

7

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

AGILE PRACTICES
REDUCE DISTANCE
IN GLOBAL SOFTWARE
DEVELOPMENT

Helena Holmström, Brian Fitzgerald, Pär J. Ågerfalk, and Eoin Ó. Conchúir

This article explores how agile practices can reduce three kinds of “distance” — temporal, geo-
graphical, and sociocultural — in global software development (GSD). On the basis of two in-
depth case studies, specific Scrum and eXtreme Programming (XP) practices are found to be
useful for reducing communication, coordination, and control problems that have been associ-
ated with GSD.

NTEREST IN GLOBAL SOFTWARE DEVEL-
opment (GSD) is rapidly growing as the
software industry experiences increasing
globalization of business (Herbsleb &

Moitra, 2001). In GSD, stakeholders from dif-
ferent national and organizational cultures and
time zones are involved in developing software
(Damian, 2002), and tasks at various stages of
the software lifecycle may be separated and im-
plemented at different geographic locations co-
ordinated through the use of information and
communication technologies (Sahay, 2003). As
recognized by Sahay (2003), GSD allows for a
range of new possibilities. For example, bene-
fits such as the business advantage of having
proximity to the market, the ability to exploit
market opportunities through quick formation
of virtual corporations and virtual teams, and
the possibility to use time zone differences to
achieve ’round-the-clock development have ac-
celerated the interest in GSD (Herbsleb & Moi-
tra, 2001). As a result, software development is
increasingly a multisite, multicultural, globally
distributed undertaking.

However, although GSD opens new oppor-
tunities, there is little doubt that it presents

new challenges (Damian, 2002; Sahay, 2003).
As recognized by Herbsleb and Moitra (2001),
physical separation among project members
has diverse effects on many levels. For exam-
ple, strategic issues include how to divide work
between sites and how to handle organization-
al resistance. Often, individuals believe their
jobs are threatened, they experience a loss of
control, and they fear the possibility of reloca-
tion. Moreover, cultural issues, such as atti-
tudes toward hierarchy, sense of time,
communication styles, and need for structure,
are different. Although these differences can be
seen as enriching, they can also lead to misun-
derstandings among people. Cultural differenc-
es often exacerbate communication problems,
and because software development requires
rich communication (Perry et al., 1994), the
lack or absence of this can lead to misalign-
ment and rework. Finally, coordination and con-
trol issues need to be tackled. Without effective
information- and knowledge-sharing mecha-
nisms, the benefits of GSD cannot be exploited.

All the issues mentioned above relate to
temporal, geographical, and sociocultural dis-
tance, and their combination makes GSD a

I

HELENA
HOLMSTRÖM is a
research fellow with
the University of
Limerick, Ireland, and
an assistant professor
at the software
engineering and
management program
at the IT University in
Gothenburg, Sweden.
She can be reached at
helena.holmstrom
@ul.ie.

BRIAN FITZGERALD
holds the Frederick A.
Krehbiel II Chair in
Innovation in Global
Business and
Technology at the
University of Limerick,
where he also is a
university research
fellow and Science
Foundation Ireland
Principal Investigator.

PÄR J. ÅGERFALK is
a research fellow with
the University of
Limerick, and an
assistant professor at
Örebro University,
Sweden.

EOIN Ó. CONCHÚIR
is a Ph.D. research
student at the
University of Limerick.

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

Brian Fitzgerald
Please cite as: Holmstrom, H, Fitzgerald, B, Agerfalk, P and O Conchuir, E (2006) Agile practices reduce distance in global software development, Information Systems Management, Vol 23, No. 3, pp. 7-18.

8

W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

complex task. In particular, processes such as
communication, coordination, and control are
challenged (Ågerfalk et al., 2005), and there is
a strong need for methods that address these is-
sues (Damian, 2002).

Recently, agile methods (Abrahamsson et al.,
2003; Damian, 2002; Holtz & Maurer, 2002) have
begun again to be focused on the question of
how to address key problems in software devel-
opment; namely, that software takes too long to
develop, costs too much to develop, and does
not work very well when eventually delivered. In
emphasizing speed and simplicity (McCauley,
2001; Highsmith & Cockburn, 2001), those us-
ing agile methods seek to avoid prescribing cum-
bersome and time-consuming processes that add
little value to the software product (Fowler &
Highsmith, 2001). Instead, the focus is on indi-
viduals and interactions, working software, cus-
tomer collaboration, and fast response to
changes. Agile methods are basically an attempt
to satisfy the industry quest for more lightweight
and faster development processes.

To achieve this, many agile methods, such
as eXtreme Programming (XP) (Beck, 2000)
and Scrum (Schwaber & Beedle, 2002), include
practices such as pair programming, planning
game, sprints, and on-site customer collabora-
tion. Although it is not a magic set of revolu-
tionary new development techniques, it is a set
of tried and trusted principles, well established
as part of the conventional wisdom of software
engineering, but taken to an extreme level.
However, due to temporal, geographical, and
sociocultural distance in GSD, key concepts in
agile methods are more difficult to realize
(Maurer & Martel, 2002; Kirscher et al., 2001;
Turk et al., 2005). For example, the opportuni-
ty for pair programming, on-site customer col-
laboration, and face-to-face interaction is
severely reduced, hence negatively influencing
the way in which agile methods can be ap-
plied. Although there has been some prelimi-
nary research on how to apply XP in GSD (e.g.,
Ngo-The et al., 2005; Kirscher et al., 2001), the
more common view is that agile methods are
not applicable for GSD. Clearly, there is more to
learn about how to apply agile methods in dis-
tributed settings. What is needed is an in-
creased understanding of the characteristics of
agile methods (Conboy & Fitzgerald, 2004) and
how these can be applied to reduce the nega-
tive influence of distance in GSD (Maurer &
Martel, 2002).

In this article, we present findings from two
in-depth case studies in which we explore chal-
lenges associated with distance in GSD and

how agile practices reduce these challenges
and, hence, reduce distance. The specific re-
search questions are elaborated further below.

GLOBAL SOFTWARE DEVELOPMENT

In recent years we have witnessed the global-
ization of many organizations. Consequently,
globally distributed collaborations and virtual
teams have become increasingly common
(Sarker & Sahay, 2004). According to Carmel
(1999), distributed development projects are
projects consisting of teams working together
to accomplish project goals from different geo-
graphic locations. More than a decade ago, the
desire for lower costs and the possibility to cap-
italize on a global resource pool were the main
drivers for companies experimenting with
GSD (Herbsleb & Moitra, 2001). Although
these remain important, other factors have
only accelerated the trend. For example, there
are business advantages of proximity to the
market, including knowledge of customers as
well as the good will engendered by local in-
vestment. Second, there is the possibility for
quick formation of virtual corporations to ex-
ploit market opportunities. Third, there is the
need for flexibility to capitalize on merger and
acquisition opportunities wherever they
present themselves. As a result, software devel-
opment is increasingly a multisite, multicultur-
al, globally distributed undertaking in which
engineers, managers, and executives face nu-
merous challenges on many levels — from the
technical to the social and cultural (Herbsleb &
Moitra, 2001).

Traditionally, literature on GSD has focused
on technical aspects (Kotlarsky & Oshri, 2005),
and previous research suggests that proper ap-
plication of collaborative technologies is cru-
cial for successful software development
(Carmel, 1999). A related stream of studies has
focused on issues relating to the dispersion of
work and the constraints associated with this.
In these studies, constraints such as temporal
distance, geographical distance, and sociocul-
tural distance are identified. Although these dis-
tances increase the scope of organizational
operation (Sahay, 2003) and facilitate a broader
skill and product knowledge base (Baheti et al.,
2002), there is little doubt that each of them
challenge project processes such as communi-
cation, coordination, and control (Herbsleb &
Mockus, 2003; Damian, 2002).

Temporal distance is a measure of the dislo-
cation in time experienced by two actors wish-
ing to interact; geographical distance is a

s a result,
software
development
is increasingly
a multisite,
multicultural,
globally
distributed
undertaking.

A

9

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

measure of the effort required for one actor to
visit another; and sociocultural distance is a
measure of an actor’s understanding of another
actor’s values and normative practices (Åger-
falk et al., 2005). According to Ågerfalk et al.
(2005), Table

1 provides an overview of oppor-
tunities and challenges in GSD by relating the
dimensions of distance to the software devel-
opment processes of communication, coordi-
nation, and control.

AGILE SOFTWARE DEVELOPMENT

Unlike plan-based methods, agile methods deal
with unpredictability by relying on people and
their creativity rather than formalized process-
es (Cockburn, 2002). Agile methods are charac-
terized by short, iterative cycles of
development driven by product features, peri-
ods of reflection and introspection, collabora-
tive decision making, incorporation of rapid
feedback, and continuous integration of code
changes into the system under development
(Highsmith, 2002). Thus, agile methods oper-
ate on the principle of “just enough method”
because they seek to avoid prescribing cum-
bersome and time-consuming processes that
add little value to the software product and
elongate the development process.

Agile methods are explicitly value based.
Whereas most traditional methods are unclear
about their underlying philosophy, agile meth-
ods are characterized by their adherence to a
set of agile values (Lindstrom & Jeffries, 2004).
The change in emphasis from the traditional
approaches is summarized in the “Agile Mani-
festo” (see Table 2).

Many different agile methods are in use
(Abrahamsson et al., 2003; Lindstrom & Jef-
fries, 2004; Erickson et al., 2005). The two
most well known are XP and Scrum. XP is basi-
cally a collection of well-known software engi-
neering practices taken to their extreme (Beck,
2000). Scrum is a simple, low-overhead pro-
cess for managing and tracking software devel-
opment (Schwaber & Beedle, 2002). The two
methods are highly compatible in that XP pro-
vides specific engineering techniques and
Scrum essentially works as a wrapper for such
techniques (Fitzgerald et al., 2006).

Agile Methods in GSD

Despite evidence of successful agile software
development, its application in GSD is still to
gain momentum. Here, distribution of project
members makes many agile practices difficult
to apply (Maurer & Martel, 2002; Kirscher et al.,

TABLE 1

Impacts of Three Distance Dimensions on GSD Processes

Distance Dimension

Temporal Distance Geographical Distance Sociocultural Distance

Im
pa

ct
 o

n
G

S
D

 p
ro

ce
ss

C
om

m
un

ic
at

io
n

+ Improved record of
communications

+ Potential for closer proximity to
market and utilization of remote
skilled workforces

+ Potential for stimulating innovation and
sharing best practice

– Reduced opportunities for
synchronous communication

– Increased cost and logistics of
holding face-to-face meetings

– Risk for misunderstandings

C
oo

rd
in

at
io

n

+ Decreased coordination needs
due to division of labor

+ Increase in size and skills of
labor pool can offer more flexible
coordination planning

+ Access to rich skill set and various practices

– Increased coordination costs
– Reduced informal contact can

lead to lack of task awareness

– Inconsistency in work practices can impinge
on effective coordination, as can reduced
cooperation through misunderstandings

C
on

tr
ol

+ Opportunities for ’round-the-
clock development

+ Communication channels often
leave an audit trail

+ Access to rich skill set and authority

– Management of project artifacts
may be subject to delays

– Difficult to convey vision and
strategy

– Different perceptions of authority/hierarchy
can undermine morale

Note:

 + (plus sign) indicates an opportunity; – (minus sign) indicates a challenge.

Source:

 After Ågerfalk et al. (2005)

10

W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

2001). This is mainly because one of the key re-
quirements of agile methods is effective com-
munication, and achieving this would require
team members to be collocated. Still, physical
collocation of developers is not always feasible,
and therefore different solutions of how to ap-
ply agile methods in GSD have been suggested.

For example, Kirscher et al. (2001) recom-
mend Distributed eXtreme Programming
(DXP), which they suggest addresses all as-
pects of XP, although to varying degrees. In
DXP, eight of the XP practices (small releases,
metaphor, simple design, testing, refactoring,
collective ownership, 40-hour week, and coding
standards) are seen as independent of the locali-
ty of the team and thus are practices that can be
applied also in GSD. The remaining four practic-
es (i.e., planning game, pair programming, con-
tinuous integration, and on-site customers) are
identified as dependent on collocated team
members and thus require alternative solutions
to work in GSD. With DXP, remote team mem-
bers can be integrated into the development pro-
cess; the authors suggest that DXP is a valuable
extension to traditional XP.

In a similar vein, Ngo-The et al. (2005) dis-
cuss the use of XP to increase efficiency in
communication when outsourcing software
development projects. They emphasize that a
major benefit of XP is that it can be deployed

partially and that if some practice is not
convincing, it does not prevent the application
of the overall method. Interestingly, this is con-
trary to Beck’s original claim that XP has to be
used in its entirety due to the synergistic rela-
tionships between core practices. In their con-
clusions, Ngo-The et al. (2005) report on a
number of positive experiences in applying XP
in GSD. For example, they recognize a decrease
in overtime, high morale among team mem-
bers, and strong customer commitment.

As suggested in these studies, many bene-
fits derive from using agile methods in GSD.
However, future research is needed to better
understand the benefits of XP (Ngo-The et al.,
2005) and DXP (Kirscher et al., 2001). We be-
lieve that there is more to learn from existing
practice about how to apply agile methods in
GSD.

THIS STUDY

Previous research has identified both challeng-
es and opportunities with increased distance in
software development. Interestingly, most op-
portunities are found on the business level,
whereas most challenges are introduced at the
level of development practice. Distance has
been identified as a major challenge to the use
of agile methods. Agile methods, on the other

TABLE 2

Agile Manifesto

VALUES

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

PRINCIPLES

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes harness change for the

customer’s competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the

shorter timescale.
Business people and developers must work together daily throughout the project.
Build projects around motivated individuals. Give them the environment and support they need and trust

them to get the job done.
The most efficient and effective method of conveying information to and within a development team is face-

to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development. The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity — the art of maximizing the amount of work not done — is essential.
The best architectures, requirements, and designs emerge from self-organizing teams.
At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior

accordingly.

Source:

 Adapted from www.agilemanifesto.org

11

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

hand, have the potential to improve communi-
cation and, as a result, reduce coordination and
control overhead. This study therefore seeks to
understand whether agile methods can be suc-
cessfully used in a GSD context. More specifi-
cally,

can agile methods be used to reduce the
negative influence of distance on communi-
cation, coordination, and control in a GSD
context?

Our data collection focuses on the experi-
ences of software development teams in two
global companies with headquarters in the
United States: Intel and Hewlett Packard (HP).
Both companies have development teams in
Ireland who coordinate with other remote col-
leagues in, for example, India, Poland, China,
and Malaysia. The interviews reported on here
were conducted at the Irish company sites. In-
tel has been deploying a range of agile methods
over the past five years: XP is used for the tech-
nical engineering aspects of software develop-
ment and Scrum for project planning and
tracking. HP has been deploying a range of ag-
ile methods over the past years: different prac-
tices of XP, such as pair programming. The
research activities for this study are reported in
Table 3; a fuller discussion of the research
methods can be found in the appendix.

FINDINGS

This section presents the results from the inter-
views. First, we identify GSD challenges in rela-
tion to each distance factor. Second, we

explore the use of agile methods in both com-
panies.

Challenges in Global Software
Development

Temporal Distance.

According to our re-
spondents, temporal distance is challenging
when it comes to controlling projects that con-
stitute different sites:

Time zone distance is the biggest prob-
lem when organizing the different par-
ties in projects. (Project manager, Intel)

Besides control issues, temporal distance chal-
lenges communication and coordination with-
in and between teams. In particular, response
delays are seen as frustrating:

I received e-mails this morning from a
conversation that kicked off after I left
yesterday. Sometimes conversation
jumps ahead, and you fall a bit behind.
(Architect, HP)

It is frustrating … sometimes there is a
lag of a day in responses. You send an e-
mail today and you get one back
tomorrow. … People go out of their
way to communicate late at night, de-
pending on the intensity of the project
at that point in time. It’s okay to do that
for a while, but it’s hard to sustain it,
that’s the problem. There’s burnout of
people. (Manager, HP)

TABLE 3

Research Activities from March 2002–August 2005

Date Research Activity

Mar 2002 Seminar and workshop at university on the topic of agile methods

Mar 2002–Apr 2003
Interviews at company sites
E-mail survey on use of agile methods at Intel

May 2003 Seminar and workshop at Intel

Jun 2003
Seminar and workshop at university: “Silver Bullets/Lead Balloons: Software

Solutions and How They Really Work”
(http://www.b4step.ul.ie/db/dir/alt_page.php?d=events&item=86)

Jun 2003–Jan 2004 Interviews at company sites

Feb 2004
Seminar and workshop at university: “Globally-Distributed Software Development:

Software Solutions and How They Really Work” (http://www.b4step.ul.ie/GDSD/)

Mar 2004–Nov 2004 Interviews at company sites

Dec 2004 Workshop at university: “Agile Approaches for Distributed Development”

Jan 2005–May 2005 Interviews at company sites

Jun 2005 Workshop at university: “A Framework to Analyze Global Software Development”

Jul 2005–Aug 2005 Interviews at company sites

http://www.b4step.ul.ie/db/dir/alt_page.php?d=events&item=86
http://www.b4step.ul.ie/GDSD/

12

W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

Clearly, communication and coordination
are challenged by temporal distance. As recog-
nized by our respondents, the main problem is
the delay in responses. Also, project control is
more difficult when overlap in time is reduced.

Geographical Distance.

Although there is
an advantage of “intellectual horsepower” (i.e.,
the ability to recruit the cream-of-the-crop stu-
dents from top universities in countries where
education and employment is more competi-
tive), the companies experience problems re-
lated to geographical distance. Establishing a
feeling of trust and belonging, i.e., “teamness,”
within the teams can be difficult:

The feeling is that we remain two differ-
ent teams. However, there is a good
cross-site relationship at management
level and between certain peers … in
general, the developers have not met
each other. (Software developer/team
leader, Intel)

It seems that good cross-site relationships
exist at higher levels within the organization,
but the software developers at the coalface
(doing the actual development) seldom meet.
Although management expresses a desire to
have developers meet, it is not always
achieved. However, respondents in both com-
panies agree that the opportunity to meet de-
pends on the specific project — and the
specific phase of the project.

The degree of communication depends
on the phase of the project. For exam-
ple, during integration, when things are
put together, there can be unexpected
behavior. Usually, we fly people over in
critical phases. Mostly, travel happens at
front-end and back-end of projects.
(Manager, Intel)

Despite communication technologies such
as e-mail, IM, NetMeeting applications, virtual
classroom applications, and the phone, there
might still be the feeling of being two different
teams.

Sociocultural Distance.

Sociocultural dis-
tance is a complex dimension involving organi-
zational culture, national culture and language,
politics, and individual motivations and work
ethics. Our study shows that language can be a
barrier in many projects:

We often experience minor language
problems, especially when vocabulary

is limited to technical subjects … even
going out at night with them [nonnative
English speakers], conversation can re-
vert back to technical subjects because
of their limited [English] vocabulary.
(Software developer, Intel)

Language … it’s a really, really difficult
problem. (Project manager, HP)

Besides vocabulary, interpretation and
meaning can be different. Both managers and
project participants experience this:

Difficulties can arise in countries where
it is considered impolite in saying “no”
even when “yes” would be an inappro-
priate answer. I have heard people say-
ing “yes — no problem, we will have it
done by the weekend” and then 3–4
months later it is still not done and some
of the developers might already have left
the project. … I think it is due to pride —
they’ll obey when asked, without saying
they can’t do it within the given time-
frame. (Project manager, Intel)

The general understanding is not too
bad. It is often the more subtle ones
[cultural issues] that can trip you up the
most. They’re the ones that slip
through. You interpret it one way, and
they interpret it the other way. That gets
worse the further away from native En-
glish speaking people you go. (Archi-
tect, HP)

In addition, cultural, political, and religious
differences can challenge project work. Both
companies in our study have experienced this:

There are a lot of political and religious
diversity. … if any element of that came
into everyday work it could just blow
everything apart and create lot of
tensions … . (Architect, HP)

When you have language difficulties ini-
tially causing confusion, I think cultural
differences can actually drive further
awkward situations, and it
snowballs. … (Architect, HP)

Clearly, sociocultural distance is a complex
dimension. Both companies express misunder-
standings and confusion as a result of language
and interpretation problems. This has implica-
tions for communication, coordination, and
control and makes it a real challenge to create
mutual understanding within and between
teams.

stablishing
a feeling of
trust and
belonging, i.e.,
“teamness,”
within the
teams can be
difficult.

E

13I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

Agile Methods Used
At Intel, a range of agile methods has been used
over the past five years. In particular, parts of
XP are used for the technical engineering as-
pects of software development and parts of
Scrum for the project planning and tracking as-
pects. Both methods were introduced at a
grassroots level, as optional techniques, and
their adoption has grown over time. Only 6 of
the 12 XP practices have been implemented:
pair programming, testing, refactoring, simple
design, coding standards, and collective own-
ership. As for the other practices, these were
not found suitable by the companies in our
study. For example, the practice of a 40-hour
week was not achievable in a GSD environ-
ment, in which workers collaborate across dif-
ferent time zones. Also, the concept of on-site
customers was difficult to implement in a de-
velopment environment, where the early con-
ceptual stages have no specific customers.
Similar to Intel, HP uses parts of XP, particularly
the practice of pair programming. Despite tem-
poral distance, this practice works satisfactorily:

At the moment I have a pair with one
guy in Fort Collins and the other guy in
Brussels. That is an eight-hour time dif-
ference. They have both shifted their
working day, so they have a six-hour
overlap per day. (Team manager, HP)

Overall, the practice of pair programming
was perceived as having a number of signifi-
cant advantages. Both companies found code
quality high, and at Intel, the feeling was also
that this quality was achieved earlier. As men-
tioned by one of the managers, one reason for
this might be that the developers did not get
stuck wondering what to do next. If one per-
son was unsure, the other probably did know,
and even though there was sometimes a delay
in response, developers seemed eager to be
flexible to create as much overlap in time as
possible. Furthermore, having pairs proved
useful for testing and debugging because some-
one with a fresh viewpoint could spot mistakes
that were not obvious to the pair partner. The
practice also ensured that more than one devel-
oper gained a deep understanding of the de-
sign and code, thus facilitating collective
ownership of code. At Intel, this was perceived
as important because changes in team compo-
sition were common. It also provided greater
flexibility in relation to maintenance of code.

Despite these advantages, however, some
aspects were problematic. For example, pair
programming was found unsuitable for simple,

well-understood problems and when doing
small changes. Here, collocated developers
tended to get frustrated, something that got
only worse in GSD, where temporal distance
makes response slow:

If you’re trying to progress something
very quickly, there can be an issue with
the time zones. … If there’s any need
for me to ask something or find an up-
date, I can’t really get hold of him
[American colleague] until 3pm my
time — maybe two o’clock at the earli-
est. (Team leader, HP)

Still, XP was perceived as having major ben-
efits. At Intel, a “test-code development strate-
gy” was implemented, something that helped
developers get a better understanding of what
functionality was required from a client point
of view. Also, the practice of simple design was
used. In this case, design was done on a white-
board and the design document emerged in
parallel with the code implementation. Inter-
estingly, the XP practice of simple design is
very similar to the concept of simplified plan-
ning in Scrum. This pre-game phase was initial-
ly piloted by one team at Intel and has grown
to the extent that it is now used by almost all
teams. As commented on by one of the manag-
ers, the reason for its popularity is probably the
simplicity and the low-tech techniques that can
be applied during project planning. For exam-
ple, the daily Scrum meeting took place around
a board covered with yellow Post-it® notes. The
team recorded tasks for a 24-hour period on
these notes. During the Scrum meeting the
team moved completed tasks into the “done”
area and the group achieved a shared group vi-
sualization of project progress. In this way,
Scrum was made visible in the organization and
curiosity from other groups helped the spread
of the practice.

Although it created some overhead, this
practice was easily converted to include the
distributed development teams. In that setting,
notes were published on a Web page and, as
with the collocated teams, distributed team
members could get a shared visualization of
project progress. As a result, more distributed
teams have commenced using shared spread-
sheet and networked meeting software — and
the technique has facilitated coordination and
control within the distributed teams.

Other XP practices that were explored in
our study were refactoring and coding stan-
dards. In relation to refactoring — i.e., restruc-
turing of systems to improve nonfunctional

verall, the
practice of
pair
programming
was perceived
as having a
number of
significant
advantages.

O

14 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

aspects (e.g., duplication of code, simplicity,
and flexibility) — our participants found it use-
ful when this was done early in the project. In
this way, it eliminated bugs that would have
taken up a lot of debugging time in later stages
of the project. In relation to coding standards,
they were defined early in the projects. For ex-
ample, a C-coding standard was defined at Intel
very early in the project and was referred to
during coding and code inspections. However,
coding standards were already a strong feature
in both companies and therefore cannot be
thought of as unique to the application of XP or
other agile methods.

Overall, several XP and Scrum practices
were found beneficial for GSD and particular
practices could be used to reduce distance.
Specifically, XP was found useful for the more
technical and coding aspects of GSD projects,
whereas Scrum practices provided a good
framework for GSD planning and tracking.

DISCUSSION OF FINDINGS
In accordance with the literature in the field,
we have chosen to focus on temporal, geo-
graphical, and sociocultural distance and the
way in which these distances challenge GSD
practice. For a number of years, the Interna-
tional Workshop on Global Software Develop-
ment has highlighted these distances and the
impact they have on processes such as commu-
nication, coordination, and control (see, e.g.,
Damian et al., 2003). A number of other au-
thors have also focused on one or more of
these distances to see how they affect project
processes (Carmel & Agarwal, 2001; Evaristo et
al., 2004; Malone & Crowston, 1994).

Here, communication is seen as the formal
and informal exchange of information between
people. Communication is an essential process
in all software development (Curtis et al.,
1988), but it becomes even more critical in
GSD. This is due to the fact that the distributed
environment changes the communication con-
text away from the “ideal” face-to-face setting
(Clarke, 1996) into a technology-mediated and
thus potentially more complex one (Ågerfalk,
2004). Furthermore, coordination is seen as
the act of integrating each task with each orga-
nizational unit (Carmel & Agarwal, 2001). As
found in our study, all software development re-
quires coordination, but GSD increases this need
because activities are distributed. Finally, control
is seen as the process of adhering to goals, poli-
cies, standards, or quality levels (Carmel & Agar-
wal, 2001). The control process concerns the

management and reporting mechanisms to en-
sure that development is progressing. Thus,
control relates to project management and
hence to the formalized structures required to
ensure development of software in time, on
budget, and of desired quality.

In our study, we see that the main challeng-
es of GSD lie in the complexity of maintaining
good communication, coordination, and con-
trol when teams are dispersed. In relation to
temporal distance, our research reveals difficul-
ties in achieving overlap in time between dif-
ferent sites. One disadvantage of being
separated by temporal distance is that the num-
ber of overlapping hours during a workday is
reduced; team members have to be flexible to
achieve overlap with remote colleagues. As
noted by one of the managers, the lag in re-
sponse time brings with it a feeling of “being
behind” and “missing out,” which makes peo-
ple frustrated. Our study reveals that limited
overlap with colleagues — and delay of re-
sponses — make people lose track of the work
process, something that can pose severe prob-
lems in distributed, yet time-critical, work.
However, with the introduction of agile meth-
ods, especially the XP practice of pair program-
ming, the issue of creating time overlap has
become less problematic. Both Intel and HP
found pair programming beneficial for encour-
aging commitment among developers. As men-
tioned by one of the managers, people were
flexible and, even though there was a delay in
response, individual developers tried hard to
spend as much time as possible with the dis-
tributed pair programmer. Because XP was in-
troduced at the grassroots level, this
commitment was not enforced but rather re-
sulted from individual interest. Having distrib-
uted pair programmers increased individual
responsibility to create overlap in time and
hence to reduce temporal distance and the
negative influence it might have on team com-
munication, coordination, and control.

A major challenge in relation to geographi-
cal distance is how to create a feeling of “team-
ness” among distributed project members.
Previous research on distributed organizations
shows that people at different sites are less like-
ly to perceive themselves as part of the same
team (Kotlarsky & Oshri, 2005). Our study
shows that the Scrum planning practice can
still be useful. By publishing Post-it notes on a
Web page, the distributed team members
could easily participate in the process. The
overall feeling was that team communication

P was
found useful
for the more
technical and
coding aspects
of GSD
projects,
whereas
Scrum
practices
provided
a good
framework for
GSD planning
and tracking.

X

15I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

and coordination significantly improved and
that the feeling of “teamness” among geograph-
ically distributed teams was improved.

In relation to sociocultural distance, the
most widely experienced difficulty pertains to
language and interpretation. Employees from
both companies mention language problems as
the primary reason for misunderstandings. It
has been argued that informal communication
plays a critical role in coordination activities for
collocated software development, especially
when size and complexity of development in-
crease (Kotlarsky & Oshri, 2005); informal con-
versation allows team members to develop
working relationships and allows a better flow
of information (Herbsleb & Mockus, 2003). Al-
though the need for informal conversation in
GSD is extensive, people find it far more diffi-
cult to identify distant colleagues and commu-
nicate effectively with them (Herbsleb &
Mockus, 2003).

We believe the agile practices mentioned
here were useful for increasing communica-
tion. As discussed above, the practice of pair
programming improved individual commitment
for enhancing mutual understanding between
team members. Agile practices, such as the
Scrum pre-game phase, made project planning
and tracking processes a collaborative activity,
and the agile focus on individuals and interaction

(over processes and tools) encouraged people
with different cultural backgrounds to communi-
cate. Although our respondents recognized the
difficulty in overcoming sociocultural distance
and did not believe that any single methodologi-
cal approach would solve this problem, the de-
veloper-centric qualities of agile methods led to
considerable benefits at the people and partici-
pation levels.

Table 4 provides a summary of the agile
practices in our study and the benefits of using
these in GSD. Table 5 provides a summary of
the particular practices we found useful for re-
ducing temporal, geographical, and sociocul-
tural distance and hence illustrates the
potential for agile methods to reduce the nega-
tive influences of these distance factors in GSD.

CONCLUSION
Temporal, geographical, and sociocultural dis-
tances impose several challenges to GSD prac-
tice, such as difficulty in creating overlap in
time, difficulty in creating “teamness,” and diffi-
culty in creating mutual understanding be-
tween people with different sociocultural
backgrounds. Although we believe that no sin-
gle methodological approach may easily solve
these challenges, the two companies we stud-
ied report agile practices to be valuable in re-

TABLE 4 Agile Practices and GSD Benefits

Agile Practices Benefits

XP pair programming High code quality (and code quality earlier in projects)
Fresh viewpoint in testing/debugging
Facilitates collective ownership of code

XP simple design Design document in parallel with code implementation

XP refactoring Early elimination of bugs

XP coding standard Consistency in coding/code inspection

Scrum simple planning Low-tech techniques
Shared visualization of project activities

TABLE 5 Agile Practices, Benefits, and Impacts on Distance in GSD

Agile Practices Benefits GSD Distance

XP pair programming Help increase time overlap Reduce temporal distance

Scrum simple planning Help increase “teamness” Reduce geographical
distance

XP pair programming and
Scrum pre-game phase

Help increase mutual understanding and
collaboration within and between teams

Reduce sociocultural
distance

16 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

ducing some of them. In particular, XP and
Scrum practices were found useful for improv-
ing communication, coordination, and control
within GSD teams. Although they did not use a
complete set of agile methods, the companies
found that drawing from a palette of different
methods helped them manage the complex
task of GSD. Contrary to previous research, our
findings suggest that agile methods may be
more amenable to GSD than has been previous-
ly reported.

ACKNOWLEDGMENTS
This research was supported by grants from
Science Foundation Ireland for the B4-STEP
(Building a Bi-directional Bridge between Soft-
ware ThEory and Practice) and Lero (the Irish
Software Engineering Research Centre
projects), and from the EU to the CALIBRE
project. The authors would also like to thank all
the interviewees at Intel and HP. Thanks are
also due to the anonymous reviewers and the
special issue guest editor for their valuable
comments on the manuscript.

APPENDIX
Given that little research to date has been con-
ducted on the use of agile methods in a GSD
context, this study was concerned with achiev-
ing an increased understanding of this phe-
nomenon. Bearing this in mind, an
interpretivist approach, which sought to devel-
op inductively a richer understanding based on
in-depth case study analysis, was deemed ap-
propriate (Yin, 1994; Walsham, 1993).

The case study data reported here covers a
three-year period, beginning in March 2002,
and is ongoing. In March 2002, the first phase
of the research began with a workshop seminar
on the topic (i.e., GSD), comprising research-
ers and industry practitioners. This workshop
was followed by a series of interviews and site
visits. The combination of on-site and universi-
ty-hosted seminars and workshops has been
greatly facilitated by the fact that the industry
sites and the university are located less than
one hour’s drive from each other. The work-
shops have been hands on, with committed
participation by both researchers and practitio-
ners. Also, the seminars have involved leading
researchers in this area worldwide (including,
for example, Abrahamsson, Herblseb, Parnas,
Raffo, and Succi).

The workshops and seminars have been
complemented with qualitative interviews
with managers and software developers at

both companies. These interviews helped us
gain a deeper understanding for the GSD con-
text. Data collection involved a series of formal
and informal personal interviews with the
project managers and staff responsible for agile
development. The interviews were generally of
one- to two-hour duration, and informal inter-
views were used to clarify and refine issues as
they emerged. In total, 20 interviews were con-
ducted at the company sites. Interviews were
transcribed according to the agile methods
used: three distance factors (temporal, geo-
graphical, sociocultural) and three develop-
ment practices (communication, coordination,
control). Informal follow-up telephone inter-
views took place to clarify and refine emerging
issues, and these emerging issues were also
presented and discussed at the various work-
shops.

In terms of data analysis, a primarily qualita-
tive grounded theory (GT) approach was
adopted (cf. Corbin & Strauss, 1990; Miles &
Huberman, 1994). A problem that has been
identified in relation to qualitative research is
that different individuals may interpret the
same data in different ways (Kaplan & Duchon,
1988). This problem was addressed in two
ways. First, the GT method of data analysis ex-
plicitly recognizes this problem of subjective
data interpretation and, to address it, pre-
scribes rigorous coding and memoing process-
es, which provide a traceable, documented
justification of the process by which research
conclusions were reached, thereby providing
an audit trail of the process (Guba, 1981). Sec-
ond, we used a venting method, a process
whereby results and interpretations are dis-
cussed with professional colleagues (Goetz &
LeCompte, 1984). The findings were presented
and discussed with colleagues and expert prac-
titioners in detail at the various workshops. !

References
Abrahamsson, P., Warsta, J., Siponen, M., and

Ronkainen, J. (2003). New Directions on Agile
Methods: a comparative analysis. In Proceedings
of the 25th International Conference on
Software Engineering, Portland, Oregon, pp.
244–254.

Ågerfalk, P. J. (2004). Investigating Actability
Dimensions: A Language/Action Perspective on
Criteria for Information Systems Evaluation,
Interacting with Computers, 16(5), pp. 957–
988.

Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings,
B., Lundell, B., and Ó. Conchúir, E. (2005). A
Framework for Considering Opportunities and
Threats in Distributed Software Development,

17I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

In Proceedings of the International Workshop
on Distributed Software Development (DiSD
2005), Paris, 29 August 2005: Austrian Computer
Society, pp. 47–61.

Baheti, P., Gehringer, E., and Stotts, D. (2002).
Exploring the Efficacy of Distributed Pair
Programming. In Proceedings Extreme
Programming and Agile Methods — XP/Agile
Universe, Chicago, USA, August 4–7, 2002.

Beck, K (2000). Extreme Programming Explained:
Embrace Change, Addison-Wesley, Reading.

Carmel, E. (1999). Global Teams: Collaborating
Across Borders and Time Zones. Prentice-Hall,
Upper Saddle River: NJ.

Carmel, E., and Agarwal, R. (2001). Tactical
approaches for alleviating distance in global
software development, IEEE Software, Vol.
18, No. 2, pp. 22–29.

Clarke, H. H. (1996). Using Language, Cambridge
University Press, Cambridge.

Cockburn, A. (2002). Agile Software Development.
Boston: Addison-Wesley.

Conboy, K., and Fitzgerald, B. (2004). Toward a
Conceptual Framework of Agile Methods:
A Study of Agility in Different Disciplines.
In Proceedings of the ACM Workshop on
Interdisciplinary Software Engineering
Research (WISER), November 5, Newport
Beach, CA, USA.

Corbin, J. and Strauss, A. (1990) Basics of
Qualitative Research: Grounded Theory
Procedures and Techniques, Sage, California

Curtis, B., Krasner, H., and Iscoe, N. (1988). A Field
Study of the Software Design Process for Large
Systems, Communications of the ACM, Vol. 31,
No. 11, pp. 1268–1287.

Damian, D. (2002). Workshop on Global Software
Development. In Proceedings of International
Conference on Software Engineering (ICSE),
Orlando, Florida, USA, May 19–25, 2002.

Damian, D., Lanubile, F., and Oppenheimer, H. L.
(2003). Addressing the Challenges of Software
Industry Globalization: The Workshop on Global
Software Development, In Proceedings 25th
International Conference on Software
Engineering, IEEE Computer Society, Los
Alamitos, pp. 793–794.

Erickson, J., Lyytinen, K., and Siau, K. (2005). Agile
Modeling, Agile Software Development, and
Extreme Programming: The State of Research,
Journal of Database Management, 16(4), pp.
88–100.

Evaristo, J. R., Scudder, R., Desouza, K. C., and Sato,
O. (2004). A dimensional analysis of
geographically distributed project teams: a case
study, Journal of Engineering and Technology
Management, Vol. 21, No. 3, pp. 175–189.

Fitzgerald, B., Harnett, G., and Conboy, K. (2006).
Customizing Agile Methods to Software
Practices. European Journal of Information
Systems, Vol 15, No. 2.

Fowler, M., and Highsmith, J. (2001). Agile
methodologists agree on something. Software
Development, vol. 9, pp. 28–32.

Fowler, M., and Highsmith, J. (2001). The agile
manifesto. http://www.agilemanifesto.org/

Goetz, J., and LeCompte, D. (1984). Ethnography
and Qualitative Design in Educational
Research, Academic Press, Orlando.

Guba, E. (1981). Criteria for assessing the
trustworthiness of naturalistic inquiries.
Educational Communication and Technology,
29, 75–92.

Herbsleb, J. D., and Mockus, A. (2003). An Empirical
Study of Speed and Communication in Globally
Distributed Software Development, IEEE
Transactions on Software Engineering, Vol. 29,
No. 6, pp. 481–494.

Herbsleb, J., and Moitra, D. (2001). Global software
development. IEEE Software, March/April.

Highsmith, J. (2002). The great methodologies
debate: Part 2, Cutter IT Journal, vol. 5.

Highsmith, J., and Cockburn, A. (2001). Agile
Software Development: The Business of
Innovation. Computer, vol. 34, pp. 120–122.

Holtz, H., and Maurer, F. (2002). Knowledge
Management Support for Distributed Agile
Processes. In Proceedings of the Workshop on
Learning Software Organizations (LSO),
August 6, Chicago, USA.

Kaplan, B. and Duchon, D. (1988). Combining
qualitative and quantitative methods in IS
research: a case study, MIS Quarterly, 12, 4,
571–587.

Kirscher, M., Jain, P., Corsaro, A., and Levine, D.
(2001). Distributed eXtreme Programming. In
Proceedings of the International Conference
on eXtreme Programming and Flexible
Processes in Software Engineering, May 20–23,
Sardinia, Italy.

Kotlarsky, J., and Oshri, I. (2005). Social ties,
knowledge sharing and successful collaboration
in globally distributed system development
projects, European Journal of Information
Systems, 14, pp. 37–48.

Lee, A. S., and Baskerville, R. L. (2003). Generalizing
Generalizability in Information Systems
Research. Information Systems Research, 14
(3), 221–243

Lindstrom, L. and Jeffries, R. (2004) Extreme
Programming and Agile Software Development
Methodologies, Information Systems
Management, 24(3), pp. 41–60.

Malone, T. W., and Crowston, K. (1994). The
interdisciplinary study of coordination, ACM
Computing Surveys, Vol. 26, No. 1, pp. 87–119.

Maurer, F., and Martel, S. (2002). On the Productivity
of Agile Software Practices: An Industrial Case
Study. In Proceedings of the International
Workshop on Global Software Development,
May 21, Orlando, FL, USA.

http://www.agilemanifesto.org

18 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

McCauley, R. (2001). Agile Development Methods
Poised to Upset Status Quo. SIGCSE Bulletin,
vol. 33, pp. 14–15.

Miles, M., and Huberman, A. (1994) Qualitative
Data Analysis: A Sourcebook of New Methods,
2nd Ed. Sage, Beverley Hills.

Ngo-The, A., Hoang, K., Nguyen, T., and Mai, N.
(2005). Extreme Programming in Distributed
Software Development: A Case Study. In
Proceedings of International Workshop on
Distributed Software Development, August 29,
Paris.

Perry, D. E., Staudenmeyer, N. A., and Votta, L. G.
(1994). People, Organizations and Process
Improvement, IEEE Software, vol. 11, No. 4,
JULY/August, pp. 36–45.

Sahay, S. (2003). Global software alliances: the
challenge of “standardization.” Scandinavian

Journal of Information Systems, Vol. 15, pp.
3–21.

Sarker, S., and Sahay, S. (2004). Implications of space
and time for distributed work: an interpretive
study of US-Norwegian systems development
teams, European Journal of Information
Systems, 13, pp. 3–20.

Schwaber, K., and Beedle, M. (2002). Agile Software
Development with Scrum. Upper Saddle River,
NJ: Prentice-Hall.

Turk, D., France, R., and Rumpe, B. (2005).
Assumptions Underlying Agile Software-
Development Processes, Journal of Database
Management, 16(4), pp. 62–87.

Walsham, G. (1993). Interpreting Information
Systems in Organizations, Wiley, UK.

Yin, R. (1994). Case Study Research: Design and
Methods, 2nd Ed., Sage Publications, California.

	Information Systems Management
	AGILE PRACTICES REDUCE DISTANCE IN GLOBAL SOFTWARE DEVELOPMENT
	GLOBAL SOFTWARE DEVELOPMENT
	AGILE SOFTWARE DEVELOPMENT
	Agile Methods in GSD

	THIS STUDY
	FINDINGS
	Challenges in Global Software Development
	Agile Methods Used

	DISCUSSION OF FINDINGS
	CONCLUSION
	ACKNOWLEDGMENTS
	APPENDIX
	References

