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ABSTRACT:

Melanoma is a devastating skin cancer characterized by distinct biological subtypes. 

Besides frequent mutations in growth- and survival-promoting genes like BRAF and 

NRAS, melanomas additionally harbor complex non-random genomic alterations. 

Using an integrative approach, we have analysed genomic and gene expression 

changes in human melanoma cell lines (N=32) derived from primary tumors and 

various metastatic sites and investigated the relation to local growth aggressiveness 

as xenografts in immuno-compromised mice (N=22). Although the vast majority 

(>90%) of melanoma models harbored mutations in either BRAF or NRAS, significant 
differences in subcutaneous growth aggressiveness became obvious. Unsupervised 

clustering revealed that genomic alterations rather than gene expression data reflected 
this aggressive phenotype, while no association with histology, stage or metastatic 

site of the original melanoma was found. Genomic clustering allowed separation of 

melanoma models into two subgroups with differing local growth aggressiveness 

in vivo. Regarding genes expressed at significantly altered levels between these 
subgroups, a surprising correlation with the respective gene doses (>85% accordance) 

was found. Genes deregulated at the DNA and mRNA level included well-known cancer 

genes partly already linked to melanoma (RAS genes, PTEN, AURKA, MAPK inhibitors 

Sprouty/Spred), but also novel candidates like SIPA1 (a Rap1GAP). Pathway mining 

further supported deregulation of Rap1 signaling in the aggressive subgroup e.g. by 

additional repression of two Rap1GEFs. Accordingly, siRNA-mediated down-regulation 

of SIPA1 exerted significant effects on clonogenicity, adherence and migration in 
aggressive melanoma models. Together our data suggest that an aneuploidy-driven 

gene expression deregulation drives local aggressiveness in human melanoma.

INTRODUCTION

Melanomas account for 4 to 5% of all cancers and 

represent currently the 6th leading cancer type in the USA 

[1]. While 80% of melanomas are diagnosed at localized 

stages, one third of those early stage patients will develop 
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metastatic disease associated with dismal prognosis, i.e. 

a median overall survival of 6 to 8 months [2]. Recent 

discoveries have markedly improved our understanding 

of the molecular changes underlying malignant 

progression of melanomas including mainly alterations in 

proliferation, survival and cell death signaling pathways 

[3-5]. The RAF/MEK/ERK and PI3K/AKT are two 

major signaling pathways constitutively activated in up 

to 90% of melanomas. While BRAF mutations represent 

the most frequent oncogenic alteration in melanomas so 

far (BRAFV600E in up to 70% of cases), NRAS mutations 

occur in 15 to 30%. Recently, exon sequencing approaches 

revealed additional mutations in individual members of 

the MAP3K and MAP2K families including MEK1 and 

MEK2. The AKT/mTOR pathway might be additionally 

activated mainly by loss-of-function mutations or deletions 

of the inhibiting phosphatase PTEN. Furthermore, typical 

impairment of senescence due to mutations, deletions or 

methylation of p16INK4/CDKN2A occurs in 30 to 70% of 

melanomas. Oncogenic proteins in melanoma include 

e.g. members of the bcl-2 protein family, cyclin D1, 

and several transcription factors like the lineage-specific 

oncogene MITF (for detailed reviews on these molecular 

changes see [6-8]).

Improving the knowledge on major drivers 

underlying development and aggressiveness of 

melanoma is of strong interest to identify clinically and 

therapeutically relevant patient subgroups. However, 

achievement of this goal is hampered by strong 

heterogeneity not only at the genomic level, but also 

with regard to phenotypic, histopathological, and clinical 

characteristics. Accordingly, multiple studies from 

different scientific disciplines have suggested the existence 
of several melanoma subtypes that may arise through 

several different causative pathways [9]. At the molecular 

level, besides (in)activating mutations in proto-oncogenes 

and tumor suppressor genes, development of melanoma 

is characterized by complex karyotypic changes leading 

to multiple and severe gene dose alterations. Several lines 

of evidence suggest that this aneuploidy might represent 

an additional driving force of malignant transformation 

and cancer progression [7, 9]. It can be assumed that 

the observed molecular heterogeneity drives at least to 

some extent disease pathogenesis, clinical behavior, and 

Figure 1: Subcutaneous growth of the indicated 11 human melanoma cell models in immuno-compromised mice. (A) 

As described in Material and Methods, 2.5x106 melanoma cells were xenografted into immuno-compromised mice and local tumor growth 

was measured at the indicated time points. (B) Representative H&E staining of the fast-growing melanoma xenograft model VM-21 

characterized by invasive growth subcutaneously (left) and causing lung metastasis (right panel).  
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possibly response to therapy, and that genomic aberrations 

and gene dose-related RNA alteration patterns might even 

dictate disease behavior [7]. Accordingly, clustering of 80 

metastatic lesions based on genomic alteration profiles 
resulted in three subgroups that could not be related to 

their location, but, when intersected with clinical outcome, 

one subgroup displayed a significant survival advantage, 
indicating that the clustering could be biologically relevant 

[7].

In this study, we aimed to analyze genomic and 

transcriptomic alterations in human melanoma cell 

cultures (originating from primary as well as metastatic 

lesions) classified with respect to their in vivo growth 

characteristics. Using this approach, we demonstrated 

that genomic aberrations allow clustering of primary 

melanoma cell lines according to their in vivo growth 

behavior. Interestingly, genes differentially expressed in 

subgroups with differing aggressiveness closely reflected 
corresponding gene dose alterations. This suggests 

that melanoma malignancy is at least partly driven by 

aneuploidy-mediated gene expression deregulation. The 

affected genes comprised several known oncogenes 

and tumor-suppressors. However, also novel candidates 

like SIPA1, a Rap1GTPase, were identified as important 
drivers of melanoma aggressiveness. Accordingly, by 

using a siRNA approach, this Rap1-deactivating protein 

was proven to regulate clonogenicity and cell adhesion/

migration of aggressive melanoma cell models. 

RESULTS

Human melanoma xenograft models 

are characterized by distinctly differing 

aggressiveness

In an initial approach, 11 human cutaneous 

melanoma cell models were xenografted subcutaneously 

into immuno-compromised nu/nu mice and primary tumor 

Figure 2: Differentially expressed genes (Student`s t-test, p<0.01; N=428 probes) in the “fast” versus the “slow” 

melanoma subgroups are not randomly distributed across the chromosomes. (A) Percentage of all genes located at the indicated 

chromosome arms as compared to the percentage of changed genes are indicated by open and black bars, respectively. Chromosome arms 

with highly increased aberration ratios are indicated (black arrows).  (B) Fold changes in the expression levels for the 428 probes in the 

fast- versus slow-growing subgroup are mapped to the respective chromosomal regions. (C) The percentage of genes significantly up- or 
downregulated in the fast- versus slow-growing melanoma subgroup at the indicated chromosomal arms were calculated. 
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Figure 3: DNA gains and losses analysed by array CGH in melanoma models and association with aggressiveness. (A) 

GISTIC analyses are shown for the 11 melanoma models (upper panel), and for the 5 fast- and the 6 slow-growing models (middle and 

lower panel, respectively). SGOL scores were calculated using a modified version of the GISTIC algorithm using the “SGOLscore” function 
(see Material and Methods). (B) Unsupervised clustering (WECCA, see Materials and Methods) of the melanoma models with respect to 

the array CGH data are shown. “Fast” melanoma models are indicated by red and “slow” ones by blue boxes. Colored arcs indicate the 
histology/metastatic site of the melanoma models: red, primary nodular melanomas; black, primary superficial spreading melanoma; blue, 
lymph node metastasis; green, brain metastasis. (C) The heatmap depicts probes (N=120) significantly (p<0.001, Student´s t test) differing 
in array CGH analysis between the fast- versus slow-growing melanoma subgroups. The predominantly affected chromosomal regions are 

indicated at the right.
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growth as well as metastasis to the lungs, the liver and the 

brain investigated. While all cell lines were tumorigenic, 

distinct differences in aggressiveness became obvious 

(Figure 1A). Five cell models were characterized by 

rapid growth with two showing spontaneous metastasis to 

the lung (Figure 1B). In contrast, the other 6 melanoma 

models, though all tumorigenic, were much less 

aggressive and no signs of local or distant metastases 

could be detected. Growth behaviour was confirmed in 
the SCID mouse system (data not shown). Tumorigenicity 

in vivo did not reflect the growth characteristics of the 
cell models in vitro regarding minimal doubling time 

(data not shown and [10]). This suggests that specific 
tumor cell characteristics and/or interactions with the 

microenvironment are the major determinants causing the 

significant differences of tumor aggressiveness in vivo. 

A 

B 

Predicted fast 

Predicted slow 

Figure 4: Genomic alterations allow prediction of local growth aggressiveness of human melanoma models in immuno-

compromised mice. (A) Unsupervised clustering of the original 11 (solid boxes; red and blue indicate fast- versus slow-growing, 

respectively) and the additional 21 melanoma cell models was performed based on array CGH data. Those melanoma models selected for 

validation in xenograft growth are indicated by dashed outlines. (B) Xenograft growth characteristics of the melanoma models selected 

for validation are shown. (C) Clustering of the 32 melanoma models by array CGH data based on probes (N=62; “genomic identifier”) 
differing at p<0.0005 (Student´s t-test) between the fast- versus the slow-growing subgroup of the original 11 melanoma cell models. The 
corresponding heatmap and dendrogram are shown. (D) Assignment of the melanoma cell models to the two clusters generated by the 

genomic identifier probe set. (E) Mean tumor growth from the day of measurable tumor detection of the 9 melanoma xenografts assigned 
to cluster A (red line) and the 12 xenografts to cluster B (black line) is shown. 
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Genes differentially expressed in fast- versus slow-

growing melanoma models are non-randomly 

distributed along the chromosomes

In order to determine cellular factors driving 

in vivo tumor aggressiveness, whole-genome gene 

expression arrays were performed. The 11 melanomas 

were subgrouped into “fast-growing” and “slow-
growing” models according to xenotransplant growth 
dynamics (compare Figure 1A) in order to extract 

differentially expressed genes (Student´s t-test p<0.01, 
428 oligonucleotide probes representing 323 genes). 

When allocating this set of probes to the chromosomal 

arms, a strikingly non-random distribution was detected 

(Figure 2A,B). First, when comparing the proportion 

of significantly changed probes per arm with that of 
all oligonucleotides represented on the microarray, 

chromosome arms with distinct enrichment of altered 

gene expression in fast- versus slow-growing melanomas 

became obvious (Figure 2A). Hotspots were chromosomes 

2, 10, 11 and 22 as well as 17p and 19p arms. Also the 

direction (up- or down-regulation) of the significant gene 
expression changes was non-randomly distributed along 

the chromosomes (Figure 2B,C). Thus, for example 

altered genes on chromosomes 10, 2p, and 22 were almost 

generally expressed at lower levels in the fast-growing 

subgroup (39/41; 25/25; 18/18, respectively). In contrast, 

on chromosome 11 all but one concerned oligonucleotides 

(47/48) indicated a significantly higher expression in 
the aggressive melanoma subgroup (Figure 2C). Taken 

together these data suggest that genomic/chromosomal 

alterations might have a direct impact on the gene 

expression pattern associated with in vivo aggressiveness 

of human melanoma models.

Genomic gains and losses but not mRNA 

expression patterns cluster with aggressiveness in 

xenotransplantation models

Based on the striking non-random association 

of genome-wide gene expression with chromosomal 

regions, we decided to perform array CGH analyses to 

investigate genome-wide changes in gene copy numbers. 

All melanoma models exhibited multiple chromosomal 

changes involving the classical characteristics of human 

melanoma cells like gains in chromosomes 6p, 7 and 20 
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as well as losses in 9p, 10 and 14. Array CGH data for 

the three representative melanoma models VM-4, VM-7 

and VM-24 are shown in Supplementary Figure S1. A 

summary of array CGH data for all 11 melanoma models 

based on GISTIC analysis is presented in Figure 3A (upper 

panel). When comparing genomic changes in fast- versus 

slow-growing melanoma cell models by GISTIC (Figure 

3A, middle and lower panel), several differences appeared. 

While the p16/ARF locus at chromosome 9p was equally 

lost in both subgroups, deletions at the PTEN locus at 

10q were more pronounced in the aggressive melanomas. 

Moreover, more extended losses of chromosome 10 and 

gains of chromosomes 20q and parts of 11q characterised 

the aggressive melanoma models. In contrast, losses in 6q 

were more apparent in the less aggressive subgroup.

In order to find out whether genomic changes 
and/or mRNA expression levels in melanoma models 

indicate histological origin and/or tumor type, we 

performed unsupervised cluster analyses on array CGH 

(Figure 3B) and gene expression data (Supplementary 

Figure S2). Concerning genomic alterations, clustering 

of melanoma models reflected neither the histological 
origin nor the metastatic site, but - with one exception 

– growth aggressiveness in vivo. This was in contrast to 

the gene expression analyses, where no association with 

aggressiveness in the mouse models could be found. 

Upon closer inspection of those genomic regions differing 

significantly (p<0.001) in gene dose between the two 
subgroups of melanomas, again a strong prevalence of 

selected chromosomal arms became visible with a focus 

Figure 5: Aneuploidy-driven gene expression deregulation underlies aggressiveness of melanoma xenograft models. 
(A) Genes (191 probes covering 180 genes) differing in mean expression values between the two melanoma subgroups at a significance 
level of p<0.005 (Student´s t-test, log2 of fold-change, black dots) are blotted for the most informative chromosomes against the mean array 
CGH aberration scores (log2) for fast- (red lines) and slow-growing (blue lines) melanoma cell models. Accordingly, a value of 1 indicates 

a two-fold increase and -1 a two-fold decrease in mean expression level in the fast- versus the slow-growing subcluster. In contrast, array 

CGH data indicate mean (log2) gains/losses in the two melanoma subgroups as compared to normal control DNA pooled from healthy 

donors. Consequently, a value of 1 indicates a two-fold increased copy number of the respective chromosomal region in the indicated 

melanoma subcluster. (B) Expression levels of three selected genes from Supplementary Table S2 were evaluated by real-time RT-PCR and 

mean deltaCT values in the fast- versus the slow-growing subclusters are shown.
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on changes in chromosomes 2, 6, 10, 11 and X (Figure 

3C).

Genomic alteration signature predicts 

aggressiveness of melanoma xenograft models

To test whether the genomic signature of the original 

11 melanoma models allows prediction of aggressiveness 

in further melanoma models, genomic DNA isolated 

from 21 additional melanoma primary cell cultures was 

analysed by array CGH. As a first strategy, unsupervised 
clustering using the complete array CGH data set was 

performed in all 32 melanoma models (Figure 4A). 

Again the previously identified fast-growing cell models 

tended to cluster together in subgroups (solid-lined boxes) 

including also novel melanoma models. Consequently, we 

chose three additional cell models clustering with the fast- 

and two with the slow-growing subgroup (broken lined 

boxes in Figure 4A) and tested them for tumor growth in 

SCID mice. Indeed, a strong difference was found within 

this “validation set” with VM-8, VM-14 and VM-15 being 
highly aggressive while VM-44 formed slow-growing 

tumors and VM-54 was not tumorigenic within the time 

period of analysis (Figure 4B). In a second approach, we 

aimed to develop a less complex “genomic signature” from 
the original 11 melanoma models. Consequently, a highly 

stringent analysis at the single probe level extracting 

those probes differing between the two subgroups with a 

Figure 6: The Rap1 deactivator SIPA1 is gained at the DNA level as well as overexpressed in aggressive melanoma 

models and impacts on cell behaviour. (A) Deregulation of Rap1 activity regulating molecules at the mRNA expression level in 

the fast- versus the slow-growing melanoma models. Red circles indicate significant changes (p<0.05) and the direction of the changes 
in fast- versus slow-growing melanoma models is indicated. (B) Immunodetection of SIPA1 in a “fast” (VM-8) and a “slow” (VM-28) 
melanoma xenograft tumor is shown. (C) SIPA1 and Rap1 expression was detected by Western blot analysis in the original 11 melanoma 

cell lines grouped with regard to growth aggressiveness. (D) Knock-down of SIPA1 expression was performed using siRNA. Two examples 

of fast-growing melanoma models are shown. (E) Cell adhesion in a “fast” (VM-1) and a “slow” (VM-28) melanoma cell line transfected 
with scrambled (scr) and SIPA1 siRNA was determined at 3 h and 24 h after seeding. (F) The impact of SIPA1 knock-down by siRNA on 

clonogenic potential was measured in the aggressive melanoma cell line VM-1. The total colony numbers (left panel) and the number of 

large colonies (≥50 cells, right panel) were counted. (G) Impact of SIPA1 siRNA-mediated knockdown on migration potential of “fast” 
as compared to “slow” melanoma cells was investigated using transwell chamber assays. All experiments were performed three times and 
means ± SD are shown.  
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p<0.0005 (Student´s t-test) was performed. This resulted 
in 62 probes representing 50 annotated gene loci (termed 

“CGH-identifier”) (Supplementary Table S2). Cluster 
analyses of all available 32 melanoma models with this 

CGH-identifier led to formation of two distinct subgroups 
termed cluster A and B (Figure 4C,D). Consistent 

with unsupervised clustering results, cluster A (N=13) 

contained all five fast-growing and cluster B (N=19) all 
six slow-growing members of the original 11 melanoma 

models. Of the additional 21 models, 9 grouped in cluster 

A and 12 in cluster B including correct allocation of the 

5 melanoma models used as validation set (compare 

Figure 4B). The growth dynamics of these melanoma 

clusters in SCID mice (Fig. 4E) clearly reflected the 
highly significant difference in tumor growth between the 
two subgroups. These data indicate that a defined set of 
chromosomal changes can predict in vivo aggressiveness 

of human melanoma cells.

Significant gene expression differences between 
fast- versus slow-growing melanoma models are 

reflected by gene dose alterations

Next we re-evaluated gene expression differences 

between the melanoma subgroups at higher stringency 

(p<0.005 ; Student´s t-test). This analysis resulted in 191 
probes representing 180 differentially expressed genes. 

Figure 5 depicts expression changes of these genes (log2 

of fold-change, black dots in Figure 5A) plotted for the 

most informative chromosomes along the mean array CGH 

aberration scores (log2) for fast- versus slow-growing 

melanoma subgroups (red and blue lines, respectively, 

in Figure 5A). A surprisingly good reflection of the 
expression levels by gene copy numbers was observed for 

the majority of genes. Only 15.4 % of all 191 significantly 
changed probes at the mRNA level did not correspond to 

a respective change at the DNA level. Interestingly, these 

few genes were mainly localised on three chromosomes/

arms, namely 1p, 21q, and X. In contrast, the vast majority 

or even all significant expression changes at several 
chromosomal arms were reflected by DNA dose both 
in terms of gains and losses, like chromosome 2 (29/32 

agreeing), chromosome 6 (9/9 agreeing), chromosome 10 

(18/19 agreeing), chromosome 11 (28/28 agreeing) and 

chromosome 17 (14/15 agreeing). This again indicates that 

large scale gains/losses at several specific chromosomal 
regions are involved in driving local aggressiveness of 

melanoma xenograft models. 

Gene expression differences between fast- 

versus slow-growing melanoma models suggest 

alterations in cellular growth and differentiation 

networks

Next we analysed expression array data by in silico 

pathway prediction approaches for genes expressed 

differentially between the 8 fast - and 8 slow-growing 

models (including the original 11 models and the 5 

models of the validation set) (Student`s t-test, p<0.05). 
This resulted in the identification of 2165 altered probes, 
which were imported into Ingenuity Pathway Analysis 

software. Regarding biological functions this approach 

suggested beside “cancer” also both “dermatological” 
and “neuronal diseases”. Altered networks involved Ras 
and negative MAPK regulators like Sprouty (Spry) and 

Spred proteins as well as Ras/Rap/Rab GTPase protein 

families, suggesting deregulation of these gene products to 

contribute significantly to melanoma model aggressiveness 
in vivo (Supplementary Figure S3A,B).

Genes altered at gene dose and expression level 

between fast- versus slow-growing melanoma 

models: SIPA1 as example

To identify factors underlying the predictive power 

of genomic alteration patterns, we aimed to investigate the 

reflection of gene expression changes in the corresponding 
gene doses. In order to extract genes or pathways from 

the genomic signature which determine the observed 

aggressiveness, again two approaches were followed. First, 

those genes altered at both the DNA and mRNA level were 

evaluated with comparably low stringency (genomic level: 

p<0.01; expression level p<0.05). This analysis resulted 
in the selection of 116 probes, which were predominantly 

located on chromosomal regions 11q12-q14, 10p, and 

6q. Pathway identification using the Ingenuity Pathway 
Analysis software revealed several significant pathways 
involving regulators of GTPases like Rap1 (SIPA1, a 

RapGAP protein, and RapGEF2) (Supplementary Figure 

S4), which pointed toward a significant impact of Rap1 
deregulation on melanoma model aggressiveness in vivo.

In a second approach the evaluation was repeated 

at higher stringency (genomic level: p<0.005; expression 
level p<0.005). This approach resulted in only 18 probes/
genes that were highly significantly changed both on DNA 
and mRNA levels (Supplementary Table S3). Within this 

set of genes, six were expressed at lower levels in the 

aggressive melanoma models, 5 of which were localized 

on chromosome 10. Genes expressed at higher levels 

were predominantly (9 of 12 oligonucleotides) located 

on chromosome 11q13. In order to validate the genes 

with the highest significance, real-time PCR experiments 
for three selected genes were performed. Statistically 

significantly increased expression of SIPA1 and NUS1 
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in the fast-growing melanoma subcluster was confirmed, 
while down-regulation of DNAJC1 was also seen in this 

analysis but did not reach significance (Figure 5B). 
Gene expression analysis did not only indicate 

significant overexpression of the Rap1-inactivating 
protein SIPA1 in the aggressive subgroup, but also down-

regulation of two RapGEFs and trends towards increased 

levels of further RapGAP molecules (Figure 6A). 

Collectively, these data suggest that Rap1 deactivation 

might represent a key characteristic of locally aggressive 

melanoma models. To further test the validity of our 

integrative approach, we chose SIPA1 which exhibited 

the strongest alteration among the Rap1-regulatory 

genes. SIPA1 protein overexpression in fast-growing 

melanoma cell models was confirmed in vitro and in 

vivo (Figure 6B,C). siRNA-mediated gene knock-down 

(Figure 6D) resulted in significantly enhanced cell 
adhesion capacity in the fast-growing SIPA1-positive 

melanoma cell model VM-1 (Figure 6E, “fast”). In 
contrast, no significant impact was detected in the slow-
growing, SIPA1-low melanoma model VM-28 (Figure 

6E, “slow”). Furthermore, clonogenic potential and cell 
migration capacity were reduced by SIPA1 blockade in the 

aggressive melanoma cell line (Figure 6F,G) while VM-28 

cells were almost incapable of migrating through the pores 

of the trans-well chambers within 48 h (Figure 6G). 

DISCUSSION

Melanoma cells constitutively harbor - besides well-

defined mutations in certain proto-oncogenes like BRAF 

and NRAS - also non-random genomic alterations reflecting 
chromosomal instability (CIN) [11, 12]. Furthermore this 

non-random aneuploidy has been suggested as a major 

driving force for melanoma development and progression 

thus representing an attractive entry point for cancer gene 

discovery [7, 9]. Using in vivo growth aggressiveness 

as a grouping criterion, we provide strong evidence that 

aneuploidy-mediated gene expression alterations are key 

drivers of aggressive melanoma growth. Our observations 

show that 1) genes exhibiting significantly altered 
expression levels in fast- versus slow-growing tumors 

are non-randomly distributed along the chromosomes; 2) 

aggressiveness-associated expression differences reflect 
copy number alterations at the corresponding DNA loci 

in the vast majority of affected genes; 3) unsupervised 

approaches based on array CGH data indeed cluster 

melanoma models according to aggressiveness; 4) the 

pattern of DNA alterations consequently allows prediction 

of in vivo growth behavior; 5) genes with different DNA 

dose and mRNA expression levels include several well-

known cancer or even melanoma genes (PTEN, NRAS, 

AURKA, ING3) [5, 11, 13, 14]. Altered gene expression 

patterns support activation of several oncogenic signaling 

pathways in the aggressive subgroup including fibroblast 
growth factor receptor (FGFR) signaling (upregulation 

of FGF1 and FGFR1, downregulation of SPRY4 and 

SPRED2), MAPK and PI3K signaling (upregulation 

of HRAS and NRAS, downregulation of PTEN), and 

deregulation of small G proteins with a focus on Rap1 

family members (upregulation of SIPA1, downregulation 

of RapGEF1 and RapGEF2), mitosis effectors (AURKA, 

INCENP) and invasion/adhesion regulation (ITGAV, 

MMP9, MMP19). 

To the best of our knowledge, this is the first study 
combining integrative genomics with in vivo growth 

aggressiveness as differentiation parameter to identify 

mechanisms and genes driving local melanoma growth 

aggressiveness. However, several other studies have used 

integrative genomic approaches to identify key factors 

driving melanoma development and/or progression. In 

agreement with our findings, these reports support the 
importance of genomic gains/losses and aneuploidy 

as driving forces in malignant transformation and 

progression [7]. Already early studies have demonstrated 

that the degree of aneuploidy and allelic loss might predict 

unfavorable prognosis [15]. Several specific chromosomal 
alterations (e.g. loss of chromosomes 6q and 10q, gains 

in chromosomes 7, 11q and 20q) were demonstrated to 

be associated with a more malignant phenotype and 

shorter patient survival [16-18]. Genome-wide array 

CGH approaches have been used to discriminate between 

nevi and melanoma [19], and specific genomic alterations 
were found to be associated with histological subtypes of 

melanoma [6], BRAF mutations [20], anatomical site as 

well as pattern of UV radiation exposure [19]. 

The melanoma models used in our study were 

derived from both primary and metastatic sites (including 

skin, lymph node, and brain) of both nodular and 

superficial spreading melanomas and almost generally 
harbored mutations in either BRAF or NRAS genes. 

Interestingly, unsupervised clustering of array CGH 

data in our melanoma set did not result in subgrouping 

according to histological subtype or stage of disease 

but rather reflected aggressiveness of in vivo growth 

behavior. This implies that gene dose is a major player in 

the deregulated expression of specific genes involved in 
melanoma progression. Corroborating observations were 

published e.g. using melanoma models from different 

species [21] or by comparing primary and metastatic 

lesions [22]. In a study by Lin et al., unsupervised 

clustering of 101 melanoma cell cultures based on 

genomic alterations led to formation of subgroups 

according to e.g. BRAF and NRAS status as well as losses 

at chromosome 10q [23]. In line with our study, multiple 

genes encoded in the GISTIC-positive regions were 

demonstrated to be deregulated at the expression level 

by SAM analysis. Besides the known BRAF mutations 

and PTEN loss also an important impact of mutations in 

FGFR1 and deregulation of negative MAPK feedback 

molecules like Spry proteins were detected [23]. Using 

a Bayesian network-based computational framework on 
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the identical data set, Akavia et al. have recently identified 
two malignancy driver genes including one Rab GTPase 

protein [24]. Of note, also in our study upregulation/gain 

of FGFR1 (together with FGF1), loss of negative MAPK 

regulators including SPRY1, SPRY2 and SPRED2, and 

deregulation of multiple small GTPases including Rab- 

and Rap-regulators were associated, in addition to PTEN 

loss, with a more aggressive melanoma phenotype. 

With regard to the intracellular signaling modules 

indicated to be deregulated in the aggressive phenotype, 

several alterations like upregulated HRAS and NRAS 

levels suggest activation of downstream signal modules 

like the PI3K and the MAPK pathways. Significantly 
decreased PTEN expression and gene dose in our fast-

growing melanomas indicate the necessity for a robust 

up-regulation of AKT downstream signals as driver 

for melanoma aggressiveness. Indeed, the PI3K/AKT/

mTOR pathway is aberrantly activated in up to 70% of 

melanomas and has been implicated in tumor progression 

and chemoresistance. Accordingly, PTEN is inactivated 

in a high proportion of melanomas through diverse 

mechanisms [25, 26].

Loss of negative MAPK regulators like Spry and 

Spred proteins suggests concerted hyperactivation of ERK 

as a driver of melanoma aggressiveness. Considering the 

wide-spread activating mutations in BRAF this observation 

was somewhat surprising especially as MAPK signal 

attenuation by Spry2 was suggested to be lost in melanoma 

cells harboring BRAFV600E [27]. Additionally, we found no 

convincingly enhanced levels of ERK phosphorylation of 

the fast- as compared to the slow-growing subgroup (data 

not shown). This argues for a regulatory role of Spry and 

Spred proteins in melanoma aggressiveness independent 

of oncogenic BRAF-driven ERK hyperactivation. Down-

regulation of Spry proteins might also enhance melanoma 

aggressiveness by supporting PI3K pathway activation. 

Thus, Edwin et al. showed that Spry2 upregulated PTEN 

expression and blocked EGF-mediated AKT activation and 

cell cycle progression [28]. Accordingly, Spry2 expression 

was decreased with colon cancer disease progression, 

and re-expression increased PTEN levels and suppressed 

growth and migration [29]. Similar to Spry, also Spred 

proteins act as inhibitors of the MAPK pathway. Spred 

overexpression has been shown to inhibit cancer motility, 

metastasis and Rho-mediated actin reorganization [30]. 

Mining of DNA and mRNA array data from our 

melanoma models suggested that changes leading to 

Rap1 deactivation might support the locally aggressive 

phenotype. For instance, expression of two Rap1 

activators (RapGEF1 and RapGEF2) was significantly 
down-regulated in the fast-growing subgroup. Among 

the deactivators, the RapGAP SIPA1 was significantly 
overexpressed and gained at the DNA level while two 

further RapGAPs (Rap1GAP1 and Rap1GAP2) were 

upregulated up to >5-fold without reaching statistical 

significance. RAP1 was originally identified as a gene able 

to reverse the malignant features of KRAS transformed 

fibroblasts [31]. However, deregulation of Rap1 via 
Rap1GEFs and Rap1GAPs might have more complex 

and even opposite impacts on tumor aggressiveness 

(reviewed in [32]). In melanoma, previously published 

data implicate both oncogenic and tumor-suppressive roles 

of Rap1 and its regulators [33-38]. Rap1 activation via 

downregulation of RapGAP1 was suggested to support 

ERK activation (even in BRAF mutant melanomas) and 

migration of melanoma cells in vitro. [35, 37]. In contrast, 

Kobayashi et al. demonstrated that Rap1 upregulation 

might induce melanoma cell death [34]. Accordingly, a 

clinicopathological study reported that high Rap1GAP 

expression might be a useful marker to identify high-

risk melanoma [33]. Additionally, ERK activation was 

demonstrated to be mediated by RAS rather than Rap1 in 

melanocytes [39]. The Rap1 regulatory gene SIPA1 (SPA-

1) was most distinctly altered at the DNA and mRNA level 

in our melanoma subgroups but has not been connected to 

melanoma before. In human solid tumors, a polymorphism 

in the SIPA1 gene causing higher RapGAP activity was 

associated with high metastatic potential of breast cancer 

[40], and SIPA1 expression was found to positively 

correlate with disease progression and metastasis in 

human prostate cancer [41]. Therefore, we decided to 

knock-down this protein in melanoma models with fast- 

and slow-growing signature. Interestingly, this led to 

enhanced cell adhesion but reduced clonogenic potential 

and migration exclusively in the fast-growing melanoma 

model, suggesting a complex role of the SIPA1/Rap1 axis 

in regulating melanoma growth and invasion. 

Taken together our study demonstrates that 

aneuploidy-driven deregulation of gene expression is one 

major driver defining the degree of local aggressiveness 
in human melanoma xenograft models. Thus non-random 

genomic alterations represent - besides activating gene 

mutations - an additional mechanism promoting concerted 

hyperactivation of major growth and survival pathways 

essential for human melanoma aggressiveness in vivo. 

MATERIALS AND METHODS

Primary cell cultures 

Primary melanoma cell cultures were established 

at the Institute of Cancer Research, Medical University 

Vienna and the Wagner Jauregg Hospital, Linz, and 

authenticated as previously described [10, 13, 42] and 

cultured in growth medium containing 10% FCS and 1% 

glutamine without antibiotics. Histological classification, 
origin, BRAFV600E and NRASQ61 mutation status of 32 

melanoma cell cultures are given in Supplementary Table 

S1. 
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Melanoma xenograft models

Subcutaneous tumor growth was initiated by 

injection of primary melanoma cells into 6-8 weeks old 

immunocompromised female mice (2.5 x 106 cells into nu/

nu mice; Iffa Credo, Charles Rivers, Arbresle, France for 

the initial 11 melanoma models; or 1 x 106 cells for all 

melanoma models into SCID/BALBc; Harlan Winkelman, 

Borchen, Germany). Each experimental group contained 

5 mice. Body weight and tumor size using a vernier 

caliper [43] were determined three times per week. All 

in vivo experiments described in the present study were 

performed on the basis of Authorization (LA1230509) of 

the Animal Ethics Committee of the Federal Department 

of Health, Nutritional Safety and Environment (Belgium) 

or according to the Austrian and FELASA guidelines for 

animal care and protection. 

Histology and immunohistochemistry

Tumor, lung, liver, kidney, and brain were removed, 

fixed in buffered formalin and embedded in paraffin 
for conventional histopathological HE staining. Three 

H&E-stained slides per organ were analyzed to look for 

metastases. Additional 5 slides through the whole piece 

were analyzed when the first screening was negative. For 
staining of tumor sections for SIPA1, the SPA-1 antibody 

(B-7, Santa Cruz) was applied using a 1:150 dilution.

Array genomic comparative hybridization (array 

CGH)

Tumor-DNA was isolated using the DNA Blood 

Mini Kit from Qiagen (Valencia, CA). Normal human 

reference DNA from multiple anonymous male donors 

was purchased from Promega (G147A, Madison, WI). 

Array CGH analyses using 4x44K oligonucleotide-based 

microarrays (Agilent, Santa Clara, CA) were performed 

according to the manufacturer`s protocol and as described 

previously [44]. Scanning was performed on a G2505B 

Micro Array Scanner (Agilent). Feature extraction and 

data analysis were carried out using the Feature Extraction 

(version 10.7.3.1) and DNA Analytics software (version 

4.0.81), respectively. Array CGH raw 2-channel (red/

green) log2-ratios were calculated and exported to Excel 

spreadsheets. Log2-ratios were used (i) as starting point for 

GISTIC analysis, (ii) as input for un-supervised clustering 

of chromosomal regions (WECCA), and (iii) for the 

supervised cluster analysis and graphical representation 

of significant loci based on un-segmented probe-level 
data. (i) GISTIC analysis [45] was performed using the 

GenePattern analysis platform at the public server of the 

Broad Institute (http://www.broadinstitute.org/cancer/

software/genepattern). Segmentation was done employing 

the CBS algorithm (GenePattern). SGOL scores (Segment 

Gain Or Loss) were calculated using a modified version of 
the GISTIC algorithm by the “SGOLscore” function in the 
“cghMCR” package for Bioconductor 2.5 using R version 
2.12.0  [46]. (ii) Unsupervised clustering segmentation 

and copy number aberrations were calculated by the 

“CGHcall” algorithm employing the “CGHraw” and 
“CGHcall” packages for Bioconductor [47]. The algorithm 
implemented in the “CGHregions” package was used for 
dimensionality reduction of the region data [47] prior to 

clustering by the WECCA (Weighted Clustering of Called 

Array CGH data) method [48]. Cluster representations and 

dendrograms were generated using the authors’ scripts for 

R (set to average linkage for agreement). (iii) Graphical 

representations of supervised clustering of un-segmented 

probe data were done with Genesis or Genespring. 

Chromosomal aberration scores were calculated using 

the Agilent software (ADM-2 algorithm) and plotted in R 

along the chromosomal positions for the comparisons with 

mean gene expression changes.

Whole genome gene expression arrays

Total RNA was isolated by Trizol/Chloroform. 

Quantity and integrity of the RNA samples was checked 

on an Agilent 2100 Bioanalyzer (RIN values were >9 

in all samples). Gene expression arrays were performed 

using 4x44K whole genome oligonucleotide-based 

gene expression microarrays (Agilent). Labeling and 

hybridization procedures were performed according to 

the instructions provided by Agilent using the Quick Amp 

Labeling Kit and the One Colour Microarray-Based Gene 

Expression Analysis Protocol. Shortly, in a first step 500 
ng of total RNA were converted into cDNA using a T7 

promoter primer. In a second labeling and amplification 
step, cDNA was converted into cRNA and labeled with 

Cy3-CTP. After purification of labeled cRNAs with the 
RNeasy Mini Kit (Qiagen), 1650 ng per sample were 

heat fragmentated for 30 min at 60°C. Hybridization 

was carried out for 17 h at 65°C in a hybridization oven. 

Afterwards, slides were washed and scanned on a G2505B 

Micro Array Scanner (Agilent). Feature extraction and 

data analysis were carried out using the Feature Extraction 

and Gene Spring software, respectively. Array raw data 

were also exported to Excel spreadsheets, normalized to 

the 75th percentile, and used for clustering in the Genesis 

1.7.5 software [49]. In cases of redundancy, data have 

been consolidated by using the probe set with the highest 

hybridization efficiency. Mean gene expression values 
(log2-ratios between the fast and slow growing groups) 

were plotted along the chromosomal positions (hg18 

coordinates from Agilent) in R.
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Real-time PCR

Real-time PCR was performed as described [43]. 

Reactions contained 20 ng cDNA and 20 µl SYBR-Green-

Power Mastermix (AppliedBiosystems, California, US) 

and 0.2 µl per primer. Reactions were set-up in triplicates 

using the following primers (100 nM): SIPA1, fw 5`-AAG 

GTG GGC ATC CTG TAC TG-3`, rev 5`-TCT CGT GGT 

CCT GGT ATG TG-3`; NUS1, fw 5`-CCA GTT AGT 

AGC CCA GAA GC-3`, rev 5`-GAT GTG CCA GGG 

AAG AAA GC-3`; DNAJC1, fw 5`-CTC AGC CAA CTG 

ACA AGA AG-3`, rev 5`-TGA GTT CGG AGA GTC TAA 

CC-3`; β-actin, fw 5`-GGA GGC AGA AGG AGA TCA 
CTG-3`, rev 5`-CGA TCC ACA CGG AGT ACT TG-3`; 

and GAPDH, fw 5`-CTG GCG TCT TCA CCA CCA T-3`, 

rev 5`-GCC TGC TTC ACC ACC TTC T-3`. PCR was 

performed on a 7500 Fast Real Time PCR System and 

results analysed in 7500 Fast System Detection Software 

(SDS) v1.4 (Applied Biosystems). For the thermal profile 
of the amplification run, following cycling conditions were 
chosen: 50°C (2 min), followed by 40 cycles with 95°C 

(15 s), 60°C (1 min). 

Western blot

Western blot was performed as described previously 

[13]. The following antibodies were used: SPA-1 (B-

7) and RAP1 (both Santa Cruz, CA); β-actin (Sigma, St 
Louis, MO). 

Suppression of SIPA1 expression by siRNA

5x105 cells were seeded into 6-well plates and 

incubated for 24 h. Cells were treated with 25 nM SIPA1 

siRNA and control scrambled siRNA according to the 

protocol provided by the manufacturer (DharmaFECT; 

Dharmacon, Lafayette, CO). After 24 h of incubation with 

siRNA, cells were counted, and the respective number of 

cells was seeded and incubated in fresh medium according 

to the respective procedures.

Cell adhesion, migration and clonogenic potential

Cell migration and clonogenic capacity of melanoma 

cells were determined as described in [43] and [50], 

respectively. For assessment of cell adhesion, cells were 

treated with siRNA as described above, and 4x103 cells 

were seeded into 96well plates for 3 h and 24 h. After this 

time, cells were washed and the medium was removed. 

After incubation of the remaining adhered cells for 24 h, 

cell viability was assessed by MTT assay as published 

[13].
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