
Agile Methods for Open Source Safety-Critical Software

Kevin Gary1, Andinet Enquobahrie2, Luis Ibanez2, Patrick Cheng3, Ziv Yaniv3, Kevin
Cleary3, Shylaja Kokoori1, Benjamin Muffih1, and John Heidenreich1

Kevin Gary: kgary@asu.edu; Andinet Enquobahrie: andinet.enqu@kitware.com; Luis Ibanez: luis.ibanez@kitware.com;
Patrick Cheng: cheng@isis.georgetown.edu; Ziv Yaniv: Ziv@isis.georgetown.edu; Kevin Cleary:
cleary@isis.georgetown.edu; Shylaja Kokoori: skokoori@asu.edu; Benjamin Muffih: bmuffih@asu.edu; John Heidenreich:
jheidenreich@asu.edu

1Department of Engineering, Arizona State University, Mesa, Arizona, 85212, USA

2Kitware Inc., Clifton Park, NY, 12065, USA

3Imaging Science and Information Systems (ISIS) Center, Department of Radiology, Georgetown

University Medical Center, Washington, DC, 20007, USA

Abstract

The introduction of software technology in a life-dependent environment requires the development

team to execute a process that ensures a high level of software reliability and correctness. Despite

their popularity, agile methods are generally assumed to be inappropriate as a process family in

these environments due to their lack of emphasis on documentation, traceability, and other formal

techniques. Agile methods, notably Scrum, favor empirical process control, or small constant

adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are

inappropriate for safety-critical software development. Agile methods are flexible enough to

encourage the right amount of ceremony; therefore if safety-critical systems require greater

emphasis on activities like formal specification and requirements management, then an agile

process will include these as necessary activities. Furthermore, agile methods focus more on

continuous process management and code-level quality than classic software engineering process

models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a

backdrop. IGSTK is an open source software project employing agile practices since 2004. We

started with the assumption that a lighter process is better, focused on evolving code, and only

adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and

research labs, and used for clinical trials. Agile methods have matured since the academic

community suggested they are not suitable for safety-critical systems almost a decade ago, we

present our experiences as a case study for renewing the discussion.

1. Introduction

It seems to be a universally accepted maxim that agile development methods are not suitable

for safety-critical domains. Agile methods, the argument goes, do not encourage formal,

document-centric activities needed to satisfy robust process requirements – such as

documented design, requirements management, and other forms of traceability. Although

the Agile Manifesto [1] was introduced almost a decade ago, only in the past couple of years

has the maturity of agile methods become apparent through industry adoption, availability of

reference materials, certification processes for individuals, increased scholarly activity, and

convergence on a focused set of agile process models. This recent evidence suggests that

Correspondence to: Kevin Gary, kgary@asu.edu.

NIH Public Access
Author Manuscript
Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

Published in final edited form as:

Softw Pract Exp. 2011 August 1; 41(9): 945–962. doi:10.1002/spe.1075.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



now is a good time to step back and reconsider the broader implications of agile methods for

safety-critical software.

Open source is an increasingly popular development and distribution model for software.

Open source teams often employ agile methods, as the focus is on concurrent development

and fast production (sprints) over gated production (milestones). However, unlike some of

the core principles of agile methods, many open source projects rely on dedicated and highly

skilled volunteers (or part-time supporters) in distributed development teams with no

singularly available customer.

The image-guided surgical toolkit (IGSTK) is an open source project that relies on the

collaboration of a skilled distributed development team to construct a cross-platform

application framework in a safety-critical domain. IGSTK provides features for image-

guided surgery, including DICOM image import, image display, registration, and

segmentation. It provides advanced functionality such as device tracking support and scene

graph manipulation, and nonfunctional features such as portability across a variety of

operating systems. The goal of the project is to facilitate developing research and

commercial applications faster by providing a reusable application framework. Researchers

and entrepreneurs developing surgical applications can quickly build functionality by using

core IGSTK components or modifying them to fit their needs. Framework usage reduces the

need to be concerned about the intricate details in developing a safety critical surgical

application [10]. IGSTK is a rare intersection of agile and open source processes in a safety-

critical domain.

Extreme care is needed in the design and development of safety-critical applications,

because the occurrence of an error could result in loss of life. The software engineering

research community suggested shortly after agile methods first started becoming popular

that they were not suited for building safety-critical systems (particularly Boehm [3], which

we discuss later in this paper). The reasons range from a perceived lack of documentation,

formal specification, and detailed planning. Agile methods have matured past the hype

phase into a maturely defined, understood, and executed family of process models. We

argue that agile methods can contribute to safety-critical software development, particularly

in the areas of process management and implementation quality. Specifically, Scrum process

management, eXtreme Programming (XP) and open source development principles can

enhance traditional safety activities. The IGSTK team has enhanced the process with a

tailored set of best practices augmenting common agile and open source methods for the

express purpose of delivering safety-critical software. In this paper we make an argument

for using these methods based on our experience with IGSTK since 2004.

2. Background

Software safety is a necessary quality attribute in certain classes of systems because of the

impact it has on life or property. Software safety deals with minimizing threats or risks to

the system and mitigating loss in the event of failures or adverse events. Leveson [19]

defines risk as “a function of the probability of a hazardous state occurring in a system, the

probability of the hazardous state leading to a mishap, and the perceived severity of the

worst potential mishap that could result from the hazard”. Consequently while engineering

for safety in safety-critical systems, high levels of assurance are needed (not solely based on

testing) that will determine whether a system can and should be used [19,26]. Leveson also

argues that safety should not only prevent malicious actions from happening in general, but

should be also concerned with inadvertent actions happening.

Are agile methods appropriate for safety-critical systems? In [3] Boehm performs a

comparative study of agile methods vs. plan-driven or traditional methods in developing

Gary et al. Page 2

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



software development methods and asserts that it is important to know which method is

applicable to what type of project. Boehm suggests that life critical systems need stable

requirements and that an agile approach might not be suitable for such applications. Further,

Boehm suggests that more thorough planning will reduce risk in developing such systems.

We question the underlying assumptions of Boehm’s argument. First, there is an implication

that agile methods do insufficient planning and that more thorough planning eliminates risk.

We disagree; agile methods, particularly Scrum, do plan while focusing on empirical

process control [30] as a constant oversight and management mechanism. Scrum plans by

managing the product backlog - which may include activities related to risk reduction, HA

(hazard analysis), FTA (fault-tree analysis), FMEA (failure mode effects analysis), and

formal specification (where warranted). Further, Scrum advocates pervasive process

management through sprints, daily standups, and visibility (report dashboards and related

tools). Second, Scrum recognizes that knowledge is incomplete, change happens, and

provides a framework for dealing with it, instead of ad hoc workarounds outside the

boundaries of a plan-oriented process model. Finally, Boehm’s discussion does not consider

the impact of the expertise on the team. The omission implies that team members are

interchangeable parts, whereas Cockburn [9] argues for their inclusion in the process.

Formal specifications, models, tools, and processes reduce risk in the application domain,

but software, perhaps more than any engineered discipline, is the output of a human-oriented

process. The expertise of the team, the communication patterns it utilizes, and the human

capacity to reason with incomplete knowledge are important factors in determining that

output (the software). The IGSTK team consists of experts specialized in the image-guided

surgical domain and from other fields such as software engineering and robotics. The best

practices presented later in this paper reinforce the role of the experts in this process.

In an eWorkshop report [21], 18 agile experts from around the world evaluate Boehm’s

statement regarding life critical systems and agile methods. They contend that when

performance requirements and plans about level of testing for the project are made at an

early stage in development, agile methods are ideal for safety critical systems because in an

agile approach the customer is available throughout the development process to obtain and

clarify requirements. In [12] Gelowitz et al. acknowledge this claim after performing a step-

by-step comparison of XP process against a traditional waterfall method considering the

concept, requirements, design, implementation, test and maintenance phases theoretically.

They say XP performs all the phases better, except it does not create elaborate design

document during the design phase. However, they also say that not creating elaborate design

documents provides flexibility with respect to accommodating changes.

Several industry experience reports suggest that adopting an agile approach has improved

the efficiency and reliability of their project. Spence [31] discusses how an organization had

to adopt an agile methodology due to the shortcomings of traditional plan-based methods in

handling frequently changing requirements. The author claims that the team reviewed agile

methodology in detail and is confident that it can be used to develop safety critical software.

Similar to IGSTK, their approach in becoming agile was incremental, trying and adapting

agile principles on a constant basis. Van Schooenderwoert [34] says their team benefited by

adapting XP in an embedded project. The author claims XP is ideal when requirements are

not concrete in the beginning of the project, asserting that agile principles work the best for

volatile or ambiguous requirements. In [35] van Schooenderwoert explains the importance

of agile testing in embedded projects. The project team performed unit testing on the

software and used mock object simulation to test the hardware on the embedded project. The

author asserts that the project displayed very few bugs at any given point of time because of

this testing approach. Another industry report by Manhart et al. [24] describes the

development of embedded software for Daimler Chrysler including safety-oriented functions

Gary et al. Page 3

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



like Automatic Breaking System (ABS). The authors point out how the team, fundamentally

oriented towards plan-driven development in order to mitigate risks, had to adopt agile

practices to manage changes to their requirements efficiently at a later stage of development.

Grenning [13] and Bowers et al. [6] describe how they have successfully used agile

principles on their large mission critical projects. They claim that adopting agile principles

like pair programming, iterative development, refactoring and automated testing has helped

to improve the quality of the code and productivity of the team.

Agile methods and open source are suitable for safety-critical systems because these

methods are synergistic with safety principles, not orthogonal to them. Agile methods bring

strong practices in the area of process management and software construction, while having

a philosophy that allows for traditional safety-oriented practices to the extent they are

warranted. Understood in the proper way, agile methods reinforce Boehm’s argument in [3]

that thorough project management is required for safety-critical software development.

Agile methods can minimize risk by reducing the probability of loss through their best

practices. Yet they allow for traditional analysis methods that help determine the magnitude

of the loss, thereby allowing the team to determine the risk exposure.

The next section presents an overview of IGSTK as a point of reference in our position, and

describes some of the unique challenges it presents.

3. An Overview of IGSTK

Image-guided surgery (IGS) presents interesting design challenges for software and system

implementers. A typical IGS environment is shown below.

Figure 1 depicts several challenges. Physical devices such as robotic arms and tracking

devices need to be integrated in a controlled environment. The software must be usable by

specialized users such as surgeons and surgical assistants. The software system must have

fail-safe mechanisms, provide correctness and soft real-time performance, and ensure safety.

IGSTK must exhibit these traits, and also address additional architectural qualities including

portability (hardware and operating systems), reusability, maintainability, and openness.

IGSTK is an open source framework for creating surgical applications. IGSTK is distributed

under a BSD-like license that allows for dual-use between academic research labs and

commercial entities. Image-guided surgery involves the use of preoperative medical images

to provide image overlay and instrument guidance during procedures. The toolkit contains

the basic software components to construct an image-guided system, including a tracker and

a four-quadrant view incorporating image overlay, as shown in figure 2.

The remainder of this section describes the challenges IGSTK presents from software

process and architecture perspectives.

3.1 Software Process Challenges

IGSTK development presents interesting challenges from a process perspective. The first

challenge derives from the nature of the framework-level requirements, which are difficult

to completely understand before applications are constructed upon it. Waterfall-style

methodologies [28] that attempt to define requirements completely before development

begins are not considered suitable, as the range of possible behaviors to be supported on the

framework is necessarily incomplete. Similarly, use-case analysis modeling [18] is

selectively applied, as one cannot assume requirements derived from a set of applications

today represent a complete set of requirements for the future. Given the complexities of the

requirements process and application domain, we discuss IGSTK’s approach in section 4.

Gary et al. Page 4

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The second challenge is the makeup of the team, comprised of academic and commercial

collaborators in a distributed setting. All of the team members have other demands on their

time. These factors create challenges for setting project deliverables and expectations over

medium- and long-term horizons. Fortunately, most developers are deeply familiar with the

domain and have significant exposure to agile methods. Their expertise combined with the

shorter horizons (Scrum sprints) for delivering software mitigate this issue.

Another challenge, the high quality standards of the application domain, suggests both agile

and traditional practices should be used. Safety-critical software should undergo code

review [19,26], which IGSTK does at the end of each sprint. The agile practice of

comprehensive unit testing and full code coverage ensures each component is extensively

tested [20]. Additionally, the open source community exercises the released code at an early

stage, finding defects and usability issues to evolve a stable codebase. Finally, as discussed

in section 2, there are no constraints in the agile process against performing various safety

analysis techniques. However, the IGSTK has not performed these safety techniques as they

are more appropriately applied to specific surgical applications, not at the framework level.

3.2 Architecture Challenges

Figure 3 shows IGSTK’s dependencies and its role in support of an IGS application. The top

layer corresponds to IGS applications built on top of IGSTK. IGSTK also interfaces with

third party tools like ITK, VTK to provide image related functionality. FLTK performs user

interface related tasks; other tools like Qt could be used for this purpose as well. The bottom

layer, the operating system, forms the base of this entire architecture. As shown in figure 3,

the IGS applications interact with the lower layers only using IGSTK APIs.

A significant challenge is providing a safe platform when there are many third party

dependencies. The IGSTK layer is a safety region, wrapping underlying library

functionality, and decorating them with safety attributes. The state machine is a significant

abstraction in this approach, and is described in detail in section 4.3.

The distributed nature of the core development team is not only a process challenge but also

an architecture challenge. The lack of good communication practices and strong open source

evolutionary principles could lead to a fragmented architecture. The IGSTK strong

communication patterns, couple with a strong central design pattern (the state machine),

resulted in a stable and consistent architecture.

Another challenge is maintaining proper safe configurations of the software when

components may be assembled based on varying application requirements. IGSTK does this

in two main ways. First, run-time configurability of the software is kept at a minimum. The

only configuration possible is scoped internally to tracking components. Component

connectors are determined at compile-time and verified through strong typing mechanisms

enforced by the toolkit; no configuration files exist to wire components at run-time. Second,

each compiled configuration is verified through a continuous integration and build process.

4. Agile Methods and IGSTK

Lutz [22] proposes six key areas to consider when engineering for safety. These include:

1. Hazard Analysis: identification and analysis of hazards in terms of their severity of

effects and likelihood of occurrence.

2. Safety requirements specification/analysis: specify requirements in formal notation,

allowing formal analysis to investigate whether certain properties are perceived.

3. Designing for safety: focus on consequences to avoid in the general system context.

Gary et al. Page 5

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



4. Testing: tests should demonstrate that the software responds appropriately to some

anticipated environment.

5. Certification and standards: this involves assessing it against certain criteria.

6. Resources: Utilizing resources and books for good software safety engineering

[32].

IGSTK focuses on 2, 3, 4, and 5 from an agile perspective. Classic safety analysis

techniques (#1), such as HA, FTA, and FMEA, are not at issue in our research. These

techniques have been shown to be useful for software safety, and there is nothing about an

agile process that suggests a project should omit or de-emphasize them. Resources (#6) are

not in conflict with agile methods; this best practice is software lifecycle model agnostic. To

reiterate, the overriding principle is the “right amount of ceremony” therefore these

techniques should be applied to the extent they are required, no more no less.

Formal methods (#2) enhance the safety and reliability of safety-critical systems [5,7] by

providing models and model transformations that can be analyzed for completeness and

correctness. Models are constructed in a language with well-defined semantics; then, a

correctness-preserving transformation turns the model into an executing program, supported

by an environment that guarantees certain runtime properties. If the model, through formal

analysis and/or simulation, is accepted as correct, then the executing code is accepted as

correct. However, the IGSTK team has adopted an agile approach in developing the

framework, synergistic with the practices of open source tool development but orthogonal to

traditional approaches [10]. Agile software development practices emphasize working

software as the most important measure for progress. This means developers usually

implement the software “by hand”, with no formal design specifications or modeling tools,

or the use of automatic code generators. Thus, developers have to constantly communicate,

re-design, re-code, and re-test software throughout the entire lifecycle of the project. Agilists

argue that this approach results in better low-level code quality and adherence to user/

customer intent, and that formal modeling may result in constrained requirements that do not

meet customer needs.

The IGSTK team believes that formal models are useful, but does not want to change from

an agile process model to leverage their benefits. The model-driven community espouses

forward, waterfall-like flow to guide the development safe software. Agilists prefer to work

in short fluid iterations (“sprints”). IGSTK attempts to leverage the best of both worlds by

using an agile process while incorporating formal checks integrated into that process via a

validation toolset as described in section 4.5.

IGSTK is designed for safety (#3). From the very beginnings of the project the team adopted

an architectural style based on layered components governed by state machines. This safety-

by-design principle is pervasive to IGSTK, and is presented in section 4.3.

IGSTK employs extensive testing (#4), particularly at the component level. A continuous

testing and integration dashboard reports on automated unit tests run around the globe on a

variety of platforms. Application specific testing, other than the sample applications

included in the source tree, does not apply, as IGSTK is a framework, not a specific

application. This agile testing methodology, presented in detail in section 4.4, adheres to

recommendation of Leveson and Turner [20] to test extensively at the component and

system levels.

Software engineered for safety often must meet liability laws and standards set forth by

government agencies or licensing bureaus (#5). Unfortunately, current models do not

guarantee that builders of safety-critical systems meet the requirements of the regulatory

Gary et al. Page 6

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



institutions [19]. Software safety should ensure the system executes properly without

unacceptable risk. What risk is considered acceptable usually involves other factors

(economical, political, and moral) defined outside the realm of software engineering.

IGSTK, as an open source framework for image-guided surgery, must deal with FDA

approval, IRB review, and open source licensing issues. IRB review for surgical applications

within a hospital setting is based on the surgical procedure, not a specific technology.

IGSTK has elicited requirements from surgeons for example surgical applications,

constructed activity models for these procedures, and received IRB approval for clinical

trials at a major research university hospital ([8]). FDA approval is challenging as software

is treated as a medical device ([20,33]), therefore design and traceability are important. In

response IGSTK has adopted a lightweight but integrated requirements management process

described in section 4.2, and the safety-by-design approach presented in section 4.3. Finally,

as an open source framework, IGSTK must deal with unique licensing issues, both in terms

of what it relies upon and who uses it. IGSTK relies on other open source platforms (see

section 3) and must be disseminated as open source. This restricts what third-party software

may be integrated, which is sometimes an issue for certain algorithms or commercially

available tracker devices.

In the remainder of this section we describe how agile methods have been applied, and in

some cases augmented, to meet IGSTK’s safety critical needs.

4.1 Best Practices

Early on the team recognized the need to establish a collaborative set of principles, or agile

culture, on the project. These were expressed as a set of best practices [10] that take

precedence over dogmatic adherence to scripted processes. An abridged version is below.

Best Practice #1. Recognize that people are the most important mechanism available for

ensuring high quality software [9]. The IGSTK team is comprised of developers with a

high degree of training and experience with the application domain, supporting

software, and tools. Their collective judgment is weighted over any high-level process

mandate.

Best Practice #2. Promote constant communication. This is difficult in open source

projects with distributed and part-time teams. IGSTK members constantly communicate

through weekly teleconferences, biyearly meetings, mailing lists, and an active Wiki.

Best Practice #3. Produce iterative releases. IGSTK’s external releases coincide with

IGSTK yearly user group meetings. Internally, releases are broken down into

approximately two month “sprints”. At the end of a sprint, the team can stop, assess and

review progress, and determine what code is considered stable enough to move to the

main code repository.

Best Practice #4. Manage source code carefully. Require 100% mainline code coverage.

Use sandboxes for evolving code with different check-in policies to allow developers to

share experimental code without sacrificing quality policies in the mainline.

Best Practice #5. Augment the validation process with reverse engineering tools that

support complex white-box testing. This best practice is a nod to the specialty of the

domain.

Best Practice #6. Emphasize continuous builds and testing. IGSTK uses the open source

CDash tool to produce a nightly dashboard of builds and unit tests across all platforms.

Developers are required to ensure that code coverage stays as close as possible to 100%,

that their source code builds on all supported platforms, and that all unit tests pass.

Gary et al. Page 7

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Best Practice #7. Support the process with open tools. IGSTK uses CDash, a test

dashboard, CMake, a cross-platform build solution, and Doxygen, a documentation

system.

Best Practice #8. Emphasize requirements management in lockstep with code

management. As requirements evolve and code matures, it is necessary to adopt flexible

processes for managing requirements and source code. The organization and tracking of

requirements is a complex process for a project such as IGSTK, and thus is detailed in

the next section.

Best Practice #9. Focus on meeting exactly the current set of requirements. This is one

of the most important benefits of an agile approach. The team focuses on only the

current backlog, not burdening itself on designs not realized in the current code.

Best Practice #10. Allow the process to evolve. Through constant communication,

IGSTK members recognize when the complexities they face can be addressed within

the current process, when “tweaks” are required, or when new practices should be

adopted.

These best practices are not new to agile and open source practitioners. However, in a safety

critical domain, following these practices alone is insufficient. In the spirit of doing the right

amount of ceremony, the IGSTK team augments these practices. To illustrate, we describe

how the IGSTK team performs lightweight requirements management (#8), safety-by-design

(#9), continuous integration and testing (#6), and architecture validation (#5).

4.2 Requirements Management

Requirements management is described in best practice #8, traceability of requirements at

development time. Developers introduce new requirements into the product backlog. The

team then selects the subset of the product backlog suitable for implementation in the

current sprint. The team employs a collaborative process for reviewing, implementing,

validating, and archiving these requirements, and it is integrated with application

development.

This process is illustrated as a UML state diagram in Figure 4. When a developer identifies a

new potential requirement (Initialized), s/he will post a description (Defined) on the Wiki.

At the same time, the initial code that fulfills the requirement is entered into the sandbox.

The requirement undergoes an iterative review process where team members review,

discuss, and potentially modify the requirement. Based on the team’s decision, requirements

can be Rejected/Aborted or Accepted. Rejected requirements are archived on the Wiki

(Logged) so that they can be reopened later if necessary. Accepted requirements are included

in the product backlog. Once the supporting software is implemented and its functionality

confirmed, the requirement is marked as Verified. As nightly builds takes place, all Verified

requirements are automatically extracted into Latex and PDF files and archived.

This synchronization between requirements management and code management gives a

more evolutionary process feel to backlog management.

4.3 Safety-by-Design

IGSTK’s layered component-based architecture is shown in figure 5. Each component has a

strongly typed interface that accepts request events and returns event responses. Events are

translated to inputs to an internal state machine that determines whether the request can be

satisfied in the component’s current state.

Gary et al. Page 8

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



State machines are the principal mechanism for the safety-by-design approach. State

machines govern each component instance, restricting the allowable behaviors a component

exhibits at a given point in time based on the state of the component. Strong encapsulation

of state machines inside components means they cannot be manipulated by the outside world

other than through interaction with the specified interfaces. State machines have fully

populated transition tables to ensure that any possible input has a defined response. State

machines provide a reliable medium for high levels of assurance needed that will determine

whether a system can and should be used in a safety-critical environment [26]. Safety-

critical component-based systems like those used in the aeronautical, medical, and defense

industries are often engineered using state machines in order to meet the safety regulations

and standards set forth by liability laws and government agencies or licensing bureaus [19].

An example state machine is shown in figure 6.

The inputs define valid transitions between states. Inputs are generated by transduction from

requests (events) to the component. The state machine determines if a component is in a

state where it can process that request (input). State machines were an early architectural

decision that has persisted over the lifetime of IGSTK, resulting in a very stable architecture.

The absence of architectural shift and rework is evidence of the platform’s safety.

The safety-by-design approach in IGSTK supports Leveson’s notion of intrinsic safety [19],

in that no component can be in an unexpected state. The U.S. Food and Drug Administration

(FDA) as a necessary attribute for certified medical devices (software is classified as a

medical device) require design safety [33]. IGSTK documents the critical elements of

component design, including its state machine catalog, on the Wiki, and conducts manual

inspections and automated validation of these design implementations.

4.4 Continuous Integration and Testing

Testing is essential to ensure software quality. It involves generating test cases, executing

the application against the test cases, and comparing the results against expected results.

Testing helps ensure that the software meets the functional and nonfunctional requirements

specified for the project. Automating the test process is beneficial as it can generate and run

a large number of test scripts and provide results in a faster and reliable manner.

IGSTK relies heavily on the agile practice of continuous and extensive unit testing with

automated tool support. IGSTK requires 100% code coverage from its unit tests.

Automation is achieved through the CTest tool, which posts results to a CDash dashboard

(figure 7). Dashboards are powerful tools for agile methods as they provide transparency

into the quality of the software. IGSTK automates tests from computers at sites around the

world.

An important contributing aspect of open source methods to the agile perspective is the

leveraging of the community to evolve the software to a stable point. An open source

community creates a ready population of early adopters that identify defects near to the time

they are injected, and exercises a framework like IGSTK in ways that the development team

cannot often anticipate. Figure 8 shows a bar “stack” chart tracking the identification and

resolution of major and minor defects in IGSTK since 2006 on a quarterly basis.

Comparing the left and right bars in each pairing, particularly the lower part of each stack,

shows the vast majority of defects are resolved within the same quarter. The community

driven open source process helps identify the defects, and the highly iterative agile sprints

ensure defect resolution before the next release. The chart also shows the impact of

dedicated stabilization sprints (the two spikes). The reduction in total and major defects

Gary et al. Page 9

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



from quarter 11 on coincides with the release of IGSTK 2.0, supporting the hypothesis that

early participation by the community leads to later stabilization of the software.

4.5 Agile Architecture Validation in IGSTK

Advances in model-checking tools should be leveraged in IGSTK, but there are no formal

models created in the design process. To address this problem, the team constructed reverse

engineering tools that extract models from the code, validates them through a simulation-

based testing methodology, and posts the results to the dashboard. In this way the design is

validated with the code as part of the agile continuous testing process. The validation toolset

is described elsewhere [8,11], here we discuss key features with respect to an agile process.

The center of IGSTK’s validation tool suite is a simulator that accepts descriptions of state

machines in SCXML [37] reverse engineered from the source code, and event sequences

defined by a variety of sources, and “runs” the events as a simulation. Observers of a

simulation may provide a number of useful functions, such as constraint checking, execution

visualization (animation), playback and record, and so on. The key is in determining an

appropriate set of events to give to the simulator. The validation suite currently supports two

kinds of event generators, coverage and record-and-playback. Record-and-playback allows

developers to trace an execution of an IGSTK application and capture state machine inputs

from a generated logfile. The inputs can then be replayed through a visual animation

application or through automated testing components.

Coverage measures the percentage of requirements satisfied when a test criterion is applied

[7,14,25]. Traditional code coverage mechanisms include statement coverage, branch

coverage and path coverage. Translated to state machines, the types are state, transition and

path coverage. State coverage involves checking that each state in the state machine of an

IGSTK component is reachable from the initial state [16]. Transition coverage verifies each

pairwise transition between states occurs correctly as the result of processing a set of inputs.

Path coverage is more involved, as 1) there exist expected path sequences for (functionally)

correct component executions, and other sequences for unexpected and potentially

catastrophic sequences, and 2) the state machine is an explicit representation of object state,

which is conceptually long-lasting and repetitive – how many iterations over a path should a

test conduct? Our coverage algorithms align with Watson and McCabe’s work on

cyclomatic complexity and basis paths [36]. Specifically, since exhaustive path coverage of

state machines is not feasible, we employ structural and domain related heuristics (c.f. [8])

to eliminate superfluous paths, reducing the total number of paths generated. This helps in

prioritizing the paths of interest, providing a sophisticated testing mechanism for IGSTK.

We present a brief example to give a better idea about these heuristics. Consider the state

machine for a spatial object shown in figure 6. Note the dashed arcs in the figure represent a

minimal set of inputs to process to achieve state coverage, yet this sequence has no

reflection on the object’s expected use. A structural (domain-independent) path heuristic

might suggest the next node in a recurring choice state (such as TrackedState) be the least

recently visited. So if in the previous iteration of the path the TrackingDisabledInput was

processed, then this time the TrackingLostInput is processed. Note this decision is based on

the structure and history of the path, not on any information about what the state machine

itself represents. This is different than a domain heuristic, which is implemented based on

expectations of component usage. For example, a domain heuristic might cause the

TrackingLostInput to be processed 3% of the time based on empirical evidence that the

specific tracking device used in a clinical environment has a data loss rate of 3 frames per

every 100. This may then be combined with a projected number of times around the loops

present in this state machine based on the estimated lifetime of the spatial object during the

given clinical procedure.

Gary et al. Page 10

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The need for continuous architecture validation motivated integration with the CDash

dashboard. This integration requires formalized test statements, capturing results of test

executions in the simulator, and posting results to the dashboard. Formalized test statements

are constructed using a freely available business rules engine, Drools1. Test statements

specified constraints on the global state of the system, expressed as the union of states at a

given time in each component state machine throughout the system. In this way the global

state of the system can be validated. Rules are evaluated after the simulator processes each

state machine input from a test input stream (generated from a replay or coverage

algorithm), and results indicate whether test conditions pass or fail. These results are

transmitted to IGSTK’s dashboard. The significance of this process is that it shows 1) how

activities grounded in formal methods can be incorporated on an agile project with the

proper tool support, and 2) that such methods can be applied after implementation as a

focused part of validation, instead of as an unbounded (heavy) task in the beginning of the

process cycle – again, just the right amount of ceremony.

Before creating our own tool we did review existing tools, such as SPIN [15], UPAAL [2],

LTSA [23] and commercial offerings RoseRT and Rhapsody. These tools were either too

burdensome, solved the wrong problem, or were not license compatible with IGSTK.

IGSTK follows an agile approach. The IGSTK team does do design – on its Wiki. These

designs are peer reviewed and a prototype implementation presented. IGSTK does construct

models – state machine models to be exact – directly in the source code. The validation suite

of tools checks the fidelity of the model’s representation and execution semantics.

5. IGSTK and Safety

Are agile methods appropriate for safety-critical systems? We claim yes, or at least that agile

practices can contribute to a software process that results in safer software. This is a case

study, but we are encouraged by our experiences since 2004. IGSTK is in use in 27 hospitals

and research centers worldwide. IGSTK has been used in clinical trials for transthoracic

lung biopsy approved by the IRB of a major university research hospital (for details see

[38]), and received a determination of non-significant risk from the FDA. Finally, IGSTK is

a principle component of the LUTi platform (http://www.luti.com.ar), a commercial image-

guided surgical navigation product used in ten neurosurgery cases in Argentina.

Assessing the safety of IGSTK is difficult because it is a framework and not a specific

application. One can evaluate a particular application such as the one described above as the

surgical procedure has exact requirements and domain-specific constraints. The application

software and how it uses IGSTK could be evaluated with traditional safety techniques, but to

our knowledge no IGSTK user has conducted such an analysis. Instead we evaluate the

architecture using a modified Architecture Tradeoff Analysis Method (ATAM [17]). This is

appropriate as IGSTK is effectively an off-the-shelf architecture for surgical applications.

The modified process examined IGSTK documentation from all sources (Wiki, code,

mailing lists, book, papers, etc.) to extract the key quality attributes and characterizations,

and construct a quality utility tree, as shown in table 1. Attribute characterizations include

two ratings, one for the importance of the item and the second the relative difficulty in

achieving that quality attribute level. The table essentially describes risks and scenarios in a

way that is compatible with Boehm’s [3] notion of risk and loss.

We define architectural approach descriptions to map how the IGSTK architecture addresses

the scenarios. Scenario descriptions for three of the four safety scenarios are included in the

1http://jboss.org/drools

Gary et al. Page 11

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.luti.com.ar
http://jboss.org/drools


appendix of this paper. The fourth (S4) is not included as logging occurs automatically in all

scenarios in IGSTK, and the failure messages provided to end users are actually application-

level requirements based on the surgical procedure.

The modified assessment process adds some rigor to the evaluation of how IGSTK

addresses quality attributes, and in particular safety. But it is not a quantitative or formal

analysis of failure risks and loss. A more traditional safety analysis using techniques such as

FTA or FMEA should be performed on specific system instances that include IGSTK.

6. Discussion

Leveson and Turner [20] recommend guidelines for safety-critical system in their review of

the Therac-25 medical system, which the authors note failed due to coding, not requirements

errors. IGSTK follows these recommendations through agile and open source practices.

1. Documentation should not be an afterthought: documentation is created as the code

is being developed through a) a Wiki that is constantly updated, 2) automated

online documentation created from the source via Doxygen, and 3) a freely

available book which is created from the source tree via the same build process as

the source code.

2. Software quality assurance practices and standards should be established: IGSTK

has established practices and standards for quality. The practices have been

described throughout this paper, from traditional techniques like code reviews to

agile techniques such as pervasive unit testing.

3. Designs should be kept simple: IGSTK’s design is simple; in fact simplicity is an

overriding agile principle. Component designs share a common architecture pattern

(the state machine), and design principles are enforced in code through strongly-

typed interfaces and specific macros. Designs are documented and discussed on the

Wiki.

4. Ways to get information about errors - for example, software audit trails -- should

be designed into the software from the beginning: IGSTK’s logging facility records

each request and response in the system, providing a full audit trail. The

lightweight requirements management process ensures lockstep requirement and

code changes.

5. The software should be subjected to extensive testing and formal analysis at the

module and software level; system testing alone is not adequate: IGSTK is

rigorously tested at the unit level on a continuous basis. Formal analysis is

incorporated into the agile process through a validation suite that reports results

directly to the dashboard.

The IGSTK team has adopted an agile methodology and tailored it to their needs due to the

nature of the project. IGSTK’s agile approach is a combination of Scrum management

practices combined with XP coding practices with the support of an open source

community. IGSTK team members include experts from different fields like software

engineering, computer graphics, imaging, and robotics. Software development is based on a

set of best practices iteratively applied with continuous automated unit testing and 100%

code coverage to ensure software quality. This “best practices” approach is augmented by

the right amount of “heavier” practices taken from traditional approaches to safety-critical

systems. But even these practices, as shown with requirements management, continuous

integration and testing, and architecture validation, are integrated into the process in such a

way as to reinforce, not obstruct, the agile culture. While an agile purist might object that

these activities are not agile, we believe the overriding principle of “just the right amount of

Gary et al. Page 12

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



ceremony” justifies the selected application of heavier practices in areas critical to ensuring

system safety.

We acknowledge IGSTK’s agile approach is neither as rigorous nor as complete as it could

be for a safety-critical domain. A single case study, no matter how deep the experience,

makes “the right amount of ceremony” seem like a platitude, but we believe that many

traditional process models (or instances of those models by software development

organizations) forget the obvious and instead conduct a “checklist execution” of the process.

The tale of IGSTK’s agile evolution, we think, offers lessons and hope for applying agile

methods to safety-critical domains. A more agile process, augmented with key process

elements and faithfully followed by the people that execute it, is a way to achieve safety.

Agile is not the absence of process, and lightweight does not mean “skip”. Agile means the

right amount, adapting to change. Our position is supported only by our experience, and we

acknowledge the debate is broader and nuanced than we can start to outline in this paper.

The community assumes agile methods cannot make a contribution in safety critical

domains, and that document-centric process models are the only option. The debate should

be reopened.

Acknowledgments

This work was funded by NIBIB/NIH grant R01 EB007195. This paper does not necessarily reflect the position or

policy of the U.S. Government.

Appendix

Gary et al. Page 13

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Architectural Approach Descriptions

Scenario: S1 Prevent framework misuse and ensure IGS applications access to a basic unified layer

Attribute: Safety

Environment: Normal / Strained Use

Stimulus: Developer Misuse

Response: Classes that inherit lower level component behavior are restricted to basic functionality.

Architectural Decisions Risk Sensitivity Tradeoff

Encapsulation of toolkit functionalities T1

Layered architecture R1

Medium sized objects T2

Reasoning:

Encapsulation of toolkit functionalities, preventing developers from directly manipulating objects without passing first
safeguards. Here there is a choice between flexibility and managing safety. By using safe encapsulation to restrict
functionality the IGSTK can better manage lower level APIs forcing all API calls through safe checks managed via
tactics such as a state machine implementation.

By implementing an architecture that depends on other toolkits/APIs not maintained by IGSTK developers, the
reliability of the IGSTK is limited to the APIs that it depends on. While safety may be managed from the IGSTK layer,
reliability can only be maintained to the extent to which it can be tested.

Medium sized objects resulting in reduced functionality again sacrifice flexibility in order to achieve safety. A limited
set of function calls allow IGSTK to manage complexity that could threaten safety.

Architectural Diagram:

Scenario: S2 Reduce the IGS Application’s ability to miss potentially harmful errors.

Attribute: Safety

Environment: Normal Use / Strained Use

Stimulus: An error is thrown by any element of the IGSTK or underlying layer of components.

Response: IGSTK classes will not throw exception in order to curb misuse

Architectural decisions Risk Sensitivity Tradeoff

Limited use case. T3

State Machine T4

Reasoning:

Gary et al. Page 14

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



By limiting the number of choices (functions) available to IGS developers the IGSTK developers can ensure a limited
number of use cases that can cover nearly the entire set of possible scenarios for which to test resulting in a high level
of code coverage.

The implementation of a state machine forces all events to traverse through the IGSTK model for handling states,
transitions and actions. The developer sacrifices flexibility for the convenience and safety that the IGSTK has to offer.

Architectural Diagram:

Scenario: S3 Ensure that the surgical view is up to date

Attribute: Safety

Environment: Normal use

Stimulus: System may experience stress conditions

Response: Synchronicity is maintained through an event observer pattern. Through a series of pulses a tracker class
will query the actual hardware tracker device and will get from it information about the position of the tracked
instruments in the operating room.

Architectural decisions Risk Sensitivity Tradeoff

Event observer pattern to facilitate
updated surgical views

S1

Reasoning:

- Event observer pattern used to track and manage visual and physical representations over time through a
series of steady pulses. Expired views are not displayed and visual indicators are displayed. If this
management fails serious damage could result from a mismanaged physical and logical views

Architectural

8. References

1. Beck K, Beedle M, van Bennekum A, Coburn A, Cunningham W, Fowler M, Grenning J,

Highsmith J, Hunt A, Jefferies R, Kern, Schwaber K, Sutherland J, Thomas D. Manifesto for Agile

Software Development. 2001 November. [online] http://agilemanifesto.org.

2. Bengtsson, J.; Larsen, K.; Larsson, F.; Pettersson, P.; Yi, W. Proceedings of Hybrid Systems III.

Springer-Verlag; 1996. UPPAAL – a Tool Suite for Automatic Verification of Real-Time Systems.

3. Boehm B. Get Ready for Agile Methods, with Care. IEEE Computer. 2002; vol. 35(no. 1):64–69.

4. Bowen JP, Stavridou V. Safety-critical systems, formal methods and standards. IEE/BCS Software

Engineering. 1993 July; vol.8(no. 4):189–209.

Gary et al. Page 15

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://agilemanifesto.org


5. Bowen JP. Ethics of Safety-Critical Systems. Communications of the ACM. 2000 April; vol.43(no.

4):91–97.

6. Bowers, J.; May, J.; Melander, E.; Baarman, M.; Ayoob, A.; Tailoring, XP. for Large System

Mission Critical Software Development. Proceedings of the Second XP Universe and First Agile

Universe Conference on Extreme Programming and Agile Methods - Xp/Agile Universe 2002. In:

Wells, D.; Williams, LA., editors. Lecture Notes in Computer Science; London: Springer-Verlag;

2002. p. 100-111.

7. Broy, M.; Jonsson, B.; Katoen, JP.; Leucker, M.; Pretschner, A. Model-Based Testing of Reactive

Systems. Advanced Lectures, Lecture Notes in Computer Science 3472; Springer-Verlag; Berlin.

2005.

8. Cleary, K.; Cheng, P.; Enquobahrie, A.; Yaniv, Z. IGSTK: The Book. 2nd edition. The ISIS Center,

Georgetown University; 2009 June. (Self-published Manuscript)

9. Cockburn, A. Characterizing People as Non-linear, First-order Components in Software

Development. 4th International Multi-Conference on Systems, Cybernetics and Informatics;

Orlando, Florida. 2000.

10. Gary K, Ibanez L, Aylward S, Gobbi D, Blake MB, Cleary K. IGSTK: An Open Source Software

Toolkit for Image-Guided Surgery. IEEE Computer. 2006 April; vol. 39(no. 4):46–53.

11. Gary, K.; Kokoori, S.; David, B.; Otoom, M.; Cleary, K. Proceedings of the 3rd Workshop on the

Role of Software Architecture for Testing and Analysis. ROSATEA; 2007. Architecture

Validation in Open Source Software.

12. Gelowitz, C.; Sloman, I.; Benedicenti, L.; Paranjape, R. Lecture Notes in Computer Science. Vol.

2675. Berlin: Springer-Verlag; 2003. Real-Time Extreme Programming.

13. Grenning J. Launching Extreme Programming at a Process-Intensive Company. IEEE Software.

2001 Nov; vol. 18(no. 6):27–33.

14. Harris IG. Fault Models and Test Generation for Hardware-Software Covalidation. IEEE Design

and Test of Computers. 2003; vol. 20(no. 04):40–47.

15. Holzmann, G. The SPIN Model Checker. Boston, MA: Addison- Wesley; 2003.

16. Hune, TS. Ph.D. dissertation. Basic Research in Computer Science, University of Aarhus,

Denmark; 2001 March. Analyzing Real-Time Systems: Theory and Tools.

17. Kazman, R.; Klein, M.; Clements, P. ATAM: Method for Architecture Evaluation Technical

Report CMU/SEI-2000-TR-004, (ADA382629). Software Engineering Institute, Carnegie Mellon

University; 2000.

18. Kruchten, P. The Rational Unified Process-An Introduction. Addison-Wesley; 2000.

19. Leveson NG. Software safety: why, what, and how ACM Computing Surveys (CSUR). 1986 June;

Volume 18(Issue 2):125–163.

20. Leveson NG, Turner CS. An Investigation of the Therac-25 Accidents. IEEE Computer. 1993 July;

vol. 26(no. 7):18–41.

21. Lindvall, M.; Basili, V.; Boehm, B.; Costa, P.; Dangle, K.; Shull, F.; Tesoriero, R.; Williams, L.;

Zelkowitz, M. Empirical Findings in Agile Methods. In: Wells, D.; Williams, LA., editors.

Proceedings of the Second XP Universe and First Agile Universe Conference on Extreme

Programming and Agile Methods - Xp/Agile Universe 2002 (August 04 – 07, 2002); Springer-

Verlag; London. Lecture Notes in Computer Science; 2002. p. 197-20.

22. Lutz, R. Robyn Software engineering for safety: a roadmap International Conference on Software

Engineering; Proceedings of the Conference On The Future of Software Engineering; 2000. p.

213-226.

23. Magee, J.; Kramer, J. Concurrency: State Models and Java Programs, 2nd edition. Hoboken: J.

Wiley & Sons; 2006.

24. Manhart, P.; Schneider, K. Breaking the Ice for Agile Development of Embedded Software: An

Industry Experience Report. Proceedings of the 26th international Conference on Software

Engineering; International Conference on Software Engineering, IEEE Computer Society;

Washington, DC. 2004 May 23 – 28. p. 378-386.

25. Offutt J, Liu S, Abdurazik A, Ammann P. Generating test data from state-based specifications. The

Journal of Software Testing, Verification and Reliability. 2003; vol. 13(no. 1):25–53.

Gary et al. Page 16

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



26. Parnas D, van Schouwen AJ, Kwan SP. Evaluation of safety-critical software. Communications of

the ACM. 1990 June; vol. 33(no. 6):636–648.

27. Raheja, D. Assurance Technologies: principles and practices. McGraw-Hill; 1991.

28. Royce, WW. Proceedings of IEEE WestCon. Los Angeles: 1970. Managing the development of

large software systems: concepts and techniques.

29. Schroeder, WJ.; Ibanez, L.; Martin, KM. Software Process: The Key to Developing Robust,

Reusable and Maintainable Open-Source Software; Proceedings of the 2004 IEEE International

Symposium on Biomedical Imaging; Arlington, VA. 2004.

30. Schwaber, K.; Beedle, M. Agile Software Development with Scrum. 1st edition. Upper Saddle

River, NJ: Prentice Hall PTR; 2001.

31. Spence, JW. There has to be a better way! [software development]. Proceedings of the Agile

Development Conference; ADC. IEEE Computer Society; Washington, DC. 2005 July 24 – 29. p.

272-278.

32. Storey, N. Safety-Critical Computer Systems. Addison-Wesley Longman, Harlow, England: 1996.

33. U.S. Food and Drug Administration. Code of Federal Regulations, Title 21, Chapter 1, Subchapter

H, Part 820 Medical Device Quality System Regulation. 1996

34. Van Schooenderwoert, N. Embedded Extreme Programming: An Experience Report; Embedded

Systems Conference; Boston. 2004.

35. Van Schoownderwoerts, N.; Morsicato, R. Agile Development Conf. Salt Lake City; 2004. Taming

the Embedded Tiger Agile Test Techniques for Embedded Software.

36. Watson AH, McCabe TJ. Structured Testing: a Testing Methodology Using the Cyclomatic

Complexity Metric. NIST Special Publication. 1996:500–235.

37. State Chart XML (SCXML): State Machine Notation for Control Abstraction. State Chart XML

(SCXML): State Machine Notation for Control Abstraction 1.0. 2005 http://www.w3.org/TR/

2005/WD-scxml-20050705.2005.

38. Yaniv Z, Cheng P, Wilson E, Popa T, Lindisch D, Campos-Nanez E, Abeledo H, Watson V,

Cleary K. Needle-based Interventions with the Image-Guided Surgery Toolkit (IGSTK): From

Phantoms to Clinical Trials. IEEE Transactions on Biomedical Engineering. 2010 April.vol.

57(no. 4)

Gary et al. Page 17

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.w3.org/TR/2005/WD-scxml-20050705.2005
http://www.w3.org/TR/2005/WD-scxml-20050705.2005


Figure 1.

Components of an image-guided surgical environment

Gary et al. Page 18

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.

4-up GUI for a robotic needle driver application

Gary et al. Page 19

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

IGSTK software dependencies

Gary et al. Page 20

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

Requirements Management process in IGSTK.

Gary et al. Page 21

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.

IGSTK components and connectors

Gary et al. Page 22

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.

State machine for the Spatial Object component type

Gary et al. Page 23

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 7.

CDash dashboard displaying IGSTK nightly build and test results

Gary et al. Page 24

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8.

Quarterly defect tracker activity for IGSTK since 2006

Gary et al. Page 25

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Gary et al. Page 26

Table 1

Quality Attribute Utility Tree for IGSTK

Attributes Quality Sub-Factors Attribute Characterizationsa

Safety

Framework Misuse

(S1) H, H - Prevent framework misuse and ensure IGS applications access to a basic
unified layer

(S2) H, H - IGSTK classes won’t throw exceptions in order to curb misuse

Visual/Instrumentation Failure (S3) H, H – Ensure that the surgical view is up to date.

Component Failure
(S4) H, M – Provide logging when component failure occurs and provide failure message to
user.

Testability
Error Detection

H, M – Provide logging when lower level component failure occurs and provide failure
meausre to user.

H, H - Create a set of predictable deterministic behaviors with a high level of code coverage
90%

Code Incorrectness Detect-ability H, M - Create a system of testing that uses sandboxing to test and prototype all release

Usability Latency M, M - Response Time for visualization reduced to smallest possible delay

Softw Pract Exp. Author manuscript; available in PMC 2012 August 1.


