion planning.
Search over a graph representing feasible actions can be performed efficiently
using conventional algorithms such as A* and Dijkstra’s Algorithm. To han-
dle collisions with the environment, edges that traverse occupied regions are
simply deleted from the graph. Graph search has been successfully applied to
motion planning for dynamic vehicles, including the CMU entry in the DARPA
Urban Challenge [15]. When applied to dynamical systems, it is common to
pre-compute a set of feasible actions connecting discretized locations in state
space, which will serve as edges in the search graph. One challenge in using these
methods is that there is no simple methodology for designing a set of actions
that will sufficiently span the vehicle’s true capabilities while remaining sparse
enough for search to be efficient. Furthermore, graph search has worked well for
automobiles, which can be modeled using 4 or 5 state variables. However, to
plan aggressive trajectories for a general rigid body system in 12 dimensions, it
is likely that graph search would succumb to the curse of dimensionality due to
the exponential growth of the number of nodes in a search graph as a function
of the number of dimensions [43].

To limit computational complexity, approximations or restrictions can be
made to model the vehicle capabilities in a lower dimensional space. For ex-
ample, the maneuvering capabilities of fixed-wing vehicles are often represented
approximately as straight lines and arcs of constant curvature, reducing the
airplane trajectory generation problem to a kinematic planning problem [11].
Frazzoli et al. present a method of planning with a maneuver automaton, in
which a set of carefully selected dynamically feasible “trim primitives” can be
concatenated into a complex motion plan [18]. Straight-line paths returned by
a low-dimensional search can also be post-processed to be made feasible for
nonholonomic vehicles [16].

In contrast with traditional graph search, randomized search algorithms have
proven effective for planning in high-dimensional state spaces. One prominent
example for dynamical systems is the Rapidly-Exploring Random Tree (RRT),
which operates by building a randomized tree of feasible trajectories through
forward-simulation of the equations of a motion [35]. Frazzoli et al. extend
the RRT to operate with pre-computed library of feasible trajectories for agile
vehicles subject to actuator constraints [17]. The Closed-Loop RRT (CL-RRT)
is an alternative that was employed in the MIT entry in the DARPA Urban
Challenge [33]. The CL-RRT differs from the RRT in that the tree of feasible
trajectories is generated by forward-simulating a complete closed-loop control

5

system. The RRT and CL-RRT are very effective for generating feasible trajec-
tories, however they are not designed to compute optimal trajectories, so the
output trajectory may be excessively long or costly.

Recently, the RRT has been modified to converge to the globally optimal
solution in the limit of infinite samples (RRT*) [27], and this approach has been
extended to work with dynamical systems [26]. RRT* requires a steer-function
in order to generate node connections in the search tree, and for dynamical
systems, this steer function must solve a boundary-value problem to drive the
system between two specified points in state space. RRT* solves the trajectory
planning problem, however for general dynamical systems, this boundary-value
problem is costly and dominates the practical complexity. In Section 4.4, we
compare our approach against RRT*.

2.2 State Estimation

Aggressive flight of MAVs has introduced a new need for state estimation capa-
bilities beyond what has been developed for ground robots or quadrotors ma-
neuvering conservatively near the hover regime. Specifically, aggressive flight re-
quires accurate, singularity-free estimation of arbitrary vehicle attitudes, which
is not handled elegantly by existing filtering techniques. Furthermore, there
is no estimator as efficient as the Kalman filter that incorporates the kind of
measurement data provided by a LIDAR sensor. Yet, small LIDARs are some
of the only sensors capable of accurate localization that can be carried aboard
a small MAV.

State estimation using Kalman filtering techniques has been extensively
studied for vehicles flying outdoors where GPS is available. A relevant example
of such a state estimation scheme developed by Kingston et al. [30] involves two
Kalman filters where roll and pitch are determined by a filter driven by gyro
readings as system inputs while the accelerometer measurements are treated as
a measurement of the gravity vector, assuming unaccelerated flight. A separate
filter estimates position and yaw using GPS measurements.

This approach is representative of many IMU-based estimators that assume
zero acceleration and thus use the accelerometer reading as a direct measurement
of attitude (many commercially available IMUs implement similar techniques
onboard using a complementary filter). While this approach has practical appeal
and has been successfully used on a number of MAVs, the zero-acceleration
assumption does not hold for general flight maneuvering and thus the accuracy
of the state estimate degrades quickly during aggressive flight.

Van der Merwe et al. use a sigma-point unscented Kalman filter (UKF)
for state estimation on an autonomous helicopter [50]. The filter utilizes an-
other typical approach whereby the accelerometer and gyro measurements are
directly integrated to obtain position and orientation and are thus treated as
noise-perturbed inputs to the filter. Our filter utilizes this scheme in our process
model, however we use an EKF with an exponential coordinates-based attitude
representation instead of the quaternions used by Van der Merwe et al. By using
a three-parameter exponential coordinates representation, we avoid the prob-
lems of rank-deficient covariance matrices that are encountered when Kalman
filtering any attitude representation using four or more parameters. Further-
more, with this representation, we do not need to enforce any constraints be-
tween attitude parameters to ensure that our estimated attitude is in SO(3).

6

Techniques to identify the noise parameters relevant for the Kalman filter
emerged not long after the original filter, however the most powerful analytical
techniques assume steady state behavior of a linear time-invariant system and
are thus unsuitable for the time varying system that results from linearizing a
nonlinear system [37]. More recent work optimizes the likelihood of a ground-
truth projection of the state over the noise parameters but thus requires the
system be fitted with a sensor capable of providing ground-truth for training.
[2]. Our algorithm does not require the use of additional sensors, or external
ground-truth.

Laser rangefinders combined with particle filter-based localization is widely
used in ground robotic systems [49]. While planar LIDARs are commonly used
to estimate motion in the 2D plane, they have also proved useful for localiza-
tion in 3D environments. Prior work in our group [3], as well as others [48, 19]
leveraged a 2D laser rangefinder to perform SLAM from a quadrotor in GPS-
denied environments. These systems employ 2D scan-matching algorithms to
estimate the position and heading, and redirect a few of the beams in a laser
scan to estimate the height. While these systems have demonstrated very good
performance in a number of realistic environments, they must make relatively
strong assumptions about the motion of the vehicle and the shape of the envi-
ronment. Specifically, they require walls that are at least locally vertical, and
a mostly flat floor for height estimation. As a result, these algorithms do not
extend to the aggressive flight regime targeted in this paper. Scherer et al. use
laser rangefinders to build occupancy maps, and avoid obstacles while flying
at high speed [46], however they rely on accurate GPS measurements for state
estimation.

In addition to the laser-based systems for GPS-denied flight, there has been
a significant amount of research on vision-based control of air vehicles. This
includes both fixed-wing vehicles [29], as well as larger scale helicopters [10, 28,
24]. While vision-based approaches warrant further study, the authors do not
address the challenge of agile flight. This is likely to be particularly challenging
for vision sensors due to the computational complexity of vision algorithms and
sensitivity to lighting and environment conditions.

Recently, Hesch et al. [23] developed a system that is similar in spirit to
ours to localize a laser scanner and INS for localizing people walking around in
indoor environments. They make a number of simplifying assumptions such as
zero-velocity updates, that are not possible for a micro air vehicle. Furthermore,
they model the environment as a set of planar structures aligned with one of 3
principle axes, which severely limits the types of environments in which their
approach is applicable. Our system uses a general occupancy grid representation
which provides much greater flexibility of environments.

3 Nomenclature and Coordinate Frames

The state of a rigid body dynamical system is described by the quantities
x = [ωb, vb,R,∆], where ωb = [p, q, r] is the angular velocity in body coor-
dinates, vb = [u, v, w] is the linear velocity in body coordinates, R is the rigid
body orientation rotation matrix, and ∆ = [∆x,∆y,∆z] is the translation vec-
tor from the world origin to the center of mass of the body, expressed in global
coordinates. We will refer to this rigid body state in the context of state esti-

7

Figure 1: The global frame, body frame and velocity frame depicted with x-, y-,
and z-axes in red, green, and blue respectively. The ENU global frame is fixed
to the ground (with the x-direction pointing East). The body frame is fixed to
the vehicle with the x-direction pointing forward, aligned with the longitudinal
vehicle axis. The velocity frame, assuming coordinated flight, shares the y-axis
with the body frame and has its x-axis aligned with velocity.

mation and in describing our vehicle models.
For planning and control, we will make use of three coordinate frames. The

world frame, denoted with the letter w, is a static East-North-Up (ENU) coor-
dinate frame anchored at some origin in the world. The body frame is fixed to
the center of mass of the the aircraft, with the x-direction pointing forward and
aligned with the longitudinal axis of the vehicle, the y-direction pointing left,
and the z-direction pointing up (FLU). The body frame is denoted with the let-
ter b, and quantities expressed in body frame coordinates will be denoted with
a subscript b. The transformation between world and body frames is defined
by the translation vector ∆ and orientation R. The third frame is a “velocity”
frame, which shares its origin and y-direction with the body frame, but has its
x-axis aligned with the body velocity direction. The velocity frame is denoted
with the letter v. This convention is depicted in Figure 1.

The use of the ENU-FLU coordinate frame runs counter to the convention of
aerospace control literature, however it is consistent with more recent work using
quadrotors indoors (which inherit z-up coordinate frames from ground robots)
and the choice was made to make easier use of existing software libraries for
mapping and visualization. We will be estimating the velocity and angular
velocities in the body frame (vb, ωb), however in other contexts it is convenient
to discuss velocity and acceleration in the world frame. In these cases we will
refer to derivatives of position for clarity (i.e., ∆̇, ∆̈).

If we wish to refer to a single component of a vector expressed in a certain
frame, we will use the subscript of the associated unit vector. For example, the
scalar forward velocity aligned with the longitudinal axis of the vehicle (bx) will
be denoted vbx .

8

4 Trajectory Planning for Aggressive Flight

Given a 3D occupancy map of the environment and specified start and goal
locations, we wish to compute dynamically feasible trajectories from start to
goal, which do not intersect obstacles in the environment, and which minimize
a penalty on the derivatives of the trajectory. To quantify our computational
efficiency requirement, we require that the solution take no more than a matter
of seconds to generate. This is not a hard time constraint, and the difficulty
of planning will scale with the size and complexity of the environment. How-
ever, our aim is to plan trajectories much faster than existing optimal planning
algorithms that might be used instead. In Section 4.4 we show that solving
our planning problem with RRT* in the full 12-DOF state space of a quadro-
tor would take many minutes to converge, exceeding the 10-minute flight time
of our MAVs. For practical use in missions consisting of multiple or changing
destinations, we need to be able to generate new plans much more efficiently.

As outlined in Section 2.1, there exist many algorithms capable of planning
trajectories for dynamical systems. However, there remains a significant gap in
the practical capabilities of these algorithms to quickly find and optimize long-
range trajectories for 12-DOF dynamical systems. Algorithms which perform
the dual functions of search and optimization, such as graph search (A*) or
randomized search (RRT*) will succumb to the curse of dimensionality when
faced with the full dynamics of a quadrotor or fixed-wing vehicle. Therefore,
these algorithms will not be able to return an optimal or near-optimal trajectory
in a matter of seconds, but may instead take many minutes to terminate. On
the other hand, planning algorithms which find trajectories quickly but offer no
optimization capabilities, such as the RRT or CL-RRT, may return solutions
that are overly high in cost according to some function, or may require abrupt
or excessive control inputs.

It is useful to minimize certain trajectory derivatives for several reasons.
First, these derivatives map directly to the required control inputs, and we would
like to avoid unnecessary power requirements and wear on our system due to
excessive actuation. Additionally, reducing the required control inputs along a
trajectory helps to retain maximum control authority for feedback stabilization.
Finally, trajectories requiring abrupt motions tend to excite high-order dynamic
effects that are difficult to model and control, such as turbulence, actuator
response and latency. Roughly speaking, minimizing derivatives can encourage
“graceful” motions. For quadrotors, minimizing snap (fourth derivative) limits
the motor commands required to follow a trajectory [38], while for fixed-wing
vehicles, we may instead prefer to minimize the third derivative to limit roll
rates. If we select polynomials as our trajectory basis function, then minimizing
these cost functions on the derivatives is straightforward and computationally
efficient. Furthermore, if we exploit the property of differential flatness for our
vehicle models, then the mapping from trajectory derivatives to control inputs
is an algebraic expression, and we can easily verify dynamic feasibility.

In the next section, we describe the role of differential flatness in the context
of planning. Then, we develop the necessary tools for optimizing polynomial
trajectories in order to take advantage of differential flatness and minimize our
desired cost function on the trajectory derivatives. The optimization itself does
not directly incorporate dynamic or kinematic constraints. Finally, in Section
4.4, we will combine these polynomial optimization tools with a low-dimensional

9

search algorithm to develop a full planning procedure that can both find and
optimize trajectories for differentially flat systems in a matter of seconds.

4.1 Differential Flatness for Trajectory Planning

While very detailed models are available for the quadrotor and fixed-wing vehi-
cles, capturing complex aerodynamic effects and detailed input response charac-
teristics, we instead focus on planning with particular simplified representations.
Specifically, we focus on representations for these vehicles that are differentially
flat. For our purposes, the result of differential flatness is an algebraic mapping
from a set of flat output variables and their derivatives to the vehicle states and
inputs [51]. While there is no systematic way of determining whether such a
mapping exists in general, flatness has been shown for a large number of useful
systems [40].

The mapping between vehicle states and inputs and the flat output space
is what makes differential flatness useful for trajectory planning. The challenge
in trajectory optimization and motion planning for dynamical systems is to
find a (minimum cost) sequence of control inputs that will carry the system
between specified initial and terminal states subject to the differential equations
of the system. This problem can be framed as a numerical optimization or
graph search, but in either case, it involves an expensive search over the set of
possible input sequences. The advantage of differential flatness in the context
of trajectory planning is that a trajectory can be specified directly in the flat
output space, and the control inputs needed to execute that trajectory can be
obtained as an algebraic function of the trajectory and its derivatives. For many
systems, it may be much easier to specify and optimize a trajectory in the flat
output space than it is to perform a search over the input space.

In general, the flat output variables need not correspond to convenient phys-
ical quantities, but often they do. For the quadrotor, the four flat output vari-
ables are the three components of the global position vector along with the
heading angle. Likewise, the three flat output variables for the fixed-wing ve-
hicle are also the three components of the global position vector. Therefore, it
is easy to specify start and goal locations in the flat output space, as well as to
check for collisions with obstacles in our three dimensional environment.

To recover the states and inputs to the vehicle along a trajectory, we need not
only the values of the flat outputs along the trajectory, but also their derivatives.
Intuitively, the states and inputs of a vehicle at some point along a trajectory
must depend not only on the position, but also the velocity, acceleration and
higher order derivatives of the trajectory at that point. Therefore it is convenient
to define our trajectories using a differentiable basis function. While there are
a variety of choices that would work in this setting, we have chosen polynomials
due to their analytical and computational tractability.

4.2 Polynomial Trajectory Optimization

Consider the evolution of a flat output variable over some time interval t ∈ [0, τ],
such as a position coordinate, prescribed by a polynomial P (t) between two
points in the space of flat outputs. We would like to select the coefficients of
P (t) such that its endpoints at t = 0 and t = τ (and the derivatives at those
endpoints) match those that have been specified. With any remaining degrees of

10

freedom, we would like to optimize some cost function of the derivatives of the
polynomial. Mellinger and Kumar use the minimum-snap (fourth derivative)
cost function for quadrotors [38]. This cost function effectively discourages
abrupt changes in the motor commands to the quadrotor, leading to graceful
trajectories. For other systems, we may prefer to minimize some other weighted
combination of the derivatives of the trajectory.

Let pn denote the coefficients of a polynomial P of degree N such that

P (t) = pnt
N + pn−1t

n−1 . . .+ p0 (1)

=

N∑

n=0

pnt
n. (2)

We are interested in optimizing the coefficients of P to minimize cost functions
of the form

J =

∫ t=τ

t=0

c0P (t)
2 + c1P

′(t)2 + c2P
′′(t)2 + . . .+ cNP

(N)(t)2dt, (3)

which can be written in quadratic form as

J = pTQp, (4)

where p ∈ ℜN+1 is the vector of polynomial coefficients and Q is a cost matrix
corresponding to our desired penalty on each of the polynomial derivatives. In
order to minimize the fourth derivative of a polynomial, for example, we would
set c4 = 1 and set ci = 0 for i 6= 4.

In addition to specifying the cost function, we must also constrain the solu-
tion to enforce certain conditions on the value and derivatives of the initial and
final endpoints of the polynomial. The constraints take the following form:

A0p = b0 (5)

Aτp = bτ (6)

where A0 and Aτ are matrices that map the coefficients p to the derivatives
of the polynomial at the beginning and end, respectively. The vectors b0 and
bτ indicate the values of the derivatives we wish to constrain. Each row of
equations (5) and (6) corresponds to a particular derivative that we wish to
constrain, including the 0th derivative, which allows us to constrain the value of
the polynomial (i.e., the position). In Appendix A, we show how to derive the
Q and A matrices.

By concatenating the desired constraints on the initial and final derivatives
of the polynomial, we have a standard quadratic programming problem

min
p

pTQp

s.t. Ap− b = 0
(7)

which we can solve using an elimination approach [6].

4.2.1 Piecewise Polynomial Joint Optimization

In general, the trajectory of a given flat output variable will consist not of
a single polynomial segment, but of a sequence of several segments. We will

11

be optimizing trajectories that pass through a sequence of waypoints in the
output space of the differentially flat system. These waypoints will be obtained
from a kinematic planning algorithm capable of finding a route through the
environment, such as A* or RRT*.

The trajectory between each pair of waypoints will be an individual polyno-
mial trajectory segment. Rather than optimizing each of these polynomials in
isolation, we may obtain lower-cost trajectories by jointly optimizing the entire
sequence of polynomials at once. Furthermore, we need the two polynomial
segments that meet at every junction or waypoint to agree on the value of the
trajectory derivatives at that junction. Joint optimization is a natural way to
enforce these continuity constraints.

A piecewise polynomial describing the evolution of a flat output variable can
be constructed as:

T (t) =







P0(t) : 0 ≤ t ≤ τ0

P1(t− τ0) : τ0 < t ≤ τ1 + τ0

P2(t− (τ0 + τ1)) : τ0 + τ1 < t ≤ τ0 + τ1 + τ2
...

(8)

where we define Γk =
∑k
κ=0 τκ to write

T (t) = Pk(t− Γk−1) : Γk−1 < t ≤ Γk. (9)

We can formulate an optimization over the polynomial coefficients by form-
ing a vector containing all the coefficients pi of all of the polynomial segments:

p =
[
p0 p1 . . . pK

]
(10)

The cost matrix is constructed as a block diagonal matrix composed of individual
Qk matrices. The constraints for specified derivative values are composed as a
concatenation of equations of the form in equations (5) and (6). However, if we
do not specify particular derivative values, we still wish to enforce continuity
of the derivatives at each junction between segments. Constraints enforcing
continuity take the form:

[
−Ai

τ Ai+1
0

]
[

pi
pi+1

]

= σi (11)

where σi is a vector of derivative offsets between polynomials i and i+1. Setting
this vector to zero will enforce continuity, but it will be necessary when we
discuss trajectories for the fixed-wing vehicle to enforce nonzero offsets. The
full constraint equation to enforce continuity (or derivative offsets) is:










−A0
τ A1

0 0 0 . . . 0 0
0 −A1

τ A2
0 0 . . . 0 0

0 0 −A2
τ A3

0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −AK−1
τ AK

0























p0

p1

p2

p3

...
pK−1

pK














=










σ0
σ1
σ2
...

σK−1










(12)

12

We can also combine this equation with a second set of constraints to specify
exact values of derivatives that we wish to fix:














A0
0 0 0 0 . . . 0
0 A1

0 0 0 . . . 0
0 0 A2

0 0 . . . 0
0 0 0 A3

0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . AK

0

0 0 0 0 . . . AK
τ

























p0

p1

p2

p3

...
pK












=














b0
0

b1
0

b2
0

b3
0
...

bK0
bKτ














(13)

where bi0 for i = 0, . . . ,K − 1 is a vector of specified derivatives at the begin-
ning of the ith piecewise polynomial segment and bKτ is a vector of specified
derivatives at the end of the final segment. Note that if we specify continuity
using equation (12), then we need only specify derivatives at the beginning of
each segment because the corresponding derivatives at the end of the preceding
segment will also be enforced through continuity. In practice, some combination
of the rows of equations (12) and (13) will enable us to specify the desired set of
derivative values as well as enforce continuity up to the desired order. Having
constructed the desired system of constraints, the joint optimization can then
be performed using an elimination approach [6].

This constrained optimization method works well for small joint optimization
problems as in [38], however this formulation becomes ill-conditioned for more
than several segments, polynomials of high order, and when widely varying
segment times are involved. Hence, it is only useful for short trajectories and
must be improved for optimizing long range paths requiring many waypoints
and segments.

We avoid the problems of ill-conditioning using a technique of substitution to
convert the problem into an unconstrained QP, which allows us to solve directly
for endpoint derivatives as decision variables, rather than solving for polynomial
coefficients. In practice, our reformulation is substantially more stable than the
constrained formulation, allowing the joint optimization of more than 50 poly-
nomial segments in a single matrix operation without encountering numerical
issues. Once the optimal waypoint derivatives are found, the coefficients of the
polynomial connecting each pair of waypoints can be obtained by solving a small
linear system with the appropriate constraint matrix.

To convert to an unconstrained optimization, we begin by substituting pi =
A−1
i bi from the ith individual segment constraint equations into the original

cost function:

J =






b0

...
bK






T 




A0

. . .

AK






−T 




Q0

. . .

QK











A0

. . .

AK






−1 




b0

...
bK






(14)
Now the decision variables in this new quadratic cost function are the end-

point derivatives of the segments, bi. We re-order these variables such that
fixed/specified derivatives are grouped together (bF) and the free/unspecified
derivatives are grouped together (bP). A permutation matrix of ones and zeros
(C) is used to accomplish this re-ordering. Now we have:

13

J =

[
bF
bP

]T

CA−TQA−1CT

︸ ︷︷ ︸

R

[
bF
bP

]

=

[
bF
bP

]T [
RFF RFP

RPF RPP

] [
bF
bP

]

(15)

where we have written the block-diagonal matrices as A and Q for simplicity
of notation. We group the new augmented cost matrix into a single matrix
R and partition it according to the indices of the fixed and free derivatives.
Partitioning allows us to write out the expression for total cost as:

J = bTFRFFbF + bTFRFPbP + bTPRPFbF + bTPRPPbP (16)

Differentiating J and equating to zero yields the vector of optimal values for the
free derivatives in terms of the fixed/specified derivatives and the cost matrix:

b∗

P = −R−1
PPR

T
FPbF (17)

The polynomials can now be recovered from individual evaluations of the ap-
propriate constraint equations mapping derivatives back into the space of coef-
ficients.

4.2.2 Performance of Polynomial Optimization

A key to the success of this trajectory planning process is the speed and nu-
merical stability of the joint polynomial optimization method. We performed
benchmark tests on an example problem consisting of four waypoints (3 poly-
nomial segments) chosen to represent distance and time scales consistent with
common environments for quadrotor flight. The results are given in Table 1
and reflect MATLAB as well as C++/Eigen implementations [20]. This com-
putational efficiency makes it feasible to use this planning framework in online
applications and to use iterative path refinement methods with polynomial op-
timization in the loop.

Table 1: Comparison of Polynomial Optimization Times.

Benchmark Problem: 3-Segment Joint Optimization
Method Solution Time (ms)
MATLAB quadprog.m 9.5
MATLAB Constrained 1.7
MATLAB Unconstrained (Dense) 2.7
C++/Eigen Constrained 0.18
C++/Eigen Unconstrained (Dense) 0.34

While the unconstrained formulation is slightly slower than the constrained
formulation, its primary benefit lies in its stability. The constrained formulation
encounters matrices very close to singular for joint optimizations consisting of
more than three 9th order polynomials, and therefore may return inaccurate
results depending on the quality of the linear algebra solver. In contrast, the
unconstrained formulation is robust to numerical issues, as shown in Table 2,
which lists the results of 20 polynomial optimization problems in which the

14

locations of intermediate waypoints and the segment times were randomly gen-
erated in the range [1, 3]. Clearly, the unconstrained optimization is much more
robust to numerical instability, enabling this method to be used as a reliable,
efficient long-range trajectory optimization tool for navigation outside of small
motion-capture environments.

Table 2: Numerical stability of optimization techniques for high-order polyno-
mials and various numbers of segments.

Success Rates on Randomized Polynomial Optimization Problems
Formulation Polynomial Order Number of Segments Success

Constrained
9 3 100%
9 4 55%
9 ≥5 0%

Unconstrained

9 50+ 100%
15 50+ 100%

Since A−1 and Q are sparse block-diagonal and C is sparse, these problems
can be implemented using a sparse solver which is roughly an order of magnitude
faster than the dense computation for 10-segment joint optimizations.

The unconstrained optimization is more numerically stable because it is
solving for waypoint derivative values such as velocities, accelerations, etc., that
are similar in magnitude. The resulting polynomial segments are not particu-
larly sensitive to the exact values of these derivatives. On the other hand, the
constrained optimization solves simultaneously for the full set of polynomial
coefficients, which range in magnitude from approximately 101 down to 10−16

(i.e., machine precision). The resulting solution is extremely sensitive to the
values of small coefficients corresponding to high-order terms, which may be
inaccurate due to rounding errors.

4.3 General Polynomial Trajectory Representation

One common trajectory representation for differentially flat systems is to spec-
ify a separate polynomial for each of the flat output variables of the system.
For a quadrotor, for example, the four flat output variables are the x-, y-, and
z-position coordinates and the yaw angle, ψ. Therefore, we can specify a poly-
nomial trajectory through space as the set of piecewise-polynomial trajectories
{Px(t), Py(t), Pz(t), Pψ(t)} describing these four variables. An example of a
polynomial trajectory is given in Figure 2. This general trajectory formulation
could also be used to describe the motions of rigid body chains, robotic arms,
or a variety of other differentially flat systems.

For the quadrotor, motor inputs required to follow these trajectories are
functions of the trajectory derivatives up to fourth order. Typically we will
use polynomials with 10 coefficients (9th order) so that we can specify all ten
derivative values if necessary. For example, for a single polynomial representing
∆x(t), we may want to specify:

b0 = [∆x(0), ∆̇x(0), ∆̈x(0),
...
∆x(0),

....
∆ x(0)]

T (18)

bτ = [∆x(τ), ∆̇x(τ), ∆̈x(τ),
...
∆x(τ),

....
∆ x(τ)]

T (19)

15

−1

0

1

0

1

2

−1.5

−1

−0.5

0

0.5

1

X (m)Y (m)

Z
 (

m
)

0 0.5 1 1.5 2
−0.5

0

0.5

X
−

p
o

s
it
io

n
 (

m
)

0 0.5 1 1.5 2
0

2

4

Y
−

p
o

s
it
io

n
 (

m
)

0 0.5 1 1.5 2
−0.5

0

0.5

Z
−

p
o

s
it
io

n
 (

m
)

0 0.5 1 1.5 2
1

1.5

2

Time (s)

Y
a

w
 (

ra
d

)

Figure 2: Example piecewise polynomial trajectory for a quadrotor. The left
panel illustrates a trajectory through space. The right panel shows the evolution
of the x, y, z and ψ coordinates through time.

requiring 10 parameters to satisfy these constraints. In general, we will spec-
ify some subset of these derivatives, leaving the remaining parameters free for
optimization.

Often we will constrain the trajectory to start and end at rest and constrain
the higher derivatives to also begin at zero, as seen at the beginning of the
red polynomial segments and the end of the blue segments on the right panel
of Figure 2. For intermediate waypoints, we will only specify positions. The
velocity, acceleration, and higher derivatives will be selected by optimization of
the polynomial coefficients. This strategy is convenient for planning if we have
access to a sequence of waypoints with which to constrain the optimization. In
the next section we will describe a method of obtaining waypoints and using
them to construct a polynomial trajectory.

4.4 Planning with Polynomial Trajectories

Given a 3D occupancy map of an environment, we wish to efficiently compute
feasible polynomial trajectories from start to goal, while respecting obstacle
constraints and input saturation limits. In the previous section, we developed
the tools for polynomial optimization, which will allow us to construct trajec-
tories that are constrained to pass through a sequence of waypoints in the flat
output space. In [38], the initial and final states of the trajectory, as well as
the locations of all intermediate waypoints were selected by hand. However, in
order to adapt this trajectory optimization method to function in a real-world
planning context, we need a way of obtaining these constraints automatically.
In this section, we develop the additional methods required to apply polynomial
optimization to solve the trajectory planning problem.

First, we must obtain a sequence of waypoints through the environment,
which function as constraints guiding the polynomial trajectories from start to
goal. Our solution to this problem is to utilize the RRT* algorithm to find a 3D
collision-free path through the environment, initially considering only the kine-
matics of the vehicle and ignoring the dynamics. A variety of other search and

16

(a) (b) (c)

Figure 3: Using polynomial segments directly as an RRT* steer function (a)
is computationally slow. Therefore, we run a straight-line RRT* and select
waypoints from the optimal path (b). However, the straight-line RRT* ignores
dynamics and returns a path that does not minimize our objective function.
We therefore jointly optimize a set of polynomials through those waypoints to
obtain a minimum-snap trajectory (c).

planning algorithms, such as A*, could also serve this purpose. The resulting
path is pruned to a minimal set of waypoints, and a sequence of polynomial seg-
ments is jointly optimized to join those waypoints into a smooth minimum-snap
trajectory from start to goal. Specifically, the waypoint positions comprise the
constraint values (bi) for the intermediate polynomial segments in the optimiza-
tion presented above. As a result of these constraints, the optimized polynomial
trajectory will pass through each of these waypoints. At this point, it is possible
that one or more of the polynomial trajectory segments will be in collision with
the environment. In section 4.4.2 we describe our method for repairing such
collisions.

A general search over the space of minimum-snap trajectories would be ex-
tremely expensive, though it would in principle return the globally optimal tra-
jectory. To validate our approach, we ran an RRT* using individual polynomial
trajectory segments as the “steer” function to grow the search tree of feasible
trajectories. Figure 3(a) shows the resulting solution. Sampling for the RRT*
with the polynomial steer function was performed in position and velocity space.
We use the distance metric described by [25] of Euclidean distance divided by
average velocity. One major difficulty with this approach is that segment times
must be fixed when generating polynomials to extend the tree, however the se-
lection of segment time can have a dramatic impact on the quality of a path, so
an appropriate guess must be made a priori for each segment, or the segment
time must be included in the sampling space. In our implementation, the seg-
ment times were chosen as the Euclidean distance between vertices divided by
the desired average velocity along the segment.

Table 3 shows several statistics on the performance of the RRT* with a

17

Table 3: Comparison of our method with RRT* using the polynomial steer
function for the 2D problem in Figure 3.

Method Runtime Jpoly. τpath Lpath
RRT* (Polynomial Steer) 120 s 5.72× 108 21.94 s 40.35 m

Our Approach 3 s 1.07× 105 19.66 s 35.51 m

polynomial steer function compared to our algorithm. The RRT* runs much
longer and fails to find a path as smooth or with a cost as low as our algorithm.
When sampling in the full state space of the system, the RRT* with a polynomial
steer function would converge to a globally optimal solution in the limit of
infinite samples, however as shown here, the paths returned prior to convergence
are of lower quality than those returned by our algorithm in a much shorter
running time.

4.4.1 Time Allocation

Until this point in the trajectory optimization, we have fixed an arbitrary
amount of time τi associated with each segment, since these times factor into
the construction of the cost matrix. These segment times constrain the solution
quality, but can be allowed to vary to improve the overall solution with respect
to a cost function. We therefore begin with an initial guess of segment times
and then iteratively refine those times using gradient descent. Several cost func-
tions may be suitable candidates: in [12], Cutler and How minimize total time
subject to constraints, while in [38], Mellinger and Kumar fix the total time by
hand and minimize snap (the original cost function) with the remaining degrees
of freedom. In the planning context, we do not know the total trajectory time a
priori, so we allow it to vary in the optimization to perform a trade-off between
minimizing snap and total trajectory time. We attempt to minimize:

Jτ =






p0

...
pK






T 




Q0(τ0)
. . .

QK(τK)











p0

...
pK




+ cτ

K∑

i=0

τi (20)

where cτ is a user-specified penalty on time. The first term in this cost function
is simply the original cost function for polynomial optimization. When penal-
izing only acceleration, jerk or snap, this original cost can be driven arbitrarily
close to zero by increasing the total time, but equation (20) has a minimum

value for some finite
∑K
i=0 τi that varies with cτ . Figure 4 shows several itera-

tions of gradient descent in which the total trajectory time is decreased from a
large initial guess (red) to smaller optimal value (blue), while the ratio of times
between segments also shifts to minimize the modified cost.

Rather than selecting total times arbitrarily, this cost function allows our
algorithm to automatically adjust for environments of widely varying scales, or
where the vehicle must slow down to navigate tightly spaced obstacles without
incurring excessive snap. Furthermore, our procedure produces trajectories of
comparable aggressiveness in a wide range of scenarios for a given fixed value
of the single scale-independent parameter, cτ .

18

Figure 4: Illustration of the iterative refinement of segment times, color-coded
by total traversal time. The initial guess of total time is 10.5 s (red) and the
final optimized total time is 7 s (blue).

(a)

(b)

Figure 5: Segment time optimization with cτ = 500 (a) and cτ = 50000 (b).
The optimal total trajectory times are 9.1 s and 5.1 s respectively. Vectors for
waypoint velocity (red) and acceleration (green) are shown.

Figure 5 shows optimized trajectories for the same set of waypoints using
two different cτ values. The red arrows indicate waypoint velocities and the
green arrows indicate accelerations. These quantities are greater in the bottom
trajectory due to the higher time penalty. The vehicle axes are plotted at
0.1 s increments along the path. One emergent property resulting from time
allocation is that the system moves very slowly around the sharp corner and then
smoothly accelerates up to a higher speed in the straightaway where it does not
incur a severe penalty on its fourth derivative. This same behavior could be
equally useful for robotic arms executing smooth trajectories. Furthermore,
the geometric shape of the optimal trajectory remains the same regardless of
the value of cτ , indicating that the cost-minimizing ratios of segment times are
independent of cτ for a given arrangement of waypoints.

4.4.2 Ensuring the Trajectory is Collision-Free

If a particular trajectory segment is found to intersect an obstacle after opti-
mization, an additional waypoint is simply added halfway between its two ends,

19

splitting this segment into two, as in [41]. This midpoint is known to be collision-
free because it lies on the optimal piecewise-linear path returned by the search
algorithm. The polynomial is re-optimized (including time allocation) with the
additional waypoint, and the process is repeated recursively if necessary until
the polynomial trajectory is collision free.

A finite number of additional waypoints is sufficient to pull the polynomial
trajectory close enough to the underlying piecewise-linear path to repair colli-
sions as long as the corridor between obstacles is strictly wider than the vehicle.
As the number of waypoints increases, the polynomial trajectory converges to
the piecewise-linear path, which is known to be feasible for the quadrotor (we
do not imply that this technique would work for a fixed-wing aircraft, however).
Figure 6 illustrates this procedure resolving a collision.

It is possible to construct environments and trajectories that require many
additional waypoints to repair collisions, thus requiring the optimization prob-
lem to be re-solved many times to find a feasible solution. Additional waypoints
also increase the computational complexity of the QP being solved in each iter-
ation. However, in our experience with indoor environments, one or two addi-
tional waypoints in a given segment is usually sufficient to resolve collisions.

(a) Polynomial trajectory (blue) intersects an
obstacle even though the underlying straight
line between waypoints is collision-free.

(b) After bisecting the underlying straight
line twice with two additional waypoints, the
polynomial trajectory is collision-free.

Figure 6: (a) The polynomial (blue) intersects an obstacle even though the line
between waypoints is collision free (magenta). (b) These scenarios are resolved
by iteratively adding waypoints along the collision-free path returned by the
search algorithm.

There are several strategies that could be used to prevent the number of
necessary additional waypoints from growing too large. One option would be to
bias the underlying search away from potential collisions by placing an elevated
cost on paths that go near obstacles. Another option would be to inflate obsta-
cles slightly larger during the low-dimensional route-finding phase to leave an
allowance for the smooth polynomial to deviate from the underlying piecewise-
linear path. We leave the detailed analysis of collision-repair strategies for future
work.

20

0 2 4 6
3

4

5

6

7

8

9

Time (s)

M
o
to

r
T

h
ru

s
t
(N

)

0 2 4 6
0

5

10

15

Time (s)

V
e
lo

c
it
y
 (

m
/s

)

5 10 15 20
2

4

6

X−position (m)

Y
−

p
o
s
it
io

n
 (

m
)

Motor 1

Motor 2

Motor 3

Motor 4

(a)

0 1 2 3 4
3

4

5

6

7

8

9

Time (s)

M
o
to

r
T

h
ru

s
t
(N

)

0 1 2 3 4
0

5

10

15

Time (s)

V
e
lo

c
it
y
 (

m
/s

)

5 10 15 20
2

4

6

X−position (m)

Y
−

p
o
s
it
io

n
 (

m
)

(b)

Figure 7: Comparison between two time allocations during gradient descent.
The first time allocation (a) is conservative in that it is a slower trajectory than
the second one (b), which activates one of the actuator constraints indicated by
the dashed line in the upper right plot.

4.4.3 Actuator Constraints

A second major factor contributing to feasibility is to ensure that the input con-
straints are satisfied such that no portion of the commanded trajectory requires
control inputs outside of the range that the actuators are capable of providing.
Formally, solving a trajectory optimization problem in the flat output space of
a differentially-flat model requires mapping the constraints into the flat out-
put space as well as the dynamics. Some work has focused on computationally
estimating the feasible set in flat output space [14], however this set is gener-
ally a non-convex function of nonlinear inequalities and is a hard optimization
problem unto itself.

Instead, we address this challenge during the time-allocation step of trajec-
tory optimization, since the distribution of time along the trajectory largely
determines the required accelerations and therefore the peaks in required actu-
ator commands. First, we observe that in the limit as τ → ∞, the motion along
the trajectory slows to a near-static state, which is known to be feasible for
systems like hovering quadrotors. Therefore, we initialize our time-allocation
optimization step with a conservatively large guess for initial segment times.
Then, as the modified cost function is minimized, we compute the actuator
commands algebraically during each iteration to verify that we remain within
the feasible set. Optimization is terminated when either a local minimum is
obtained or an actuator constraint becomes active. Figure 7 illustrates two
different time allocations during the optimization of a sample trajectory for a
quadrotor. One of these time allocations is safely within the feasible set, since it

21

commands thrusts barely above the nominal thrust required for hover, whereas
the other time allocation is very aggressive and activates an actuator constraint
for one of the motors.

Due to the non-convexity of the feasible set in flat output space, the optimiza-
tion algorithm may encounter an actuator limit and terminate before converging
to the optimal ratio of segment times (for example, one of the red or orange
lines in Figure 4). To avoid this scenario, one strategy is to first optimize the
ratio of segment times via gradient descent while ignoring actuator constraints,
taking advantage of the fact that the optimal ratio of times is invariant to the
total time, as noted in Section 4.4.1. Then once the optimal ratio of times is
achieved, scale the total trajectory time in a separate univariate optimization,
preserving the optimal ratio, until the modified cost function is minimized or an
actuator constraint becomes active. This general concept applies to a variety
of other differentially flat systems, such as robotic arms, which may have rate
or torque constraints that could be satisfied by extending the duration of the
trajectory to slow the motion.

5 State Estimation

To close the loop around the trajectory we must know the state of the vehi-
cle. Since we are operating without the use of GPS, the state must be inferred
from sensor readings and knowledge of rigid-body dynamics. The state estima-
tion algorithm is responsible for taking as input sensor readings from the IMU
and laser range finder and estimating the position and velocity of the vehicle
to stabilize nominal trajectories. As described in Section 2.2, there are many
existing state estimation algorithms that have been applied to autonomous ve-
hicles. However, none of them are able to accurately perform localization using
LIDAR measurements in a manner that is computationally efficient enough to
run on a small computer that can be carried onboard a MAV. Our approach
is to use a Gaussian particle filter (GPF)-based update step together with an
EKF process model driven by the IMU to efficiently and compactly filter the
sensor inputs. We also provide a method for estimating the noise parameters of
the model without using ground-truth data.

5.1 State Estimation Problem Statement

Given a 3D occupancy map of the environment and a sequence of sensor mea-
surements, Z0:t, up to the present time, we wish to estimate the current system
state xt = [ωb,vb,R,∆]t. We model the system as a rigid body and we ne-
glect higher-order effects resulting from aerodynamics or other disturbances.
We assume a set of inertial measurements consisting of 3-axis acceleration and
3-axis angular rate measurements, and exteroceptive measurements consisting
of planar laser range scans.

5.2 IMU Process Model

Our state estimation algorithm uses an extended Kalman filter (EKF) to esti-
mate a Gaussian distribution over system states. The EKF process model is

22

based on a discrete time, nonlinear discrete transition function:

xt+1 = f(xt,ut,wt) (21)

where xt is the system state vector, ut is the input vector to the system, and
wt is a random disturbance drawn from a normal distribution N(0,Q). The
EKF tracks the state at time t as a Gaussian distribution with mean µt and
covariance Σt. These first two moments are propagated forward according to:

µ̄t+1 = f(µt,ut,0) (22)

Σ̄t+1 = AtΣtA
T
t +WtQWT

t (23)

where µ̄ and Σ̄ denote predicted quantities before a measurement update has
occurred, and At and Wt are the appropriate partial derivatives of f . Note
that in this section our use of the symbols A and Q is distinct from their use
in polynomial optimization in order to remain consistent with state estimation
literature.

5.2.1 Exponential Coordinates Attitude Uncertainty

We track orientation uncertainty in perturbation rotations in the body frame. If
the true orientation is given by the rotation matrix R, we can write R = R̂R(χ)

where R̂ is the estimated orientation and R(χ) = eχ
∧

is the error rotation
matrix. χ ∈ ℜ3 is the perturbation rotation about the body axes. We use the
∧ symbol to the right of a vector to denote the skew symmetric matrix formed
as:

χ∧ =





0 −χ3 χ2

χ3 0 −χ1

−χ2 χ1 0



 (24)

Taking the matrix exponential of a skew symmetric matrix returns a rotation
matrix corresponding to a rotation of |χ| about the axis defined by χ where χ
is referred to as the exponential coordinates of rotation.

In our expression for the true orientation, R(χ) post multiplies R̂ which
puts the perturbations in the body frame. Since the error is parameterized by
χ, the covariance can be tracked in a 3 × 3 matrix Σχ. The covariance can be
thought of as cones of uncertainty surrounding the body frame axes defined by
the columns of R̂. A sketch of this uncertainty is shown in Figure 8 for the
covariance (in degrees):

Σχ =





32 0 0
0 52 0
0 0 152



 (25)

This choice of coordinates for the filter error is desirable since fundamentally
rigid body orientation, denoted mathematically as the special orthogonal group
(SO(3)), has three degrees of freedom. While any three-element representation
is provably singular for some orientation, more commonly-used parameteriza-
tions (i.e., quaternions or rotation matrices) will have constraints between the
elements of the representation. Thus a linearized filter covariance over the pa-
rameters will not be full rank. Numerical errors pose the constant threat of

23

creating negative eigenvalues, and thus causing the estimator to diverge. Fur-
thermore, an efficient linearized measurement update as is commonly-used in
Gaussian filters does not respect the constraints and thus does not map onto
SO(3). A renormalization scheme could be used after every update, but at any
given time the representation can be arbitrarily poor [50].

As we will see, the attitude uncertainty representation is agnostic to the ac-
tual underlying orientation integration and tracking. Quaternions and rotation
matrices are easy to update based on using χ in the estimator state vector µ.

Figure 8: This figure shows the uncertainty representation in body axes. We
see that high variance on the z-axis perturbation maps into large motions for
the x- and y-bases.

5.2.2 Process Equations

The equations of motion for a rigid body are:

ω̇b = J−1(−ωb × Jωb + τb) (26)

v̇b = −ωb × vb +RTg + ab (27)

Ṙ = Rω∧

b (28)

∆̇ = Rvb, (29)

where τb is the torque applied to the body and ab is the acceleration in body
coordinates. Since the IMU provides accurate measurements of ωb and ab, we
follow the commonly-used technique of omitting ωb from the state, neglecting
equation 26, and treating the IMU measurements as inputs to the filter using a
standard linearized IMU update.

For the quantities used in equation 22 we have

x =
[
vb χ ∆

]
(30)

u =
[
ugyro uaccel

]
(31)

w =
[
wgyro waccel

]
(32)

24

Combining this state representation with equations 27-29 gives:

fc(xt,ut,wt) =





v̇b

Ṙ

∆̇



 (33)

=





−ωb × vb +RTg + guaccel

Ru∧

gyro

Rvb



 . (34)

Taking the appropriate partial derivatives we get:

∂v̇b
∂x

=
[
−ω∧

b (RTg)∧ 0
]

(35)

∂χ̇

∂x
=
[
0 −ω∧

b 0
]

(36)

∂∆̇

∂x
=
[
R −Rv∧

b 0
]

(37)

for a continuous dynamics linearization of:

Ac =
∂f

∂x
=





−ω∧

b (RTg)∧ 0

0 −ω∧

b 0

R −Rv∧

b 0



 (38)

and for the input vector we have:

∂v̇b
∂u

=
[
v∧

b gI
]

(39)

∂χ̇

∂u
=
[
I 0

]
(40)

∂∆̇

∂u
=
[
0 0

]
(41)

Wc =
∂f

∂x
=





∂v̇b

∂u
∂χ̇
∂u
∂∆̇
∂u



 . (42)

While more sophisticated approximations could be used, we construct the dis-
crete quantities for the filter f , At, and Wt using Euler integration:

f(xt,ut,0) = xt + fc(xt,ut,0)dt (43)

At = I+Acdt (44)

Wt = Wcdt. (45)

We integrate the attitude separately as

Rt+1 = RtR(u∧

gyro). (46)

5.3 Laser Measurement Update

While the EKF is effective for propagating the first two moments of the non-
linear dynamics through our IMU equations of motion, it is not well-suited

25

to integrating laser measurements from unstructured 3D environments. Using
such sensors directly in an EKF requires the extraction and correspondence of
features such as corners, and line segments from the sensor measurements; an er-
ror prone process that limits the applicability of the algorithms to environments
with specific structure [23]. In contrast Monte-Carlo techniques are widely used
in laser-based localization algorithms because they allow for the LIDAR range
measurement model to be used directly in the measurement function [49].

While particle filters are efficient enough for effective use in localizing a 2D
mobile robot, they require too many particles to be used for the estimation of
a 3D MAV. Fortunately, we can obtain the best aspects of both algorithms,
and a significant speedup can be realized by employing a hybrid filter that uses
an IMU-driven EKF process model with pseudo-measurements computed from
Gaussian particle filter (GPF) laser measurement updates [32].

5.3.1 Gaussian Particle Filters

In its standard form, the GPF maintains a Gaussian distribution over the state
space given a measurement history: P (xt|z0:t) = N(xt;µt,Σt). However, at
each iteration of the filter, particles are used to incorporate nonlinear process

and measurement models. To compute P (xt+1|z0:t) a set of samples {x(j)
t }Mj=1

is drawn from N(µt,Σt) and the samples are then propagated through the
process model f(xt,ut,wt). To perform the measurement update the samples

are weighted according to the measurement model w
(j)
t = P (zt|x(j)

t). The
updated Gaussian at the end of an iteration of the filter is then obtained as the
weighted mean and covariance of the samples

µt+1 =

∑M
j=1 w

(j)
t x

(j)
t

w
(j)
t

(47)

Σt+1 =

∑M
j=1 w

(j)
t (x

(j)
t − µt+1)(x

(j)
t − µt+1)

T

w
(j)
t

. (48)

Assuming the underlying system is linear-Gaussian, the filter is shown to ap-
proximate the true distribution arbitrarily well with a large number of samples.
The GPF filter differs from a standard particle filter by maintaining a unimodal
Gaussian distribution over the posterior state instead of the arbitrary (possibly
multi-modal) distribution represented by the set of particles in a conventional
particle filter.

A straightforward implementation of the GPF for state estimation using a
LIDAR on a MAV is impractical and inefficient for two reasons:

1. IMU dynamics are well-approximated by linearization as evidenced by the
widespread use of EKFs in GPS-IMU state estimation. Thus, a particle
process model adds significant computational burden and sampling error,
without significantly improving the estimate of the posterior density.

2. The IMU filter maintains additional states to track velocity and IMU
biases, however the laser measurements are only a function of the position
and orientation, parameterized by ∆ and χ in our formulation. In fact,
most of the orientation information in the measurement exists in the plane
of the LIDAR, corresponding to χz.

26

To address the first issue we only use the GPF to perform the measurement
update, and instead of propagating samples through the measurement function,
we sample directly from the prior distribution returned by the EKF after the
process step, N(µ̄, Σ̄). To address the second issue we explicitly partition the
state according to independence relationships in the measurement function. We
perform a standard GPF measurement update on the partitioned state and use
the result to compute a pseudo-measurement which is then used to update the
full state.

5.3.2 Partitioned State Update

The state is partitioned as

xt =
[
xmt x

p
t

]
, (49)

where xmt ∈ ℜk is the part of the state that affects the measurement, and
x
p
t ∈ ℜn−k is independent from the measurement. As an example of this parti-

tioning, the linear and angular velocities of the vehicle do not affect the ranges
measured by the LIDAR sensor. Therefore, these state variables can be consid-
ered independent from the measurement. More formally we assume our mea-
surement function has the form

zt = h(xmt ,vt), (50)

permitting the independence factorization

P (zt|xpt ,xm) = P (z|xm). (51)

We can similarly partition the covariance

Σ̄t =

[

Σ̄
(m2)
t Σ̄

(mp)
t

Σ̄
(pm)
t Σ̄

(p2)
t

]

. (52)

To perform the measurement update we draw samples {xm(j)
t }Mj=1 from

N(µ̄mt , Σ̄
m
t). The samples are weighted with the measurement function in equa-

tion 51. From these weighted samples we can compute an update for P (xmt |z0:t)
using the conventional GPF weighted mean and covariance as in equations 47
and 48. The key idea is to then use the GPF update on the state variables that
affect the measurement to propagate a Kalman update to the rest of the state.

To perform a Kalman measurement update we need to know the measure-
ment value zt, the covariance of the measurement R, and the observation matrix
C. First, we set C as a selector matrix for the measurement part of the state

C =
[
Ik 0n−k

]
. (53)

A measurement update on xm would proceed as

Km = Σ̄m
t (Cm)T (CmΣ̄t(C

m)T +R)−1 (54)

µmt = µ̄mt +Km(zt −Cmµ̄mt) (55)

Σm
t = (I−KmCm)Σ̄m

t . (56)

27

Plugging in the identity matrix for Cm, the above equations can be solved for
Rt

Σm
t = Σ̄m

t − Σ̄m
t (Cm)T (CmΣ̄t(C

m)T +Rt)
−1Σ̄m

t (57)

Rt = (Σ̄m−1

t − Σ̄m−1

t Σmt Σ̄m−1

t)−1 − Σ̄m
t (58)

= (Σm
−1

t − Σ̄m−1

t)−1, (59)

where we make use of the matrix inversion lemma between equations 58 and 59.
Using Rt we can now solve for the Kalman gain that would have produced

the same change between our prior and posterior covariance using equation 54
and then recover the actual measurement that would have produced the same
change in the mean of prior vs. posterior distributions:

zt = Km−1

(µmt − µ̄mt) + µ̄mt . (60)

A Kalman gain for the entire state can then be computed using Rt and zt, and
a standard Kalman measurement update performed.

The posterior distribution quantities µm
−1

t and Σm−1

t are readily available
from the GPF measurement update on the measurement part of the state vector.
Näıvely one might use the Gaussian prior from which the samples were drawn to
evaluate equations 59 and 60. However, the quantities we care about, Rt and zt,
are obviously sensitive to the difference between the prior and posterior mean
and covariance. With a finite number of samples there will be some error be-

tween the distribution described by the sample set {xm(j)
t }Mj=1 and the Gaussian

prior. This error will carry over to the weighted sample set which approximates
the posterior. We can compensate by using the mean and covariance of the
prior sample distribution instead of our analytic expressions for µ̄mt and Σ̄m

t . In
practice, this substitution makes an enormous difference, particularly with low
numbers of particles (which is highly desirable in a real-time application).

The solutions for Rt and zt hinge on the invertibility of Cm which is a proxy
for the invertibility of our measurement function h in equation 50 with respect to
xmt . It can be difficult to know a priori if the measurement is well conditioned
or invertible. If it is not (i.e., if the measurement does not actually contain
information about some piece of xmt) then the Rt matrix may not be positive-
definite, leading to a filter divergence. Thus it is necessary in practice to perform
an eigenvalue decomposition on Rt and set any negative eigenvalues to a large
constant (implying no information gain along the corresponding eigenvector)
and then reconstruct the matrix. This step also protects the algorithm from
negative eigenvalues entering through sampling errors.

5.3.3 LIDAR Likelihood Computation

The LIDAR likelihood evaluation proceeds according to standard techniques
used in 2D localization. We blur the a 3D occupancy map stored as an Oc-
toMap [52] using a Gaussian kernel around occupied cells. To perform parti-
cle measurement updates we project the current scan into the map using the
sampled particle state, and sum the log-likelihood of the relevant cells before
exponentiating to obtain a probability with which to weight the particles.

An interesting question is the appropriate partitioning of the state vector
for the updates described in the previous section. The use of planar LIDARs

28

to localize in the horizontal plane is ubiquitous, suggesting that when work-
ing in 3D, laser range scans should at least contain information about x, y
and χz (orientation about the yaw axis of the vehicle). In general, a planar
slice of a 3D environment may contain some information about the full orienta-
tion. However, populating the 6D pose space parameterized by χ and ∆ with
particles may produce limited extra information relative to the computational
cost incurred, especially because the direct formulation for our filter based on
exponential coordinates is capable of inferring attitude from accurate position
measurements. We investigate different choices for xm in our experiments in
section 5.5.

5.4 Identifying the Process Noise Parameters

Accuracy and precision in state estimation are very important during aggressive
flight, since our MAVs fly within centimeters of obstacles and small deviations
from the desired trajectory could result in collision. In this section, we inves-
tigate a strategy for identifying process noise parameters in order to maximize
the performance of our state estimate.

Due to the symmetry of the inertial sensors in the IMU, we assume the
process noise covariance Q is a diagonal matrix populated as

Q =

[
qgyroI3 0

0 qaccelI3

]

, (61)

where qaccel and qgyro are the parameters we wish to identify. Two issues make
it difficult to find these values. First, the way the noise projects onto the state
changes with the time-varying Wt matrix such that the Q matrix cannot be
recovered in closed form simply by summing the outer product of sampled error.
More importantly we cannot depend on the availability of ground-truth mea-
surements of the measured quantities, since even accurate positioning systems
do not directly measure acceleration and angular rate. Further, the behavior of
the sensor may be different under actual flight conditions due to vibration and
loading effects and thus the values obtained in a static test may not hold.

Nonetheless it is desirable that the model parameters, and especially the
process noise parameters, be accurate. For planning purposes we must be able
to predict distributions over future states to guarantee safe trajectories. Within
the context of state estimation and Monte-Carlo localization, as we describe in
Section 5.3.3, it is important that an accurate covariance of the state estimate be
maintained when sensor data is sparse or absent, such that the state estimate
can be properly distributed to incorporate measurements when they become
available.

While we do not have access to ground-truth acceleration and angular rate
with which to estimate the noise parameters, we can post-process data using
a Kalman smoothing algorithm to obtain a state history X = [x̂0, x̂1, . . . , x̂T]
with the error associated with each smoothed state estimate given by

Γt = E
[
(x̂t − xt)(x̂t − xt)

T
]

(62)

The key idea in our approach is in projecting the process noise forward over mul-
tiple time steps such that the process noise dominates the error in the smoothed
estimate, thus allowing us to treat the smoothed estimate as ground-truth. This

29

approach works because the IMU process equations are neutrally stable and thus
the perturbing noise results in unbounded growth in covariance without posi-
tion updates. The error on the smoothed estimate (with position updates), on
the other hand, must be bounded (even if the smoothing occurs with incorrect
noise parameters) since the system is observable. Additionally, by projecting
the noise forward over multiple steps, the parameters we identify will be suit-
able for use in planning algorithms that require open-loop predictions [9] and
the parameters will work with intermittent measurement functions as may be
the case for laser localization in sparse environments.

Using the linearized dynamics from the EKF we can project the filter covari-
ance forward N steps by repeatedly applying equations 22 and 23. Neglecting
the error on the smoothed estimate, we obtain the expression:

E
[
(x̂t+N − x̂t)(x̂t+N − x̂t))

T
]
= Σt,N (63)

=

N−1∑

i=0

Gt+i,NQGT
t+i,N (64)

where Gt,N =
∏t+N−1
j=t+1 AjWt. This is an important quantity for our noise

identification algorithm because it maps the noise at each time step onto the
state vector at time t+N . We can see that for identifying characteristics of the
process noise, At must be neutrally stable and Wt must have full column rank.
If At is highly unstable, the Σt,N will be overly sensitive to the noise values
wi for small i, whereas if At is highly stable, Σt,N will be dominated by larger
values of i and thus the forward projection offers little benefit. However, many
robotic systems, including our IMU dynamics, exhibit approximately neutrally
stable behavior.

For neutrally stable systems, as N gets large we expect Σt >> Γt. We
can then divide up the dataset X to get M = T/N samples from prediction
distributions obtained by subtracting the state at time tend = iN +N − 1 from
the state at time tbegin = iN for i ∈ [0,M − 1]. This gives us M samples
yi = xtend

− xtbegin
drawn from distributions N(0,Σtbegin,N) = P (xtend |xtbegin

).
We have a joint likelihood function for our data given the parameters of Q as:

P (Y|x0,Q) =
M−1∏

i=0

P (xiN+N−1|xiN ,Q). (65)

We would like to maximize this probability for which we use the log-likelihood
function,

l(Y|x0,Q) = −1

2

M−1∑

i=0

log |Σi|+ yTi Σiyi. (66)

From an intuitive standpoint we are optimizing for the q parameters that would
produce the observed drift away from the smoothed estimate given by the sam-
ples yi.

We setup and solve the optimization using standard nonlinear programming
techniques. Specifically we use the interior point method implemented in MAT-
LAB to solve for the maximum likelihood values of qgyro and qaccel. These new
values are then used to obtain the Kalman smoothed trajectory, and the process
is repeated until convergence.

30

Source Gyro Noise (degrees/s) Accelerometer Noise (g)
Vicon Optimization 0.35 0.0042
GPS Optimization 0.34 0.0182
Manufacturer 0.2 0.005

Table 4: Noise parameter values.

0 5 10 15 20
0

1

2

3

4
Orientation Error

D
e
g
re

e
s

Time (s)

0 5 10 15 20
0

10

20

30

40
Position Error

Time (s)

M
e
te

rs

vicon

vicon−predicted

gps

gps−predicted

Figure 9: This figure shows the predicted normed error and the actual normed
deviation from the smoothed estimates as a function of look-ahead time for the
optimization run on both the Vicon and GPS datasets. With the optimized
values we can accurately predict uncertainty for both estimation and planning
purposes.

To identify the noise parameters of the IMU we flew our experimental vehicle
(described in Section 7.4) outdoors with a low cost uBlox GPS unit. We also
collected a dataset in a high accuracy Vicon indoor motion capture system.
Optimized noise parameters for a look-ahead time of 20 seconds are shown in
Table 4 with the manufacturer specified values for comparison.

The optimization on the Vicon dataset converges quickly and consistently.
However, when the optimization is performed on the GPS dataset the optimiza-
tion is more sensitive to initial conditions and window size. The Vicon system
measures attitude directly, thus the smoothed attitude estimate is dominated
by the actual measurement. With the GPS dataset, attitude must be inferred
from position updates which means the attitude estimate will be more strongly
correlated with the IMU noise, thus making it more difficult find the underlying
noise parameter. Additionally, the GPS measurements are subject to time-
varying bias which is not modeled in our filter. Nonetheless, the optimization
for Vicon and GPS converge to nearly identical values for the gyro noise at
at 20 second window. The relative sensitivity to the window size for the GPS
optimization can be seen in Figure 10.

The noise parameters in Table 4 were used to generate the predicted error

31

0 5 10 15 20
0

0.2

0.4

q
 g

y
ro

 (
d

e
g

/s
)

Optimal IMU Noise Parameters vs. Lookahead Time

vicon

gps

0 5 10 15 20
0

0.01

0.02

q
 a

c
c
e

l
(g

)

Optimization Lookahead time (seconds)

Figure 10: This figure shows values for qgyro and qaccel obtained by optimizing
equation 66 for different look-ahead times (values of N scaled by sampling fre-
quency) for both GPS and Vicon. For small time the optimal noise parameters
obtained with GPS are dominated by the error in the smoothed estimates, Γt,
but we see for large N consistent values are reached. The Vicon dataset is less
susceptible to this issue. It is interesting to note that as look-ahead time in-
creases fewer “samples” are available from a dataset of fixed size, and thus the
computed noise values have higher variance, implying some optimal look-ahead
window to identify the parameters.

lines in Figure 9. We can see that the predicted error for GPS and Vicon
are very close for orientation as we would expect from the tabular values. In
position, the deviation is also small, which is surprising given the large difference
in optimized accelerometer noise values. The reason for this observation is that
the position uncertainty is largely a function of angular uncertainty resulting in
the gravity vector being misinterpreted as lateral acceleration. This highlights
another difficulty in separating the relative effects of the noise parameters during
aggressive flight.

5.5 State Estimation Experimental Results

For each experimental test of our state estimation algorithm, we first collect
a 3D map of the test environment using a pair of planar LIDARs mounted
orthogonally on a wheeled tripod. We push the tripod around manually to ob-
tain laser scans from every region of the environment. Then we run a SLAM
algorithm to estimate the poses of the horizontal LIDAR, and project the cor-
responding scans from the vertically-mounted LIDAR to fill out the 3D map.
This procedure takes several minutes and is the only preparation needed to run
our estimation algorithm in a new environment.

We conducted a number of manually flown flight tests in the indoor environ-
ment shown in Figure 11(a). The accuracy of our state estimates are validated
qualitatively by looking at the accurate reconstruction of the 3D environment
by re-projecting the laser points using our state estimates. One such 3D point
cloud is shown in Figure 11(b). A video of these experiments is available at:
http://groups.csail.mit.edu/rrg/icra12-agile-flight.

To quantify the error of the state estimator, we aggressively maneuvered the

32

http://groups.csail.mit.edu/rrg/icra12-agile-flight

(a) (b)

Figure 11: A picture of the indoor space (a) where we flew our fixed-wing vehicle.
The space is roughly 12 meters by 20 meters and our vehicle flies between 6
and 10 m/s, thus aggressive maneuvering and tight turning is required to stay
airborne. The trajectory flown by the vehicle is shown by the red, green, and
blue axes in (b). The quality of the state estimates is evident in the (height
colored) point cloud rendered using the state estimates of our algorithm. The
floor and ceiling were cropped for visual clarity.

10
1

10
2

10
3

10
4

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

Number of Particles

F
ra

c
ti
o

n
 D

iv
e

rg
e

d

∆
∆, χ

z

∆,χ

x

(a)

10
1

10
2

10
3

10
4

0.128

0.13

0.132

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

Number of Particles

M
e

a
n

 V
e

lo
c
it
y
 E

rr
o

r
(m

/s
)

∆
∆, χ

z

∆,χ

x

(b)

Figure 12: This figure shows the percentage of trials where the filter diverged
(a) and the mean velocity error verses the number of particles used in the GPF
(b) for different state partitions in the measurement. As expected, the more
states we use in the measurement function the more particles are required to
obtain satisfactory estimates. In a näıve implementation where the full state
is used in the measurement and thus a standard GPF update performed, we
require 2000 particles to get similar performance to a measurement update in
∆ using only 100 particles. Thus our algorithm yields an effective 20x speedup.

33

sensors in a Vicon motion capture environment. While the motion of the sensors
will certainly be very different when the vehicle is flying, the data allows us to
evaluate our algorithms with a ground-truth comparison. These ground-truth
state estimates allow us to evaluate the properties of our state estimation algo-
rithm. Results for different numbers of particles and different partitions of the
state vector are summarized in Figure 12. We can see that by not partitioning
the state and performing standard GPF updates we incur significant computa-
tional cost in terms of number of particles needed to achieve the same level of
accuracy. This increase in the number of particles is to be expected given that
we are using particles to capture the same correlations that are well captured
analytically by the Kalman pseudo-measurement update.

The experiments demonstrate the ability of our algorithm to maintain accu-
rate state estimates during fast motion, with linear velocities up to 11 m/s, and
angular rates of up to 360 degrees per second. Furthermore, during the closed-
loop flight tests described in Sections 6.1 and 7.5, our algorithm provided a
consistently accurate state estimate and never diverged. While a näıve imple-
mentation of the GPF measurement update correctly estimates the state of the
vehicle with a sufficient number of particles, the required number of particles
is dramatically larger than for the partitioned state version. The näıve GPF
implementation would not be able to run in real time onboard the vehicle given
the computation power available.

6 Quadrotor Trajectory Planning and Experi-

mental Results

In Section 4, we developed a procedure for efficiently computing polynomial
trajectories. In this section, we apply this procedure to solve the planning
problem for quadrotors. As is common in the literature, we model the quadrotor
as a rigid body. We assume that certain higher-order effects such as aerodynamic
drag are negligible for our purposes. The equations governing the motion of a
rigid body were given in the context of state estimation (26-29). In the case of
a multi-copter helicopter, we exert moments by commanding different thrusts
from opposing rotors. In a simplified representation of a conventional helicopter,
we can exert a moment on the body through the use of the cyclic control. In
either case, we assume that our low-level inputs can be selected in order to
achieve the desired roll, pitch, and yaw moments comprising the τb vector. The
major restriction we must make is that the net thrust of a helicopter is always
aligned with the rotor axis of rotation. Therefore, we can replace ab in equation
(27) with (f/m)bz, where f is the scalar sum of thrusts provided by the rotors
andm is the vehicle mass. This set of equations has been used in the literature to
describe the simplified dynamics of quadrotors [36] and conventional helicopters
[31, 17].

After restricting the direction of thrust to align with the bz-direction, these
equations have been shown to be differentially flat in reference to quadrotors.
Mellinger and Kumar provide a detailed description of the mapping from the
states and inputs of the vehicle to the flat output space, which we will not repeat
here [38]. We follow Mellinger and Kumar in expressing a quadrotor trajectory
segment as a set of four independent polynomials that describe the evolution

34

of the four flat output variables through time, namely positions ∆x(t), ∆y(t),
∆z(t), and the yaw angle ψ(t).

The nonlinear controller employed to follow differentiable trajectories was
developed in [36], and includes the methods of computing desired orientations
and angular velocities from ∆(t) and ψ(t) and their derivatives. In the following
equations we use the subscript d to refer to the desired position (∆d), orientation
(Rd), and angular velocity (ωd) as specified by the trajectory.

f =(−kpep − kded +mgwz +m∆̈d) · bz (67)

τb =− kReR − kωeω + ωb × Jωb

− J(ω∧

b R
TRdωd −RTRdω̇d)

(68)

where ep, ed, eR, and eω are the error vectors in position, velocity, orientation
and angular velocity, and kp, kd, kR, and kω are associated control gains. The
mass of the vehicle is m.

These equations include a combination of feed-forward terms, representing
the open-loop commands that would be needed to execute a given trajectory
in the absence of disturbances, and feedback commands that stabilize the vehi-
cle during its execution of the trajectory. Since the desired trajectory and its
derivatives are sufficient to compute the states and control inputs at every point
along the path in closed form (equations 67-68), these quantities effectively serve
as a simulation of the vehicle’s motion in the absence of disturbances. This is
the powerful capability enabled by differential flatness and the chosen trajectory
parameterization that eliminates the need for iterated numerical integration of
equations of motion, or a search over the space of inputs during planning.

6.1 Quadrotor Experimental Flight Results

We tested the performance of our quadrotor trajectory planning strategy on
challenging real-world planning problems by planning and flying trajectories
through complex indoor lab spaces in the MIT Stata Center. The environment
used for these tests has curved non-vertical walls, interior columns, barriers
aligned at oblique angles and hanging lights, representing a challenging arrange-
ment of obstacles for our planning algorithm. Interestingly, the complexity of
the environment and density of obstacles actually makes localization easier due
to the unique pattern of objects in each laser scan as compared to a large empty
environment. An OctoMap representation of the lab was generated using a pair
of planar laser range finders and each occupied cell was dilated with a radius
of 0.65 m to leave room for the 0.35 m radius of the vehicle and a minimal
allowance for error in estimation and control. Table 5 gives tracking errors of
the controller incurred during experiments. These errors are sufficiently small
to navigate within one vehicle-width of obstacles, which was required during
significant portions of both trajectories.

The trajectories returned by our algorithm are shown in Figure 13, and they
both exhibit approximately 2 m of altitude variation in order to fly through
doorways and navigate over tall shelves and dividing walls. These trajectories
were generated in several seconds on a ground-based Intel Core 2 Duo laptop for
the purposes of visualization prior to execution, however the planning procedure
is efficient enough to run easily on currently available small form-factor com-
puters that could be carried onboard a quadrotor. The quadrotor used for these

35

(a)

(b)

Figure 13: Automatically generated trajectories navigating atrium (a) and lab-
oratory (b) environments in the MIT Stata Center at up to 8 m/s. Due to the
tight spacing of obstacles, these environments are particularly challenging for
motion planning of high-speed vehicles.

Environment Mean Position Error (m) Mean Velocity Error (m/s)
Atrium 0.3631 0.3363

Laboratory 0.3054 0.2717

Table 5: Position and velocity tracking errors incurred during execution of the
quadrotor trajectories through an atrium 13(a) and a laboratory 13(b). Since
we do not have access to ground-truth state estimation, our tracking errors are
reported with respect to the onboard state estimate.

experiments was an Asctec Pelican, equipped with a Hokuyo UTM-30LX laser
rangefinder, a Microstrain 3DM-GX3-25 IMU, and a 2.0GHz Intel Atom based
flight computer. Figure 14 shows onboard video frames taken while executing
these trajectories at speeds up to 8 m/s. Video of these trajectories and flights
is available at: http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_
planning.

36

http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning
http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning

(a) (b)

Figure 14: Onboard video frames from aggressive quadrotor flight up to 8 m/s.

7 Fixed-Wing Trajectory Planning and Experi-

mental Results

In Section 4, we saw how it was possible to efficiently plan polynomial tra-
jectories for systems in which the three position coordinates can be controlled
independently. For example, a quadrotor can modulate its pitch angle to gen-
erate motions forward and backward, while simultaneously modulating roll to
move left or right and adjusting the total thrust to move up and down. In these
cases, a suitable trajectory representation is to describe the motion of each flat
output with its own polynomial trajectory.

In principle, we could also use this trajectory representation to describe the
motions of a fixed-wing aircraft. As we will see in this section, the differentially
flat model for the fixed-wing vehicle uses the three components of its global
position vector as the flat outputs. However, the key difference between this
model and the quadrotor model is that the fixed-wing cannot independently
control these three position coordinates. Rather, its motions are characterized
as Dubins-type motions, which means qualitatively that it is capable of trav-
eling along trajectories consisting of lines and arcs of bounded curvature, but
cannot translate sideways or vertically like a quadrotor. Therefore, describing
the motion of the three position coordinates using independent polynomials is
not ideal for this type of system.

Instead, we will develop a special trajectory formulation for fixed-wing air-
craft and vehicles with similar maneuvering capabilities, called Dubins-Polynomial
trajectories. These trajectories are defined as a sequence of straight lines and
arcs of constant curvature, combined with a piecewise-polynomial transverse
offset from those underlying arcs. The transverse dynamics of the fixed-wing
aircraft correspond roughly to roll maneuvers, so we can now use polynomial
optimization to minimize quantities of interest like roll rate and roll acceler-
ation, which are important for generating graceful trajectories. We will first
describe the vehicle model, then develop this Dubins-Polynomial trajectory for-
mulation, and finally we will describe simulation and experimental results for
the fixed-wing platform.

37

7.1 Fixed-Wing Coordinated Flight Model

The planning and control algorithms for the fixed-wing vehicle are based on a
coordinated flight model due to Hauser and Hindman [21]. In order to plan
trajectories for fixed-wing aircraft, we must understand its dynamic capabilities
and the flat output space associated with its differentially flat representation.

Coordinated flight is defined as a flight condition in which the body velocity
of the vehicle is contained within the longitudinal plane, hence vby = 0, where
vby is the component of velocity directed along the by axis aligned with the
axis of the wing. The equations of motion for the coordinated flight model are
expressed in the velocity frame, which differs from the body frame by the angle
of attack of the vehicle (assuming the vehicle is in a state of coordinated flight).
The orientation of the velocity frame is given by the rotation matrix Rv. The
unit vector of the first column aligns with the velocity such that vvy = vvz = 0.

To map velocity and acceleration back into the world frame, we have ∆̇ = Rvvv
and ∆̈ = g +Rvav.

To maintain coordinated flight, the second and third components of angular
velocity (pitch and yaw rates) are constrained to be:

ωvy = −(avz + gvz)/V (69)

ωvz = gv2/V, (70)

where V = ||∆̇|| and gvy and gvz represent the components of the gravity vector
projected along the vy and vz directions, respectively.

In these equations, av is the acceleration of the body expressed in the velocity
frame. Components avx and avz represent the axial and normal accelerations of
the vehicle, which are determined by the forward thrust of the propellers and
the lift force provided by the wing. In the differentially flat model, derivatives
of these quantities will serve as two of the inputs to the system.

A system is differentially flat if the inputs and states can be written as
functions of the outputs and their derivatives. The coordinated flight model is
differentially flat with inputs (ωvx , ȧvx , ȧvz) and outputs ∆. The mapping is:





ȧvx
ωvx
ȧvz



 =





−ωvyavz
ωvzavx/avz
ωvyavx



+





1 0 0
0 −1/avz 0
0 0 1



RT
...
∆ (71)

Equation (71) is powerful, in that it gives the necessary inputs for the simplified
coordinated flight model to achieve an arbitrary third derivative on the position
of the airplane.

The differentially flat representation also provides a direct method for sta-
bilizing a desired path. Since the model allows us to command the third spatial
derivative of the vehicle we can simply write the desired third derivative as the
open loop derivative of the path plus feedback on deviation from the path and
deviation derivatives (equation (8), [21]):

...
∆ =

...
ρ + k2ë+ k1ė+ k0e (72)

where ρ(t) is the path to be followed, e(t) = ρ(t) − ∆(t), and k0, k1 and k2
are feedback gains. The disadvantage of this approach is that the aircraft will
modulate tangential acceleration (thrust) to correct axial errors along the path

38

(i.e., if the vehicle gets ahead or behind its target point). However, fixed-wing
aircraft are designed for a small range of safe cruising velocities and it is often
assumed that the thrust will be fixed to maintain a particular safe airspeed. In
the worst case, if the aircraft slowed down too aggressively to track a reference
state, it could lose the necessary lift to stay aloft or otherwise exit the safe
operating envelope.

Therefore, we opt for an alternative strategy, which is to alter the state
representation to include a path parameter s(3) in place of ȧvx , which will be
integrated along with the rest of the state. Following equation (11) in [21] we
have:

M





s(3)

ωvx
ȧvz



 =





avzωvy + ȧvx
avxωvz
−avxωvy





−RT
(
3ρ′′(s)s̈ṡ+ ρ′′′(s)ṡ3 + k2ë+ k1ė+ k0e

)
,

(73)

where,

M =







... 0 0
RT ρ′(s) avz 0

... 0 −1







(74)

Introduction of the path parameter s enables dynamic inversion of the tra-
jectory when the throttle is effectively fixed, which would be impossible without
it. In our formulation s is the metric distance along the path so ṡ can be initial-
ized as the flight speed entering the path. The only restriction on this control
law is that M be invertible, which requires that the first column of Rv ∝ ∆̇

not be orthogonal to ρ′. Intuitively, if the plane is flying perpendicular to the
desired path, no control authority on the error dynamics is available through

...
s .

The singularity in M is also not of practical concern so long as the controller is
initialized from reasonable conditions. In Appendix B, we show how to translate
the variables of the differentially flat model into control surface deflections for
the low-level controller onboard the aircraft.

7.2 Dubins-Polynomial Trajectory Representation for Fixed-

Wing Aircraft

In the preceding discussion of the differentially flat fixed-wing representation,
we have seen how it is possible to obtain the necessary inputs to the vehicle
directly from the third derivative of the desired position trajectory. The next
challenge is to define a trajectory representation that is capable of expressing
paths that we would like our aircraft to follow. Additionally, this representation
should be differentiable so that we can easily compute the quantities needed to
perform control. Finally, we would like the trajectory representation to enforce
continuity of derivatives up to third order so that the resulting motions of the
aircraft will be smooth, and in particular, have continuous roll rate.

Except for takeoff and landing maneuvers, we restrict the motion of the
vehicle to the horizontal plane at constant altitude and fixed speed. For planning
purposes we wish to be able to generate trajectories from an initial position,
(∆x,∆y), yaw angle (ψ), roll angle (φ), and roll rate (φ̇), to a final configuration
of those variables.

39

Trajectory generation must primarily be concerned with roll dynamics as the
pitch is effectively constrained to stay in the plane, the rudder is constrained to
maintain coordinated flight, and the throttle is constrained to maintain constant
speed. For the case of constant speed planar motion,

φ = tan−1

(
V 2κ

g

)

, (75)

is a special case of equation 71, where κ is the curvature of the path (inverse
radius, positive turning to the left or counterclockwise (CCW)).

The most commonly used approach for planar path planning for fixed-wing
vehicles is to use Dubins curves [34]. Dubins curves represent the optimal (short-
est distance) path between two position and orientation, (∆x,∆y, ψ), configura-
tions respecting a minimum turning radius. The path between any two configu-
rations will be made up of three path segments consisting of either arcs (of the
minimum turning radius) or straight lines, belonging to six possible “words,”
LSL, RSR, RSL, LSR, RLR, LRL, where L is a left turning arc, R is a right
turning arc, and S is a straight line. The parameters of the segments (center,
entry and exit angles for an arc, and start and end point for a line) can be
directly determined from the geometry of the start and end configurations for
each feasible word for a given configuration, and then the shortest word is se-
lected. It is also possible to analytically determine which word will be shortest
based on an algebraic partitioning of SE(2), but for implementation simplicity
we use the former method.

Since Dubins curves are composed of tangent lines and arcs, the curves are
smooth in the sense that a vehicle following the path will have continuous yaw
angle, but the curvature is discontinuous. We can see from equation 75 that
discontinuity in curvature will translate to discontinuity in roll angle. This is
clearly kinodynamically infeasible for a fixed-wing vehicle. Clothoid arc paths
are an extension of Dubins paths with clothoid arc segments stitching the lines
and arc segments together to maintain continuous curvature (roll angle) [34].
However, clothoid paths would still be discontinuous in roll rate. By differenti-
ating equation 75, we can see that roll rate φ̇ is proportional to the derivative
of curvature. Therefore, if we consider the roll angle to be a second order sys-
tem with aileron input ([42]), then a trajectory must maintain continuity up
to the derivative of curvature to be kinodynamically feasible. Furthermore, we
can minimize roll rates and roll accelerations by penalizing the first and second
derivatives of curvature of the trajectory.

A quadrotor is capable of rolling about any axis in the body’s horizontal
plane and thus minimizing the snap or 4th derivative of independent splines in
three dimensions will minimize abrupt changes in control inputs needed to follow
the path. For a fixed-wing vehicle, however, the picture is substantially more
complicated. The axis of roll motion rotates with the heading of the vehicle and
the vehicle must turn with a finite radius, all while traveling at a nearly constant
speed. This makes the independent-axes spline representation inapplicable.

To meet the needs of a dynamically feasible fixed-wing trajectory, we define a
“Dubins-Polynomial” trajectory as a Dubins curve combined with a transverse
polynomial offset from that Dubins curve. The key idea behind the Dubins-
Polynomial formulation is that by parameterizing a lateral offset from a nominal
path, we isolate the roll dynamics of interest for steering a fixed-wing aircraft.

40

0 5 10 15

0

5

10

15

20

25

30

X−position (m)

Y
−

p
o

s
it
io

n
 (

m
)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

Normalized Path Coordinate (τ)

T
ra

n
s
v
e

rs
e

 O
ff

s
e

t
(m

)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

Normalized Path Coordinate (τ)

O
ff

s
e

t
D

e
ri
v
a

ti
v
e

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

Normalized Path Coordinate (τ)

O
ff

s
e

t
S

e
c
o

n
d

 D
e

ri
v
a

ti
v
e

Figure 15: Example trajectory for a fixed-wing aircraft. The underlying Dubins
curve (LSL) is illustrated in black in the left panel. The three polynomial
segments representing the transverse offset from this Dubins curve are illustrated
in red, green and blue. These polynomial segments are also illustrated with their
first and second derivatives in the right panel. Note the intentional discontinuity
in the second derivative, which corrects for the change in curvature between the
circular arcs and the straight line segment.

An example Dubins-Polynomial trajectory is illustrated in Figure 15. The se-
quence of polynomials is illustrated in red, green and blue. In this figure, the
red arc is offset from the first curve, which is a left turn with an 8 m radius. The
green arc is an offset from the middle segment, which is a straight line. Finally,
the blue arc is an offset from the third segment, which is another left turn with
8 m radius.

The polynomials themselves are illustrated on the right side of Figure 15.
Notice that the offset and its first derivative are constrained to be zero at the
start and end of this trajectory. The second derivative, which corresponds to
curvature, is constrained to have a value equal to the curvature of the underlying
Dubins segment at the beginning and end of the trajectory. In this example,
the initial and final curvatures are equal to 0.125 m−1, corresponding to the 8
m radius.

Since the curvature of the underlying Dubins curve changes from 0.125 m−1

to 0 m−1 at the intersection between the circular arcs and the straight line, we
must enforce an offset in the second derivatives of the polynomials at these junc-
tions. These offsets are seen in the second derivative plot in the bottom-right
of Figure 15. These offsets correct for the discontinuities in curvature between
segments of the underlying Dubins curve. Note that the spatial locations of the
intermediate junctions between polynomial segments, as well as higher deriva-
tives, are not specified directly. Rather they are optimized according to a cost
function.

41

7.2.1 Procedure for Generating Fixed-Wing Trajectories

The optimization method described in Section 4.2 is capable of jointly optimiz-
ing polynomial segments subject to offset constraints on their derivatives where
two segments meet. While the idea of jointly optimizing polynomial segments
is straightforward, the expressions for the transverse derivatives of a polynomial
offset are rather complex. In Sections 7.2.2 and 7.2.3 we develop the neces-
sary expressions. As seen in these expressions, the transverse derivatives of the
resulting spatial curve are nonlinear functions of the polynomial derivatives.
Therefore, the initial joint optimization will, in general, be an approximation
that must be corrected to ensure true continuity of derivatives. The approx-
imation lies in the fact that we are using linear constraints in our quadratic
program to enforce continuity of polynomials, when in fact the derivatives we
actually want to constrain (the derivatives of the trajectory through space) are
nonlinear functions of those polynomials.

The overall strategy is to first generate the underlying Dubins curve based
on initial and final points, (∆x,∆y, ψ)0 and (∆x,∆y, ψ)1. Then, we solve for
the piecewise-polynomial transverse offset using the joint optimization method
outlined in Section 4.2.1, with specified boundary constraints, (κ, κ̇, κ̈)0 and
(κ, κ̇, κ̈)1. These boundary constraints on curvature correspond to endpoint
constraints on the the second, third and fourth derivatives of the polynomial.
For the purpose of achieving derivative continuity between Dubins curve seg-
ments, all the elements of σi in equation (12) are set to zero except for the
second derivative, which is set to the curvature difference between the preced-
ing and following segments. As illustrated in Figure 15, this offset corrects for
the underlying curvature difference between the arc segments and straight line
segments.

We have now optimized a polynomial, however as stated above, the trans-
verse derivatives of the resulting spatial curve that we actually wish to constrain
are nonlinear functions of the polynomial derivatives. Therefore, we must repair
our polynomial solution to obtain a trajectory whose transverse derivatives are
in fact continuous. In order to do so, we compute “true” transverse derivative
values at each junction by taking the average of the transverse derivatives for the
preceding and following segment at that junction. These transverse derivatives
are derived below, and are given in equations 88-90 (or 98-100 for a line).

The purpose of computing an average at each junction is so that the preced-
ing and following segments can be re-optimized individually, using that set of
average derivatives as boundary conditions. Thus, the resulting sequence of indi-
vidually optimized polynomials will have truly continuous transverse derivatives.
To accomplish this goal, we invert the transverse derivatives using equations
91-93 (101-103) to obtain polynomial boundary conditions for each segment.
Finally, we perform individual optimizations for each segment using the proce-
dure given in Section 4.2. In the next two sections we develop the necessary
equations to compute these transverse derivatives.

7.2.2 Polar Coordinates Corrections

The polynomial offset from a circular arc in a Dubins curve is effectively a
polynomial in polar coordinates, expressed as R(θ) = R0 ± P (θ), where the
sign of addition depends on whether the arc is CCW (-) or CW (+). R0 is the

42

nominal radius of the underlying circular arc, P (θ) is the polynomial offset from
the circular arc, and θ is the parameter indicating position along the arc.

In this section we will use unit vectors r̂ and θ̂, denoting the radial and
angular directions, respectively. Note that θ̂ may be CCW-positive or CW-
positive depending on the intrinsic arc direction, in contrast to conventional
CCW-only use. The parameter θ sweeps positive in the θ̂ direction. When
used in a standard coordinate system r̂(θ) = cos(θ)wx + sin(θ)wy and θ̂(θ) =

− sin(θ)wx + cos(θ)wy for a CCW arc and θ̂(θ) = sin(θ)wx − cos(θ)wy for a
CW arc.

To analyze the true derivatives of the trajectory in polar coordinates, we
use the arc path ρ in the r̂ direction. Using the identities r̂′(θ) = θ̂(θ) and

θ̂′(θ) = −r̂(θ) we obtain

ρ(θ) = R(θ)r̂(θ) (76)

ρ′(θ) = P ′(θ)r̂(θ) +R(θ)θ̂(θ) (77)

ρ′′(θ) = (P ′′(θ)−R(θ))r̂(θ) + 2P ′(θ)θ̂(θ) (78)

ρ′′′(θ) = (P ′′′(θ)− 3P ′(θ))r̂(θ) + (3P ′′(θ)−R(θ))θ̂(θ), (79)

for the first three derivatives.
To generate smooth paths we would like to parameterize in terms of the

metric distance along the path as opposed to the angle swept out by the arc.
To accomplish this we write θ as a function of the distance s to get the arc as
ρ(θ(s)) and take the derivatives with respect to the distance.

dρ(θ(s))

ds
= ρ(θ(s))′θ′(s) (80)

d2ρ(θ(s))

ds2
= ρ′′(θ(s))θ′(s)2 + ρ′(θ(s))θ′′(s) (81)

d3ρ(θ(s))

ds3
= ρ′′′(θ(s))θ′(s)3 + 3ρ′′(θ(s))θ′′(s)θ′(s) + ρ′(θ(s))θ′′′(s). (82)

To enforce that s is the distance along the path we use the constraint:

||ρ′(θ(s))|| = 1 = θ′(s)
√

P ′(θ(s))2 + (R(θ(s)))2, (83)

which yields the relationship:

θ′(s) =
1

√

P ′(θ(s))2 + (R(θ(s)))2
, (84)

which can then be differentiated for use in the full path derivative expressions:

θ′ =
1

L
(85)

θ′′ = −P
′(P ′′ +R)

L4
(86)

θ′′′ = −L
2(P ′′(P ′′ +R) + P ′(P ′′′ + P ′))− 4P ′2(P ′′ +R)2

L7
. (87)

43

For convenience we define L =
√
P ′2 +R2 and omit the argument θ for com-

pactness in the expressions. Equations 77 - 79 and 85-87 can then be plugged
into 80-82 to obtain expressions for the true path derivatives in the r̂ direction:

r̂T
dρ(θ(s))

ds
=

P ′

√
P ′2 +R2

(88)

r̂T
d2ρ(θ)

ds2
= P ′′

(
1

L2
− P ′2

L4

)

− R

L2
− P ′2R

L4
(89)

r̂T
d3ρ(θ(s))

ds3
=
P ′′′ − 3P ′

L3
− 3

P ′(P ′′ −R)2

L5

− P ′

(
P ′′2 + P ′′R+ P ′P ′′′ + P ′2

L5
− 4P ′2(P ′′ +R)2

L7

), (90)

and similar expressions can be obtained in the θ̂ direction (or the numerical
values substituted directly). To complete the optimization we also need the
expressions solved for the first three polynomial derivatives:

P ′ =
Rr̂T dρ(θ(s))

ds
√

1−
(

r̂T dρ(θ(s))
ds

)2
(91)

P ′′ =
r̂T d

2ρ(θ)
ds2

+ R
L2 + P ′2R

L4

1
L2 − P ′2

L4

(92)

P ′′′ = L3r̂T
d3ρ(θ(s))

ds3
+ 3P ′ + 3

P ′(P ′′ −R)2

L2

+ P ′

(
P ′′2 + P ′′R+ P ′P ′′′ + P ′2

L2
− 4P ′2(P ′′ +R)2

L4

). (93)

7.2.3 Line Segment Corrections

For the line segments in a Dubins path similar analysis applies. Using the same
ρ notation with r̂ perpendicular to the left of the line segment and θ̂ aligned
with the line segment, and θ the linear distance along the segment, we have:

ρ(θ) = P (θ)r̂ + θθ̂ (94)

ρ′(θ) = P ′(θ)r̂ + θ̂ (95)

ρ′′(θ) = P ′′(θ)r̂ (96)

ρ′′′(θ) = P ′′′(θ)r̂. (97)

Following the same procedure as for arc segments we obtain:

r̂T
dρ(θ(s))

ds
=

P ′

√
P ′2 + 1

(98)

r̂T
d2ρ(θ)

ds2
=
P ′′

L2
− P ′2P ′′

L4
(99)

r̂T
d3ρ(θ(s))

ds3
=
P ′′′

L3
− 3

P ′P ′′2

L5
− P ′

L2(P ′′2 + P ′P ′′′)− 4P ′2P ′′2

L7
, (100)

44

and solved for the polynomial derivatives:

P ′ =
r̂T dρ(θ(s))

ds
√

1−
(

r̂T dρ(θ(s))
ds

)2
(101)

P ′′ = L2r̂T
d2ρ(θ)

ds2
+
P ′2P ′′

L2
(102)

P ′′′ = L3r̂T
d3ρ(θ(s))

ds3
+ 3

P ′P ′′2

L2
+ P ′

L2(P ′′2 + P ′P ′′′) + 4P ′2P ′′2

L4
. (103)

7.2.4 Example Dubins-Polynomial Paths

−20 −10 0 10 20
0

10

20

30

(a)

0 5 10 15

0

5

10

(b)

−10 0 10 20
0

5

10

15

20

25

(c)

0 10 20

−25

−20

−15

−10

−5

0
(d)

Figure 16: This figure shows Dubins-Polynomial paths for various configura-
tions. The blue line in the transverse polynomial path and the black line is the
Dubins path from which it is offset. For each of these examples, the curvature
is constrained to be 0 at the start and end of the path. We can see that gener-
ally the optimization yields paths that distribute the shifts in curvature across
the Dubins segment junctions (denoted with black stars), reducing the need for
abrupt changes in roll angle and roll rate.

It is important to note that the polynomials used in equations 91-93 and
88-90 are in terms of the arc angle θ and thus the polynomials obtained must be
rescaled by the arc radius as appropriate to be consistent in cost units between
arc and line segments. To verify the correctness of our expressions for deriva-
tives, we numerically integrated the third path derivative (

...
∆) for example paths

and confirmed that the numerical integration converged exactly to the example
path as discretization was refined. Example curves for various configurations
are shown in Figure 16.

7.2.5 Limitations of Dubins-Polynomial Trajectories

To the extent that P ′ is small in the case of line segments and P ′ and P are
small in the case of arc segments (since change in P changes the radius and

45

thus introduces Coriolis and other higher order polar effects), the polynomial
optimization directly optimizes the curvature derivative (3rd polynomial deriva-
tive), and second curvature derivative (4th polynomial derivative). However, we
can see from the correction equations in Sections 7.2.2 and 7.2.3 that the ap-
proximation breaks down for P ′ and P far from zero. If the nominal path from
which the offset is specified is chosen sensibly, this problem can be mitigated.
The optimization also allows for cost on P ′ and P to penalize too much deviation
from the nominal path and thus maintain the fidelity of the higher order deriva-
tives. Further, even if the optimization is an approximation, the correction step
ensures derivative continuity at segment junctions.

If the cost on curvature derivatives is high and the radius used in the Dubins
paths too small, the optimization may occasionally yield arc segments with
negative radius. When this occurs, the path must either be discarded or the
cost on P increased until a positive radius is achieved. Potential locations of
radius violations may be obtained using polynomial root finding algorithms.

7.3 Fixed-Wing Simulation Results

To validate our trajectory generation and control methodologies we used the
physics engine from the open source CRRCsim flight simulator [1]. The sim-
ulator takes as input aerodynamic derivatives computed with a model of our
fixed-wing aircraft in AVL, an open source extended vortex lattice aerodynamic
analysis program [13].

We sampled 1000 random configurations and used them to generate Dubins
paths, transverse polynomial paths enforcing 3rd order continuity, and trans-
verse polynomial paths enforcing 4th order continuity. The nominal paths were
then simulated with the full nonlinear model. The planning radius used in the
Dubins curves was R0 = 8 m with a desired flight velocity of 7 m/s which places
the vehicle close to it’s dynamic limit. Polynomials of order N = 10 were used
with cost of the zeroth-fourth derivatives, c =

[
0.3 1 0 50 1

]
, and all

other cost terms set to zero. The paths were sampled in a 40 m square so
they usually involve sequential turns without extended straight sequences. The
samples were used to plan: Dubins paths, transverse polynomial paths up to
3rd order continuity, and transverse polynomial paths up to 4th order continu-
ity. For computation time comparison we also include the full simulated model.
Using a full model-based method to compute feasible trajectories would have
computational cost on this order, as the full dynamics are simulated forward.

If the simulated vehicle deviated by more than 10 m from the planned path,
the case was marked as a failure and discarded. These samples were used to
generate the results shown in Table 6. We can see that for these conditions the
pure Dubins curves fail more than 19% of the time. Additionally the average
normed tracking error is more than double what it is for both of the transverse
polynomial paths. Interestingly, fourth order continuity paths have slightly
higher normed error with slightly lower failure rate. The failure cases of the
transverse polynomial paths are likely due to rare cases of poor geometries
leading to infeasible trajectories in the optimization which could be discarded
with dynamic constraint checking. The higher normed error for the fourth order
paths probably indicates that within the fidelity of our fit control mappings,
the continuity in roll rate is not important. However, the optimization still
minimizes roll acceleration effort, which clearly increases the feasibility of the

46

Path Type Error Norm (m) Fraction Failed Computation Time (µs)
Dubins 1.60 0.194 20.0

3rd Order 0.67 0.006 495.7
4th Order 0.75 0.003 516.6
Full Model - - 10609.3

Table 6: This table shows path-following error, fraction of simulations diverged,
and computation time for a path for Dubins curves, transverse-polynomial
curves enforcing continuity up to 3rd and 4th order, and a full simulation of
the nonlinear model.

paths compared to the fully discontinuous Dubins case.
The computation time of the transverse polynomial paths is dominated by

the matrix inversion of the piecewise polynomial QP. While it is substantially
slower than the Dubins calculation alone, it is still more than 20 times faster
than a single simulation of the full model, and to get an exact solution, multiple
simulations would be required, as in the shooting method [7].

Figures 17 and 18 give some intuition for why the optimized paths are su-
perior for tracking. Each depicts an example of tracking performance with the
coordinated flight model for both Dubins curves and the same Dubins curve
with an optimized polynomial offset. As we would expect, the coordinated
flight model exhibits perfect tracking behavior on these paths.

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

Tracking

actual

desired

dubins

(a)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20
Tracking

actual

desired

dubins

(b)

Figure 17: This figure shows tracking performance for the coordinated flight
model for a Dubins curve (a) and a transverse polynomial path (b). We can see
the actual and desired paths match for the transverse polynomial path as the
optimization “anticipates” the discontinuity and symmetrically distributes the
roll angle change into each arc segment. In contrast, when tracking the Dubins
curve, the vehicle can not roll instantaneously and thus deviates from the path
before stabilizing back onto it.

Since the coordinated flight model tracks the paths exactly, the deviation
must be introduced by errors in the control mappings from the coordinated
flight model to the full nonlinear model (equations 123, 124, and 125). This is
not surprising since we approximated the mapping using simple linear fitting,

47

−8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

Tracking

actual

desired

dubins

(a)

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Tracking

actual

desired

dubins

(b)

Figure 18: This figure shows another example with the pure Dubins curve (a)
and the transverse polynomial path (b). We can see the optimization smoothly
distributes curvature over the path, leading to perfect tracking performance,
whereas with a pure Dubins curve the tracking deviates at the segment junction.

treating the nonlinear model as a black box. A more refined model fitting
might be useful to further improve performance. Ideally the fitting would take
place on flight data exhibiting coordinated flight, so one possibility would be to
iteratively fit and collect data under closed loop control until some threshold
of tracking error is attained. We leave this step as future work on the actual
vehicle.

7.4 Custom Fixed-Wing Vehicle Platform

While not a primary focus of our research, the payload, speed, and size con-
straints for flying in confined indoor spaces led us to design and build a custom
fixed-wing vehicle, shown in Figure 19. Our experimental platform consists of a
custom built fixed-wing vehicle carrying a Hokuyo UTM-30LX laser rangefinder,
a Microstrain 3DM-GX3-25 IMU, and a 2.0GHz Intel Atom based flight com-
puter.

7.5 Fixed-Wing Experimental Results

We conducted closed-loop autonomous flights in a gymnasium and in a parking
garage. In total, we have logged over 20 minutes of autonomous flight time,
at speeds ranging from 7 m/s to 11 m/s. Initial closed-loop flight tests were
conducted with circular holding patterns in the gymnasium. We then performed
“simple” and “slalom” paths through curtains hung from the gymnasium ceiling,
and a figure-eight through the pillars of a parking garage. These trajectories
are depicted in Figure 20. They were constructed by hand-selecting waypoints
and optimizing Dubins-Polynomial trajectories between the waypoints.

During early testing, failures were caused by dynamics mismatches between
the model and the actual vehicle. However, once parameters of the dynam-
ics model and controller were sufficiently fit, the fixed-wing flights were very
repeatable. The trajectories depicted in Figure 20 were flown without failure

48

(a) (b)

Figure 19: This figure shows our custom vehicle (a) and an internal view of the
fuselage (b). The vehicle is designed to fly slowly enough to fly in tight spaces,
while still maintaining maneuvering capability. The construction makes use of
foam, carbon fiber, and thin plywood.

and the number of laps around each trajectory was limited only by battery life.
The trajectories in the gymnasium lasted several minutes each, and the parking
garage trajectory accounted for 8 minutes of continuous flight or approximately
5 km of flight distance.

Table 7 gives the controller tracking errors incurred during execution of these
trajectories. Tracking performance for the simple gymnasium trajectory and the
parking garage figure-eight was excellent, with an average position error of only
approximately 30 cm over many laps around these environments. Given the 2
m wingspan of the vehicle, this level of tracking performance is sufficient to fly
very close to obstacles without risking collision.

It is interesting to note that tracking of the slalom path was not as accurate.
Average tracking error for this trajectory was more than twice the tracking error
on the other two trajectories (though still less than half the wingspan). The
slalom trajectory is composed of a sequence of seven back-to-back turns, most
of which are tight turns nearly at the estimated curvature limit of the vehicle.
Therefore, this trajectory required the most dramatic rolling motions to track.
Furthermore, this trajectory has no straight segments of any significant length,
so it is much more difficult for the control system to re-converge if tracking errors
develop. The drop in performance observed in the slalom trajectory suggests
the need for a more accurate estimate of the dynamic limits of the vehicle.

The fixed-wing vehicle during autonomous flight is shown in Figure 21 and
onboard camera views are shown in Figure 22. A video illustrating the fixed-
wing experimental results is available at: http://groups.csail.mit.edu/rrg/

fixed_wing_flight.

8 Conclusion and Future Work

In this paper, we have presented several novel algorithms for trajectory planning
and state estimation needed to achieve aggressive autonomous flight in obstacle-
dense indoor environments. The experimental results presented on both the

49

http://groups.csail.mit.edu/rrg/fixed_wing_flight
http://groups.csail.mit.edu/rrg/fixed_wing_flight

Environment Mean Position Error (m) Mean Velocity Error (m/s)
Gymnasium (“slalom”) 0.8313 1.3121
Gymnasium (“simple”) 0.3489 0.4839

Parking Garage 0.2653 0.3206

Table 7: This table gives position and velocity tracking errors incurred during
execution of the fixed-wing trajectories through a gymnasium (Figure 20(a)
and Figure 20(b)), and a parking garage (Figure 20(c)). Since we do not have
ground-truth state estimation, these errors are reported with respect to the
onboard state estimate.

(a) (b) (c)

Figure 20: Dubins-Polynomial trajectories in a gymnasium (“slalom”) (a) and
(“simple”) (b), and in a parking garage (c). The black lines are the underlying
Dubins paths, and the blue lines are the polynomial offset trajectories.

50

(a) (b)

Figure 21: Autonomous flight in a gymnasium (a) and a parking garage (b).

(a) (b)

Figure 22: Onboard camera images from autonomous flight in a gymnasium (a)
and a parking garage (b).

fixed-wing and quadrotor vehicles highlight the generality of our approach. Since
our state estimator is based upon the rigid-body equations of motion, it makes
no assumptions about vehicle type, and therefore can be applied without modi-
fication to any vehicle capable of carrying the required sensors. This generality
makes it an extremely powerful tool for cross-platform experimentation.

While our planning approaches are vehicle-specific, they both make use of the
same underlying property of differential flatness and reuse a significant portion
of the mathematical tools needed to optimize trajectories. We believe that
our overall strategy could be applied to a range of vehicles beyond what we
have presented here. In particular, the results for our quadrotor could apply
to any multi-copter, simplified conventional helicopter, submarine or satellite
whose thrusters are capable of exerting forces and moments like a quadrotor.
Likewise, the results for the fixed-wing airplane would be equally applicable to
any curvature-constrained or Dubins-type vehicle, including automobiles.

There are several simple extensions to the planning tools we have presented
here, which would improve the performance of automatic trajectory generation.
For the quadrotor, we take waypoints from a low-dimensional search algorithm
as constraints in the optimization. However, it is often possible to move these
waypoints within their local neighborhood to achieve lower-cost trajectories.
Moving the waypoints may result in relaxing unnecessarily tight turns in a
trajectory, or moving the whole trajectory into a different, preferable homotopy

51

class. Such an optimizer might take the form of one presented in [39].
For the fixed-wing vehicle, we have not presented any results using a low-

dimensional search to seed the polynomial optimization, as we did for the
quadrotor. It would be straightforward to apply a simple search algorithm to
automatically compute a Dubins path and then optimize corresponding Dubins-
Polynomial trajectories to completely automate the planning procedure. Fur-
thermore, we are currently optimizing the Dubins-Polynomial trajectory asso-
ciated with each 3-segment Dubins word individually. It would also be straight-
forward to jointly optimize the entire sequence of polynomials along an entire
trajectory to obtain lower cost trajectories.

In this paper, we have focused entirely on planning complete trajectories in
pre-mapped environments. However, given the speed with which we can plan
trajectories, these tools may apply equally well to the task of planning partial
trajectories in a receding-horizon fashion for cases where the environment is not
entirely known but is periodically updated during execution.

Acknowledgements

The support of the ARO MAST CTA and ONR under MURI N00014-09-1-1052
and NDSEG is gratefully acknowledged.

52

A Polynomial Trajectory Cost Matrix and Con-

straints

The square of a polynomial, P 2, can be written using a convolution sum

(P 2)n =

N∑

j=0

pjpn−j . (104)

The rth derivative is given by

P (r)(t) =

N∑

n=r

(
r−1∏

m=0

(n−m)

)

pnt
n−r. (105)

Using equations 104 and 105 we can write the rth component of the cost as a
quadratic function of the polynomial coefficients:

Jr =

∫ τ

0

P (r)(t)2dt (106)

=

∫ τ

0

(
N∑

n=r

(
r−1∏

m=0

(n−m)

)

pnt
n−r

)2

dt (107)

=

∫ τ

0

2N∑

n=0

N∑

j=0

(
r−1∏

m=0

(j −m)(n− j −m)

)

pjpn−jt
n−2rdt (108)

=
2N∑

n=0

N∑

j=0

(
r−1∏

m=0

(j −m)(n− j −m)

)

pjpn−j
τn−2r+1

(n− 2r + 1)
. (109)

We find Qr matrices by taking the Hessian of this expression:

∂Jr
∂pi

=
∂

∂pi

2N∑

n=0

N∑

j=0

(
r−1∏

m=0

(j −m)(n− j −m)

)

pjpn−j
τn−2r+1

(n− 2r + 1)
(110)

= 2

2N∑

n=0

(
r−1∏

m=0

(i−m)(n− i−m)

)

pn−i
τn−2r+1

(n− 2r + 1)
(111)

∂2Jr
∂pi∂pl

= 2
2N∑

n=0

(
r−1∏

m=0

(i−m)(n− i−m)

)

∂pn−i
∂pl

τn−2r+1

(n− 2r + 1)
(112)

= 2

(
r−1∏

m=0

(i−m)(l −m)

)

τ i+l−2r+1

(i+ l − 2r + 1)
(113)

Qil
r =

{

2
(
∏r−1
m=0(i−m)(l −m)

)
τ i+l−2r+1

(i+l−2r+1) : i ≥ r ∧ l ≥ r

0 : i < r ∨ l < r.
(114)

We form the complete cost matrix as a weighted sum of all Qr matrices,
where the weights cr indicate the penalty on the rth derivative:

Q =

N∑

r=0

crQr. (115)

53

The constraints on the endpoint values of P and its derivatives can be written
as linear functions of the coefficients:

Ap− b = 0. (116)

The value of the rth derivative at τ is given by:

P (r)(τ) =

N∑

n=r

(
r−1∏

m=0

(n−m)

)

pnτ
n−r. (117)

For a polynomial segment spanning from 0 to τ satisfying derivative constraints
on both ends of the interval, A and b are constructed as:

A =

[
A0

Aτ

]

,b =

[
b0

bτ

]

(118)

A0rn =

{∏r−1
m=0(r −m) : r = n

0 : r 6= n
(119)

b0r = P (r)(0) (120)

Aτrn =

{(∏r−1
m=0(n−m)

)

τn−r : n ≥ r

0 : n < r
(121)

bτr = P (r)(τ). (122)

The A matrix simply maps the polynomial coefficients to the derivatives at
the endpoints of the polynomial. The vector b is used to specify or constrain
certain derivative values. These constraints are useful, for example, when we
want to enforce that velocity and acceleration and higher derivatives are zero at
the beginning of a quadrotor trajectory, or when we want to match the values
of derivatives at the junction between two polynomial trajectory segments.

B Fixed-Wing Differentially Flat Control Input

Conversion

The trajectory stabilization algorithm outlined in Section 7.1 provides us with
ωvx , ȧvz , and s(3). The remaining challenge is to translate these quantities
into aileron, elevator, throttle, and rudder inputs such that coordinated flight
is achieved at the desired settings. Since we have a path parameter taking the
place of ȧvx in the differentially flat representation, we can use the the throttle
to maintain a desired cruise speed.

Using traditional linear analysis for aircraft dynamics, roll rate can be shown
to be a stable first order system with aileron input, and normal acceleration (ef-
fectively angle of attack or normal velocity) a stable second order system with
elevator as input [42]. Thus one possibility would be to differentiate equation
71 to get flat inputs at the same system order as elevator and aileron. However,
feedback for such an approach would require the third derivative of the actual
system motion which is not directly available (derivative of acceleration). Fur-
ther, the dynamics in pitch from elevator to normal acceleration and aileron to
roll are fast relative to the derivatives of the path.

54

The approach we use for control is to integrate ȧvz and maintain avz (normal
acceleration) as a controller state. Desired roll rate and normal acceleration
are then translated algebraically into elevator, aileron, and rudder commands.
Using basic results from aircraft stability and control, we can convert desired
normal acceleration, steady-state roll rate (p), and steady-state yaw rate (r) to
control surface deflections as follows:

δe = c0
avz
V 2

+ c1 (123)

δa = c2
p

V
+ c3

r

V
(124)

δr = c4
p

V
+ c5

r

V
(125)

where δe is the elevator deflection, δa is the aileron deflection, and δr is the
rudder deflection. Equations 123, 124, and 125 give us the relationships we
need. Coefficients c0-c5 can be empirically fit from flight or simulation data and
then used to map the desired normal acceleration to actual control inputs.

References

[1] CRRC simulator. http://sourceforge.net/apps/mediawiki/crrcsim/.
Accessed: April 2014.

[2] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun. Discrimi-
native training of Kalman filters. In Proceedings of Robotics: Science and
Systems, Cambridge, USA, 2005.

[3] A. Bachrach, S. Prentice, R. He, and N. Roy. RANGE: Robust au-
tonomous navigation in GPS-denied environments. Journal of Field
Robotics, 28(5):644–666, 2011.

[4] A. J. Barry, T. Jenks, A. Majumdar, H.-T. Lin, I. G. Ros, A. Biewener,
and R. Tedrake. Flying between obstacles with an autonomous knife-edge
maneuver. In IEEE Int. Conf. on Robotics and Automation, 2014.

[5] A. J. Barry and A. Majumdar. Personal communication, 2014.

[6] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
1999.

[7] J. T. Betts. Practical methods for optimal control and estimation using
nonlinear programming, volume 19. Siam, 2010.

[8] A. Bry, A. Bachrach, and N. Roy. State estimation for aggressive flight in
GPS-denied environments using onboard sensing. In IEEE Int. Conf. on
Robotics and Automation, 2012.

[9] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion plan-
ning under uncertainty. In IEEE Int. Conf. on Robotics and Automation,
2011.

55

http://sourceforge.net/apps/mediawiki/crrcsim/

[10] G. Buskey, J. Roberts, P. Corke, and G. Wyeth. Helicopter automation
using a low-cost sensing system. In Proceedings of the Australasian Conf.
on Robotics and Automation, 2003.

[11] H. Chitsaz and S. LaValle. Time-optimal paths for a dubins airplane. In
IEEE Conf. on Decision and Control, pages 2379–2384, 2007.

[12] M. Cutler and J. P. How. Actuator constrained trajectory generation and
control for variable-pitch quadrotors. In AIAA Conf. on Guidance, Navi-
gation, and Control, 2012.

[13] M. Drela and H. Youngren. Athena vortex lattice (AVL). http://web.

mit.edu/drela/Public/web/avl/, April 2014. Accessed: April 2014.

[14] N. Faiz, S. K. Agrawal, and R. M. Murray. Trajectory planning of differen-
tially flat systems with dynamics and inequalities. Guidance, Control, and
Dynamics, 24(2):219–227, 2001.

[15] D. Ferguson, T. M. Howard, and M. Likhachev. Motion planning in urban
environments. Journal of Field Robotics, 25(11-12):939–960, 2008.

[16] T. Fraichard. Smooth trajectory planning for a car in a structured world.
In IEEE Int. Conf. on Robotics and Automation, pages 318–323. IEEE,
1991.

[17] E. Frazzoli, M. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. Guidance, Control, and Dynamics, 25(1):116–129,
2002.

[18] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning
for nonlinear systems with symmetries. IEEE Trans. Robotics, 21(6):1077–
1091, 2005.

[19] S. Grzonka, G. Grisetti, and W. Burgard. Towards a navigation system for
autonomous indoor flying. In IEEE Int. Conf. on Robotics and Automation,
2009.

[20] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[21] J. Hauser and R. Hindman. Aggressive flight maneuvers. In IEEE Conf.
on Decision and Control, 1997.

[22] M. Hehn, R. Ritz, and R. D’Andrea. Performance benchmarking of quadro-
tor systems using time-optimal control. Autonomous Robots, 33(1-2):69–88,
2012.

[23] J. Hesch, F. Mirzaei, G. Mariottini, and S. Roumeliotis. A laser-aided
inertial navigation system L-INS for human localization in unknown indoor
environments. In IEEE Int. Conf. on Robotics and Automation.

[24] S. Hrabar and G. Sukhatme. Vision-based navigation through urban
canyons. Journal of Field Robotics, 26(5):431–452, 2009.

56

http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/

[25] J. hwan Jeon, S. Karaman, and E. Frazzoli. Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT*. In IEEE Decision and
Control and European Control Conf. (CDC-ECC), pages 3276–3282, 2011.

[26] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning us-
ing incremental sampling-based methods. In IEEE Conf. on Decision and
Control, pages 7681–7687, 2010.

[27] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. Int. Journal of Robotics Research, 30(7):846–894, 2011.

[28] J. Kelly, S. Saripalli, and G. Sukhatme. Combined visual and inertial
navigation for an unmanned aerial vehicle. pages 255–264. 2008.

[29] J. Kim and S. Sukkarieh. SLAM aided GPS/INS navigation in GPS denied
and unknown environments. In The 2004 International Symposium on
GNSS/GPS, Sydney, 2004.

[30] D. B. Kingston and R. W. Beard. Real-time attitude and position estima-
tion for small uavs using low-cost sensors. In AIAA Unmanned Unlimited
Technical Conf., Workshop and Exhibit, pages 2004–6488, 2004.

[31] T. J. Koo and S. Sastry. Output tracking control design for a helicopter
model based on approximate linearization. In IEEE Conf. on Decision and
Control, pages 3635–3640, 1998.

[32] J. H. Kotecha and P. M. Djuric. Gaussian particle filtering. IEEE Trans.
Signal Processing, 51(10):2592–2601, 2003.

[33] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How. Motion
planning in complex environments using closed-loop prediction. In AIAA
Conf. on Guidance, Navigation, and Control, Honolulu, HI, 2008.

[34] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[35] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int.
Journal of Robotics Research, 20(5):378–400, 2001.

[36] T. Lee, M. Leoky, and N. H. McClamroch. Geometric tracking control of a
quadrotor UAV on SE(3). In IEEE Conf. on Decision and Control, pages
5420–5425, 2010.

[37] R. Mehra. On the identification of variances and adaptive Kalman filtering.
IEEE Trans. Automatic Control, 15(2):175 – 184, 1970.

[38] D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. In IEEE Int. Conf. on Robotics and Automation,
2011.

[39] M. Milam, K. Mushambi, and R. Murray. A new computational approach
to real-time trajectory generation for constrained mechanical systems. In
IEEE Conf. on Decision and Control, volume 1, pages 845–851 vol.1, 2000.

57

[40] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechan-
ical control systems: A catalog of prototype systems. In ASME Interna-
tional Mechanical Engineering Congress and Exposition. Citeseer, 1995.

[41] J. Pan, L. Zhang, and D. Manocha. Collision-free and smooth trajectory
computation in cluttered environments. Int. Journal of Robotics Research,
31(10):1155–1175, 2012.

[42] W. F. Phillips. Mechanics of Flight. John Wiley and Sons, Hoboken, NJ,
2004.

[43] M. Pivtoraiko and A. Kelly. Kinodynamic motion planning with state
lattice motion primitives. In IEEE Int. Conf. on Intelligent Robots and
Systems, 2011.

[44] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In IEEE Int. Conf.
on Robotics and Automation, pages 489–494, 2009.

[45] C. Richter, A. Bry, and N. Roy. Polynomial trajectory planning for aggres-
sive quadrotor flight in dense indoor environments. In Int. Symposium on
Robotics Research, 2013.

[46] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma. Flying fast and low
among obstacles: Methodology and experiments. Int. Journal of Robotics
Research, 27(5):549–574, 2008.

[47] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding
locally optimal, collision-free trajectories with sequential convex optimiza-
tion. In Proceedings of Robotics: Science and Systems. Citeseer, 2013.

[48] S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor indoor nav-
igation with a computationally constrained MAV. In IEEE Int. Conf. on
Robotics and Automation.

[49] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
localization for mobile robots. Artificial Intelligence, 128(1):99–141, 2001.

[50] R. van der Merwe and E. Wan. Sigma-point Kalman filters for integrated
navigation. In Proc. Institute of Navigation (ION), Dayton, OH, 2004.

[51] M. J. Van Nieuwstadt and R. M. Murray. Real-time trajectory genera-
tion for differentially flat systems. Int. J. Robust and Nonlinear Control,
8(11):995–1020, 1998.

[52] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: A probabilistic, flexible, and compact 3D map representation
for robotic systems. In Proc. of the ICRA 2010 Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation, Anchorage, AK,
USA, 2010.

58

	Introduction
	Related Work
	Trajectory Planning
	State Estimation

	Nomenclature and Coordinate Frames
	Trajectory Planning for Aggressive Flight
	Differential Flatness for Trajectory Planning
	Polynomial Trajectory Optimization
	Piecewise Polynomial Joint Optimization
	Performance of Polynomial Optimization

	General Polynomial Trajectory Representation
	Planning with Polynomial Trajectories
	Time Allocation
	Ensuring the Trajectory is Collision-Free
	Actuator Constraints

	State Estimation
	State Estimation Problem Statement
	IMU Process Model
	Exponential Coordinates Attitude Uncertainty
	Process Equations

	Laser Measurement Update
	Gaussian Particle Filters
	Partitioned State Update
	LIDAR Likelihood Computation

	Identifying the Process Noise Parameters
	State Estimation Experimental Results

	Quadrotor Trajectory Planning and Experimental Results
	Quadrotor Experimental Flight Results

	Fixed-Wing Trajectory Planning and Experimental Results
	Fixed-Wing Coordinated Flight Model
	Dubins-Polynomial Trajectory Representation for Fixed-Wing Aircraft
	Procedure for Generating Fixed-Wing Trajectories
	Polar Coordinates Corrections
	Line Segment Corrections
	Example Dubins-Polynomial Paths
	Limitations of Dubins-Polynomial Trajectories

	Fixed-Wing Simulation Results
	Custom Fixed-Wing Vehicle Platform
	Fixed-Wing Experimental Results

	Conclusion and Future Work
	Polynomial Trajectory Cost Matrix and Constraints
	Fixed-Wing Differentially Flat Control Input Conversion

