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Abstract

Evidence-based practice is important for behavioral

interventions but there is debate on how best to support

real-world behavior change. The purpose of this paper is

to define products and a preliminary process for effi-

ciently and adaptively creating and curating a knowledge

base for behavior change for real-world implementation.

We look to evidence-based practice suggestions and draw

parallels to software development. We argue to target

three products: (1) the smallest, meaningful, self-

contained, and repurposable behavior changemodules of

an intervention; (2) Bcomputational models^ that define

the interaction between modules, individuals, and con-

text; and (3) Bpersonalization^ algorithms, which are de-

cision rules for intervention adaptation. The Bagile

science^ process includes a generation phase whereby

contender operational definitions and constructs of the

three products are created and assessed for feasibility

and an evaluation phase, whereby effect size estimates/

casual inferences are created. The process emphasizes

early-and-often sharing. If correct, agile science could

enable a more robust knowledge base for behavior

change.
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INTRODUCTION

A central task of behavior change science is to gener-
ate evidence to support the development of evidence-
based practices [1]. Evidence-based practices not only
require careful examination of the efficacy of an inter-
vention but also the ability of the evidence-based
practice to be translated and disseminated for real-
world use [2]. There is active discussion on how to
improve the research process for achieving real-world
evidence-based practice such as a more rapid, rele-
vant, and responsive research enterprise; building on
the logic of Bdisruptive innovations;^ placing greater
emphasis on the value of the components of a multi-
component Bcomplex^ intervention; and placing
greater emphasis on the need for a more iterative
research process that better conforms to the complex-
ity of behavior change [2–5].

The purpose of this paper is to define products and
a preliminary process for efficiently and adaptively
creating and curating a knowledge base for behavior
change for real-world implementation. A central ar-
gument in our paper is for early-and-often sharing of
resources developed—particularly operations/
operational definitions—to facilitate more efficient
knowledge accumulation for behavior change. To
support early-and-often sharing, we specify a set of
Bproducts^ from science that can be shared and then
provide suggestions on a more Bagile^ scientific pro-
cess for creating and sharing these products.Merriam-
Webster defines agile as:^ (1) marked by ready ability
to move with quick easy grace <an agile dancer>; (2)
having a quick resourceful and adaptable character
<an agile mind>.^ Some key synonyms include
graceful, light, nimble, or spry.When we refer to agile,
we are building on the second definition, particularly
an adaptable and nimble scientific process.
To define these products and processes, we review

evidence-based practice suggestions and draw parallels
to software development. We then define three
products—behavior change modules, computational
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Implications
Policy: If the thesis of agile science is correct, pol-
icy decisions should be explored that better enable
early-and-often sharing of all scientific products,
particularly early-and-often sharing of operations/
operational definitions of the three product types
of behavior change modules, computational
models, and personalization algorithms.

Research: The agile science process makes explic-
it a wider range of contributions to science that can
be shared early and often to facilitate a more robust
accumulation of knowledge for behavior change.

Practice: If the thesis of agile science is correct, the
agile science process will create a more readily
useful and repurposable knowledge base that will
provide practitioners with concrete insights on how
to adapt and adjust evidence-based interventions to
specific individuals and contexts.
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behavioralmodels, and personalization algorithms—and
a first draft research process called Bagile science,^ to
produce these products. We then describe an ongoing
case-study that has informed the agile science process.
We conclude with open questions implied by the prod-
ucts and processes and suggestions for future work.

EVIDENCE-BASED PRACTICE

Evidence-based practice involves the use of science to
support pragmatic decision making related to the se-
lection of behavior change interventions in a real-
world context [1, 2]. Classically, evidence-based prac-
tices in the behavioral sciences grew out of a four-
phase biomedical model (i.e., discovery, pilot, efficacy,
and effectiveness), but there is increased questioning of
this model because of the complexity of behavior
change [1–7]. As implied by behavioral ecological
models (e.g., [8]), individual and contextual differences
(e.g., when, where, for whom, in what state of the
person) can moderate when a behavioral intervention
will produce its targeted effect [9]. Further, when de-
veloping interventions delivered via digital technolo-
gies, there is an added issue that the technologies are
often mutating at a faster rate than the scientific pro-
cess [3]. To complicate things further, behavior change
interventions havemultiple criteria for success for real-
world use such as being effective, usable, desirable to
the target group, and safe [5, 10].
There is a great deal of work focused on articulating

research processes that are more appropriate for the
complexity of behavior change. For example, recom-
mendations related to multicomponent (also labeled
Bcomplex^) interventions increasingly emphasize an
iterative and non-linear process [4, 5], and there is
emerging discussion about different strategies for
conducting reviews and organizing evidence [11, 12]
to create evidence-based practice recommendations.
A particular advancement that we build on are

Boptimization methods^ (see TBM special issue [13]).
The organizing framework for these optimization
methods is called the multiphase optimization strategy
(MOST; [14]). MOST establishes a process for contin-
uous optimization of behavior change interventions by
iteratively evaluating the efficacy of intervention com-
ponents. There are many optimization designs that fit
into the MOST process. For example, the factorial/
fractional factorial design provides a resource-efficient
way of examining main effects of each intervention
component within an intervention and the interaction
effects among components [15]. The sequential multi-
ple assignment randomized trial (SMART) is a meth-
odology that can test the decision rules within an
adaptive intervention, when, for instance, there are
non-responders to an initial intervention [15]. A third
class of experimental designs, which combines the
logic of n-of-1 trials and factorial designs, is Bmicro-
randomized^ trial [16–18]. The micro-randomized tri-
al is a sequential factorial design for modeling effec-
tiveness of treatment components over time. It can be
used to test proximal main effects of components over

time, time-varying moderation [16], and with varia-
tions in study design based on strategies from system
identification, the development of idiographic compu-
tational models [17, 18]. These optimization methods
provide concrete strategies to test behavioral interven-
tion components and, particularly via the micro-
randomized study, support studying behavior change
of individuals in context.
Another interesting suggestion is to take advantage

of the Bdisruptive innovation^ process when develop-
ing evidence-based practices [2]. The disruptive inno-
vation process emphasizes the focus on providing sim-
pler and less expensive alternatives to current practices
that meet the essential need for the majority of users in
order to make them more easily accessible, scalable,
and replicable [2]. For behavior change interventions,
suggestions from this include better synthesizing and
sharing ofmodules of complex interventions that work
across interventions, utilization of a wider range of
delivery options (e.g., digital health technologies), the
use of marketing and branding to promote and dis-
seminate evidence-based practices, and the adoption
of a continuous optimization model of evaluation.
These recommendations were offered in contrast to
dissemination of complex interventions that implicitly
segment evidence-based practices rather than facilitate
knowledge accumulation [19]. Indeed, Chorpita et al.
[20] have argued that the fundamental challenge in
behavior change science may be an overemphasis on
knowledge proliferation (i.e., the development of new
treatments) at the cost of knowledge management
(e.g., developing new ways to design, organize, and
share existing resources) and thus suggest focusing
more on algorithms to curate knowledge.
From this work, we draw three insights: (1) develop-

ment of evidence-based strategies for behavior change
is iterative and involves Bongoing optimization^ that
carefully studies the Bfit^ between individuals, context,
and interventions for producing a desired outcome [21];
(2) while complex interventions might be desired in
practice, modules of complex interventions are plausi-
bly more valuable for science; and (3) algorithms for
supporting decisions about matching interventions and
modules with specific individuals in context is a second
valuable target product and could be useful for curation.

Agile software development

These insights have interesting parallels to software
development, particularly open-source software [22]
and Bagile,^ which is a class of software development
that emphasizes rapid iterative development in context
[23]. For example, extreme programming (XP), which
is one agile method [23], emphasizes well-specified
modules that are shared early-and-often with relevant
stakeholders when building complex multi-
component systems. Within software development,
the basic structure of modules is that they have specific
inputs, a process that utilizes these inputs to transform
them in some way and then this process creates spe-
cific outputs [24]. For example, a group may be
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interested in developing a smartphone app to promote
physical activity and, as part of this, may be interested
in using steps data from a wearable sensor such as the
Fitbit. Based on this, one software module for this is a
tool that allows data to be transferred between Fitbit
and the researcher’s app that only shares information
that the participant wants to share and protects the rest
of the information such as personally identifiable in-
formation. A module that supports part of this data-
sharing task while maintaining privacy is called
BOAuth.^ In OAuth, the inputs include information
from the individuals (e.g., personal information such
as name, email, etc.) and permission from the individ-
ual to allow information to be shared to another entity
(e.g., when logging into a website, it may ask for a
Facebook login, which has your personal identifying
information). The OAuth process takes this informa-
tion, generates a unique personal identification num-
ber for this individual, and then defines data that are
sharable (e.g., steps data) versus not sharable between
the systems (e.g., names, emails). The output of this
process is a bridge for sharing only the information
that a participant has agreed to share (i.e., a unique
identifying number and way to link them to two sep-
arate software systems). It is essential to note that while
modules are often built initially for a specific use case,
an advantage of software module structure is that the
module is built to be self-contained and thus
repurposable for any use case with the requisite inputs
(e.g., personal identification information, permission)
and desires the requisite output (e.g., a secure bridge to
share data across systems).
To create these modules, XP uses software Bsprints^

to create a Bminimal viable product^ (MVP) that is
released to target users [23]. MVPs are the simplified
modules that are designed to test assumptions about
the module with relevant stakeholders [25]. Returning
to the OAuth example, an MVP style test of this could
simply be akin to the sorts of de-identification strate-
gies used in research (e.g., separating personally iden-
tifiable information into a separate database from the
rest of the data). This can then be used to test if privacy
and sharing with other entities can be achieved prior to
developing the software. This testing of assumptions
via MVP modules is achieved via Bsprints,^ which
involve a rapid cycle of identifying an assumption,
building an MVP module to test the assumption, and
then releasing the module to relevant stakeholders to
test the assumption [23]. After each module achieves
some meaningful criterion of success (e.g., privacy is
maintained while still enabling sharing of data across
systems to a satisfactory level for all stakeholders), the
next module can then be targeted. While planning
occurs, particularly specification of the likely required
modules that will be needed for the eventual full sys-
tem [24], the process emphasizes flexibility and agility
to accommodate changing requirements depending
on feedback received after each sprint.
Software development provides insights on three

strategies to incorporate into health behavior change
science: (1) define the smallest, meaningful, self-

contained, repurposable, and (ideally) interoperable
modules of an intervention (e.g., a module of a dietary
intervention might be a fruit and vegetable tracker)
that are structured in an input, process, output format;
(2) build a concrete version of the module to make
visible the implicit assumptions about how the desired
outcome (e.g., higher vegetable intake) will be
achieved by the module to enable discussion between
stakeholders (note, preferably a functioning module,
but a module could also be sketches, low-fidelity pro-
totypes, and other strategies of communication used in
human-centered design [26, 27]); and (3) use the
shortest timescale possible to facilitate careful specifi-
cation on the usefulness of the module for relevant
stakeholders.

THE CASE FOR GREATER EMPHASIS ON OPERATIONS

As with any scientific endeavor, we are mindful of the
difference between abstract constructs and concrete
operations [28]. In brief, constructs are abstract con-
cepts or ideas that are often the generalized target of
scientific research. For example, self-efficacy or goal-
setting are both constructs. In contrast, operations are
the concrete specifications (also called operational def-
initions) that are used within specific studies to define
an abstract construct. To continue with the example,
the specific strategy used to support goal setting in a
specific study is the operation. The ultimate desidera-
tum of science is robust generalized causal inferences
that provide insights about the magnitude and direc-
tion of interrelationships between constructs [28]. For
example, the insight that positive reinforcement is a
useful intervention strategy for behavior change across
a wide range of behaviors, types of target populations
(including different species), and settings is the sort of
ideal insight to strive for [29]; a point we are not
contesting. Meaningful products from any scientific
endeavor includewell-specified operations, constructs,
and/or causal inferences, particularly causal inferences
with high external validity [28]. Greater value should
be placed on concrete operations, even if they have
not been empirically validated because: (1) operations
are highly valuable for better specifying constructs; (2)
early sharing of these operations could very likely
enable a more efficient research enterprise via reduced
Breinventing the wheel^ and facilitation of specializa-
tion; and (3) sharing of operations enables different
research groups to use the same operations in different
use cases, which enables a more robust testing of
external validity.
In terms of construct specification, concrete exam-

ples, particularly multiple examples, provide richer
information about a construct than a textual definition
alone. For example, a practitionermay be interested in
using the construct Bcue to action^ to inspire behavior
change. A cue to action could be defined as a signal
that elicits a behavioral response. This abstract defini-
tion requires a great deal of interpretation before it can
be used, particularly by non-behavioral scientists (e.g.,
clinicians, software developers). Another way to
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describe a cue to action is to provide concrete exam-
ples (e.g., a bar can be a cue to drink, the smell of
smoke can cue the urge to smoke, a calendar notifica-
tion can cue the action of getting up to go to a meeting,
a feeling of stress can cue the urge to go for a walk).
Often multiple concrete examples are complementary
to abstract definitions as they provide subtle details
missed in the construct definition. Consider, for exam-
ple, current debates about if Pluto is a planet; the
debate revolves around the match between the text
definition of the construct of a planet and the specific
instance of Pluto. A logical product from agile science
should be multiple concrete operations of constructs
that are shared early and often to facilitate more effec-
tive debate about construct definitions.
With regard to a more efficient research process, a

logical corollary for this is the technology industry’s
use of application programming interfaces (APIs) [30].
APIs are the basic instructions software developers
create to allow other developers to share tools and
resources. For example, Yelp displays maps of restau-
rant locations. Yelp did not create a mapping service
but instead took advantage of Google Maps’ API,
which allowed Yelp to Bembed^ Google Maps into
their service. Google defines the inputs it will need
(e.g., a street address) and the output it will provide
(i.e., maps, directions) in a prespecified format (e.g.,
the window size for the map). It then processes the
inputs to produce the output. When the API code is
incorporated into the Yelp code, the map appears
within Yelp’s products. This example is illustrative of
our two points related to efficiency. First, while Yelp
requires a strategy for displaying locations of restau-
rants to their customers, they did not need to
Breinvent^ a mapping service; instead, they just used
Google’s already available service. Beyond this, argu-
ably, Google Map’s API was an essential component
that Yelp required prior to even starting. Otherwise,
the developers working at Yelp would have invested
energy into the mapping service, which would have
limited their ability to specialize on their unique ser-
vice of restaurant recommendations.
It is plausible that similar value of reducing

reinventing tools and specialization could occur
in the behavioral sciences if we shared our opera-
tions early and often, even prior to formal evalua-
tion. It has been argued elsewhere that evidence-
based practices often become their own separate
silos of evidence, rendering it very difficult to mix
and match modules across evidence-based prac-
tices [2]. A plausible reason for this siloing of
evidence-based protocols is simply that we are
sharing our operations at the wrong time. We ar-
gue that sharing operations PRIOR to effect size
estimation (e.g., prior to running an efficacy trial)
could greatly mitigate this problem. Put differently,
sharing early and often enables individuals to build
on one another’s work at the beginning and thus
makes it easier for the process to facilitate interop-
erable and repurposable modules across complex
interventions. This reduces independent groups

reinventing similar operations and also, if the in-
formation is well-curated and modules are interop-
erable, could facilitate increased specialization.
On the advantages to external validity, as articulated

by Shadish, Cook, and Campbell, external validity
involves examination on how likely a given causal
inference is true across variations in the target popula-
tion (also labeled Bunit^), treatment, outcome, and
setting being studied [28]. As this example illustrates,
good external validity requires variations in who uses
an intervention, how the intervention might be opera-
tionalized, the outcomes the intervention is being
targeted to influence, and the settings in which the
intervention is used. This type of data could more
easily be gathered for the same or similar operations
if operations related to behavior change interventions
were released early and often and then incorporated
into different research projects for different popula-
tions, settings, or outcomemeasures. At present, many
of our operations, particularly our interventions, are
often treated as the Bsecret sauce^ of our research and
only shared after years of evaluation. As a single re-
search group often does the evaluation, this results in
limited variability related to populations, treatments,
outcomes, and settings, thus providing limited data for
external validity claims. We recognize the challenge
we are making to cultural norms but hope that these
plausible advantages of early-and-often sharing might
help spur discussions on how to shift the culture (see
BFuture directions^ section).

AGILE SCIENCE PRODUCT TYPES FOR BEHAVIORAL

INTERVENTIONS

With the value of sharing operations specified, there
are three behavior change intervention product types
that we view as particularly important for targeting as
they are the conceptual building blocks for personal-
ized complex interventions: behavior change interven-
tion modules, computational models, and personaliza-
tion algorithms. Prior to specifying these though, it is
important to note that other products such as good
operations and constructs related to target populations
and settings are also valuable. We explicitly focus on
product types that are needed to directly facilitate
behavior change but other work should examine
how best to better specify and share other relevant
operations and constructs.
We define behavior change modules as strategies

designed to produce a specific and scoped behavioral
outcome. The sort of scope we are envisioning is most
akin to behavior change techniques in that they are
meant to be irreducible components of a behavioral
intervention [31]. The modules are designed to pro-
duce a specific outcome (e.g., have a person set a goal)
which, when combined with other modules, can pro-
duce more distal outcomes (such as supporting weight
loss). There is advantage to structuring modules using
the software module structure of inputs, processes, and
outputs. As the API example illustrates, Google re-
quires specific inputs (e.g., address), conducts a specific

PRACTICE AND PUBLIC HEALTH POLICY

TBMpage 320 of 328



process (e.g., linking this address to their map data-
base), and produces a specific output (e.g., a map).
Within the behavioral sciences, behavior changemod-
ules could conform to this generic structure to support
better Bsystem architectures^ of the intervention [24].
For example, a goal-setting intervention often requires
inputs such as behavioral history or preferences, con-
ducts a basic process (e.g., translates past behavior and
preferences into a target goal), and produces an output
(e.g., the behavioral goal for a person). Careful delin-
eation of inputs, processes, and outputs makes it easier
to draw connections between behavior change mod-
ules and thus the architecture on howmodules interact
(including modules for measuring attributes of the
person/population, setting, or outcome measure but,
again, those modules are not the focus of this paper).
For example, a goal-setting intervention requires an
input of past behavior. This past behavior could come
as the output of a self-monitoring intervention. On the
flip side, the goal output could be incorporated as an
input into other modules such as a social leader board
to enable social comparison.
Four adjectives—smallest, meaningful, self-

contained, and repurposable—provide criteria for a
Bgood^ module. The concepts of meaningful, self-
contained, and repurposable have self-evident value
but the value of smallest might be less obvious. In
br ie f , s t r iv ing for smal l modules enables
repurposability. Often a tool is developed for a very
specific use case. This use case often includes features
that are thought as central to that module’s purpose.
As more features are added, the module becomes
increasingly idiosyncratic to the specific use case. For
example, a blog post from the Center for Behavioral
Intervention Technologies at Northwestern University
describe a problem like this for BPurple Robot,^which
is a sensing system used for behavioral research [32].
The team recognized that Purple Robot needed to Bgo
on a diet^ as there were too many features limiting
repurposability. According to the blog, the team dis-
tinguished core features versus Badd-ons^ to increase
repurposability. This example illustrates the value of
the smallest meaningful self-contained module to in-
crease repurposability.
The second product type are computational behavior-

al models, which we define as mathematically defined
versions of behavioral theories that require greater spec-
ification than current behavioral theories. In particular,
behavioral theories classically define model structure
(i.e., how variables are related to one another) and pre-
dictions about directionality andmagnitudes of effects of
interventions on an outcome. A computational model
includes these specifications but also includes (1) rela-
tionship dynamics, including issues such as timescale of
an effect [33, 34], response patterns (e.g., a linear or non-
linear response [35]), latency, and decay [33]; and (2) the
boundary or Bthreshold conditions^ that define when,
where, for whom, and in what state of the individual an
intervention will produce the desired effect [9].
The complexity of behavior change, as implied by

complex interventions [5], often requires an

understanding of how modules interact with the indi-
vidual, context, and with each other over time, partic-
ularly to achieve a clinically meaningful outcome (e.g.,
moving a person from sedentary to 150 minutes of
moderate activity). Behavioral theories have classically
been how behavioral sciences describe how interven-
tions, individuals, and context interact but these are
fraught with well-documented problems such as lack
of falsification, lack of information about subtle dy-
namics, and they are often so abstract that they are
difficult to apply in practice [36, 37]. The computation-
al model is the agile science equivalent of a behavioral
theory as it specifies how persons, interventions, out-
come targets, and setting interact to produce a target
outcome. We envision that computational models will
take the form of dynamic system models [17, 18, 33,
38], time-varying effect models [16], or other such
dynamic models.
We are extending the concepts of operations and

constructs to theoretical frameworks in the form of
computational models. This is to acknowledge the
common problem that there is often a difference
between the complete abstract theory defining all
plausible variables and interrelationships (a theory-
construct) versus the concrete implementation of
the theory in a specific study that does not include
all of the variables has specific operations for each
variable, and, by extension, often only examines a
subset of the variables and interrelationships (theo-
ry-operation). For example, Fig. 1 is a computation-
al model operation, specifically a mathematically
specified dynamical model that is being used for a
specific intervention implementation [17, 38]. This
computational model operation was derived from
the computational model construct of a full dynam-
ical model of social cognitive theory described else-
where [39].
Computational models can be generated using

simulations prior to collecting data [39]. For exam-
ple, Riley et al. utilized simulation to generate the
computational model theory-construct of social
cognitive theory [39]. Specifically, the team gener-
ated a computational model of social cognitive the-
ory and simulated known behavioral phenomena
such as habituation. These simulations from the
computational model produced predictions that
were then examined against expectations. This
computational model simulation was then further
simplified to make it possible to operationally de-
fine in a study (Fig. 2). Specifically, the simplified
computational model operation mathematically de-
fines how specific intervention modules (e.g., an
adaptive goal-setting module), the person (e.g.,
self-efficacy, stress, busyness), and environment
(e.g., location, weather, day of the week) interact
to define an ambitious but doable step goal. This
computational model was generated via simulation
[39] and was designed to be empirically validated
via system identification [17].
Our third product is a personalization algorithm,

which we define as decision rules, including
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computational tools that translate information from
computational models into intervention selection de-
cisions. Personalization algorithms provide an answer
to the question: BWhich behavior change interven-
tion(s) should be used for this person (or other target
unit such as school, community, city, etc.) at this time
and context to achieve the desired outcome?^As such,
the personalization algorithm is a pragmatic target for
developing evidence-based recommendations of com-
plex interventions as the personalization algorithms
establish the evidence base for selecting the right in-
tervention option for a particular person in context.
Model predictive control [40–43], recommender sys-
tems [44], agent-based modeling [45], or Bayesian
network analysis [46] are all plausible personalization
algorithm strategies.
Personalization algorithms serve two functions.

First, they can dynamically determine which interven-
tion option available in an intervention needs to be
used for a specific user at a specific time. For example,
in the system dynamics framework, amodel predictive
controller translates the knowledge contained in a
computational model into specific adaptation deci-
sions [43]. The computational model may provide
predictions on the dynamic interplay between vari-
ables (e.g., how weather, stress, busyness may each
contribute to what is ambitious but doable for a per-
son), but this informationmust ultimately be translated
into decisions that a system could enact such as
selecting a step goal on any given day for each person.
The model predictive controller utilizes the available
knowledge codified in the computational model and
other information such as noise in the model (see
Fig. 2) to make such decisions.
The second role of personalization algorithms is to

aid the selection of interventionmodules that might be
effective for individual people in their specific context.

Such intervention personalization might be accom-
plished through recommender techniques [44], such
as the ones used by companies such as Netflix and
Amazon (e.g., since you liked the Avengers, youmight
like IronMan 3). A recommender system could utilize
demographics (e.g., age, gender, personality character-
istics) to make recommendations on intervention
modules appropriate for a person (e.g., women aged
40–60 just starting exercise tend to do best in groups;
here are some groups that you can join in your area).
The ability of recommender systems and similar algo-
rithms to suggest appropriate intervention modules
depends on the accumulation of data that clearly in-
cludes variations in persons, intervention modules,
outcomes, and settings to enable effectve matching of
particularly interventions for particular persons to
achieve a desired outcome. Early-and-often sharing is
thus a prerequisite for the accumulation of data needed
to power such intervention personalization.
In summary, we argue for recognizing a wider range

of scientific products, including the three key
product types we described above: behavior change
modules; computational models; and personalization
algorithms and also argued for recognizing the value of
both operations and constructs independent of causal
inferences. Together, these three agile science products
each uniquely contribute to supporting evidence-
based decision making about which intervention to
use for whom and at what time.

Agile science process

We propose a first draft process (v0.1) to produce and
share these products early and often (see Fig. 3). It is
essential to note that the agile science process starts
and ends with the curated knowledge base, which we
envision includes a much wider range of insights and

Fig 1 | Computational model structure of a just in time adaptive intervention. Adapted fromMartin, Deshpande, Hekler, and Rivera [38]
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resources than is currently common in the scientific
literature. Extending the argument of Chorpita et al.
[20], it is essential to acknowledge the essential role for
effect curation of knowledge, which is a separate com-
plementary process to creation. For the purposes of
this paper, we focus on products and a process for
knowledge creation as we view careful delineation on
what to generate as a logical prerequisite prior to
curation but future work should better articulate
curation strategies most useful for real-world behavior
change interventions. There are two complementary
and iterative phases, the Bgenerate^ phase and the
Bevaluate^ phase. Examining the emphasis of
human-computer interaction (HCI) versus behavioral
science is instructive for distinguishing the phases.
WithinHCI, there is an emphasis on novel technology
tools and artifacts, not necessarily reliable effect size
estimates/causal inferences [47].Within the behavioral
sciences, reliable effect size estimates for constructs are
more important to support evidence-based decisions
[1]. Within agile science, we see these two as comple-
mentary with, roughly, HCI processes conforming to
the generate phase and behavioral science processes
roughly conforming to the evaluate phase, though
obviously there is overlap.
The purpose of the generate phase is twofold: (1) to

produce multiple contender operations to specify con-
tender constructs of modules, computational models,
and personalization algorithms; and (2) to conduct
feasibility testing for real world use using the criteria
from Bowen et al., including acceptability, demand,
implementation, practicality, adaptability, integration,
and limited efficacy [10]. By contender, we explicitly
acknowledge that the products produced via the gen-
erate phase are not evidence-based. The contender
label is used to minimize inappropriate claims about
effectiveness for the sorts of small trials recommended
in the generate phase [48] but also to acknowledge
their value. The generate phase includes formative
work, simulation studies, and prototype testing.

The goal of formative work is specification of the
problem, goal, population, and setting and ideation on
plausible solutions to achieve targeted goals. It in-
cludes methods such as human-centered design [27]
and community-based participatory research [7] and
also explicitly includes careful review of previous ac-
cumulated knowledge. These methods are acknowl-
edged as critical for a wide range of evidence-based
practice recommendations related to the research en-
terprise [5].
The goal of simulation studies is to specify compu-

tational models and also plausible personalization al-
gorithms with limited or no data. As discussed earlier,
Riley et al. utilized simulation to generate a computa-
tional model of social cognitive theory [39]. The sim-
ulation study process is, by definition, highly iterative
and involves specifying the attributes of a computa-
tional model (i.e., model structure, predicted magni-
tude, direction, and dynamics of interrelationships,
and the interaction between individual and contextual
differences on when the intervention will produce an
effect). As each of these features are specified, the
developer can then run a simulation to examine if
the predicted output from the simulation is in line with
their expectations. For example, in the Fig. 1 dynam-
ical model, the team has conducted a series of simula-
tions to explore different ways of defining an
Bambitious but doable^ goal based on interactions
between the variables in the model. This sort of pro-
cess is highly valuable as it allows for complex and
dynamic hypotheses to be mathematically specified
and thus testable.
The goal of prototype testing is twofold: (1) to facil-

itate further specification of operations via the process
of building an operation and (2) to do feasibility testing
by sharing prototypes with relevant stakeholders to
receive feedback. For early testing of feasibility in the
generate phase, we see particular value of Blean start-
up^ methods [25]. In brief, lean start-up methods pro-
vide strategies for identifying assumptions about an

Fig 2 | Diagram of themodel predictive controller that utilizes the computationalmodel in Fig. 2. Adapted fromMartin, Hekler, and

Rivera [43]
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eventual product or service and then devising themost
Blean,^ which means resource-efficient, strategy possi-
ble for testing the assumption. For example, the foun-
ders of Dropbox made the assumption that there
would be demand for a service that makes it easy to
sync and share files. To test this assumption, they could
have built the technology but that would have re-
quired considerable resources. Instead, they tested
their assumption with a video (http://techcrunch.
com/2011/10/19/dropbox-minimal-viable-product/).
The video was a test on the feasibility of the idea (e.g.,
acceptability, demand) that was resource-efficient as
no technology was developed. A central future area
of research is to systematically study how best to trans-
late this type of lean process into a scientific process
that is useful for testing feasibility issues for behavior
change interventions (see BFuture directions^ section).
It is essential to acknowledge the highly iterative and

dynamic nature of the generate phase. It is likely that a
researcher engages in formative work, simulation

studies, and even prototyping testing iteratively and/
or simultaneously. For example, a prototype test of a
problem-solving module might reveal the need for
better problem or target user specification, thus the
need for more formative work. Alternatively, the team
may be interested in a complex outcome such as
weight and thus do simulation studies to specify dy-
namic predictions, while actively prototyping and do-
ing formative work. As something is learned with one
action, that information is fed into the others until
contender operations and constructs emerge that show
promise for being useful in the real-world.
Contender operations and constructs move to the

evaluate phase. The purpose of the evaluate phase is to
develop robust generalized causal inferences via effect
size estimates. We build on the logic of optimization
methods from MOST [14]. The core output of the
evaluate phase are the classic targets of behavioral
science including effect size estimates and confidence/
credibility intervals of the interrelationship between

Fig 3 | Agile Science Process v0.1
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constructs. Particularly when methods such as micro-
randomized trials are used, they provide a resource-
efficient way to evaluate the agile science product
types as data will be available about the interrelation-
ship between modules, individuals, and context over
time [16]. If clinicallymeaningful effect sizes are found,
then a target product can be relabeled from a contend-
er to an empirically supported product. These empir-
ically supported products, particularly when data are
pooled to support recommender system processes
discussed earlier, can then provide an evidence-based
answer to the question: BWhich behavior change in-
tervention should be used for this person (or other
target unit such as school, community, city, etc.) at this
time and context to achieve the desired outcome?^
After both the generate and evaluate phases, all prod-

ucts created are shared into the curated knowledge base
including Bfailed^ studies such as information about
how a contender operation did not appear to have
real-world feasibility from the generate phase or oper-
ations that did not appear to show clinically meaningful
effects from the evaluate phase. As Fig. 3 illustrates, we
explicitly argue for early-and-often sharing of all prod-
ucts and insights from failed studies generated within
the scientific process into the curated knowledge base.
As described above, contender operations are the ma-
terials needed for exploring issues of feasibility and also
for carefully specifying constructs. The classic four-
phase model emphasizes effect size estimates prior to
testing feasibility in an effectiveness trial [7]. As the
Dropbox example illustrates, formative research
methods, simulation studies, and prototype testing can
examine feasibility prior to development of final oper-
ations, let alone constructs, or causal inferences. This is
important as the agile science process explicitly places
questions of feasibility and construct specification as
equally important to effect size estimation as represent-
ed in the generate phase. Many of the tools already
exist for early-and-often sharing of contender opera-
tions for digital health interventions such as open-
source code repositories (e.g., GitHub), open science
forums (e.g., Open Science Framework), and emerging
open infrastructures (e.g., [49]).
As our goal is evidence-based practice, the process is

focused on answering the question: BWhich behavior
change intervention(s) should be used for this person
(or other target unit such as school, community, city,
etc.) at this time and context to achieve the desired
outcome?^ Modules, computational models, and per-
sonalization algorithms provide the evidence-based
Bbuilding blocks^ for generating practice recommen-
dations for combiningmodules into complex interven-
tions for unique use cases. An interesting opportunity
that could emerge is a new type of complex interven-
tion, one that might be called an evidence-based Bon-
the-fly^ complex intervention. Specifically, on-the-fly
complex interventions involve the evidence-based se-
lection of appropriate modules for an individual that
are selected specifically for that person. This type of
on-the-fly complex intervention is a logical target that
is in line with the prevention and treatment strategies

being called for within the Precision Medicine
Initiative [50].

Ongoing case study of agile science

Multiple complementary research projects are under-
way that each focus on developing a different module
for a complex intervention for physical activity. These
research streams were largely the inspiration for v0.1
of the agile science process and thus are informative to
helpmake the potential of agile sciencemore concrete.
The work already described in defining an ambitious
but doable step goal is one such project. From an agile
science perspective, our goal is to develop a module,
computational model, and personalization algorithm
that define ambitious but doable step goals for a per-
son in context and over time to support physical activ-
ity. Combined, this could function as an effective goal-
setting module that could be used in a complex inter-
vention. A sister project headed by coauthor Klasnja,
is focused on developing modules that support physi-
cal activity maintenance [16]. In brief, the focus of this
work is on the development of two intervention strat-
egies: (1) providing context-relevant cues to engage in
physical activity (e.g., it is themorning, sunny, and you
have time open in your schedule; up for a walk?); and
(2) daily planning (e.g., when, where, and how an
individual will be active).
A third complementary project is focused on the

development of a tool that can support the rapid cre-
ation and early-and-often sharing of behavior change
modules. In partnership with Bob Evans at Google
and his open-source Paco system (www.pacoapp.
com), at the time of writing, we are building a system
that allows researchers to rapidly build behavior
change modules. The focus is on developing a process
for doing rapid prototyping and early-and-often shar-
ing of the behavior change modules.
Within the ambitious but doable and context cue/

implementation intention projects, we previously en-
gaged in formative work, simulation studies, and pro-
totype testing and thus are currently utilizing the op-
erations created previously in the evaluate phase.
When combined, our hope is that the modules gener-
ated across these projects will enable on-the-fly com-
plex interventions.

DISCUSSION

Great advantage for evidence-based practice can occur
if we, as a field, embrace the value of a much wider
range of contributions to scientific practice beyond just
effect size estimates. In particular, behavior change
modules, computational models, and personalization
algorithms are the building blocks for creating com-
plex interventions and thus are logical scientific tar-
gets. Further, sharing contender operations and con-
structs and also failed tests of these contenders from
early work has great value for supporting better con-
struct specification, improved efficiency in the scientif-
ic process, supporting earlier tests of feasibility, and
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could plausibly support better collection of data relat-
ed to external validity and, by extension, support rec-
ommender systems for personalization algorithms and
knowledge curation. The first draft (v0.1) of the agile
science process includes both the generate phase and
evaluate phase that both end in sharing these
products and insights in the curated knowledge base.
It is a starting structure for how to create, share, and
evaluate these products. Our work raises many
questions.
It might seem counterintuitive to focus on modules

when tackling something as complex as behavior
change. The incredible array of software developed
modularly (e.g., Apache, arguably the foundation of
the Internet) provides evidence for this approach, but
there are also epistemological reasons. In brief,
targeting modules, when complemented with compu-
tational models and personalization algorithms, is a
reduction strategy that does not ignore the complex
nature of behavior. In contrast, the four-phase devel-
opment model reduces the complexity of the problem
by assuming that a topic can be studied out of context
(e.g., efficacy trials) to increase internal validity prior to
external validity (i.e., effectiveness trial). As such, the
four-phase model ignores variations of units, treat-
ments, outcomes, and settings until the end of the
process but it is highly feasible that when, where, for
whom, and in what state of the individual can all
moderate when an intervention will produce an effect
[9]. Focusing on modules, building in context, and
updating fit embraces these variations and can be
codified in computational models and personalization
algorithms.
Another important question is the role of random-

ized controlled trials (RCTs) of complex interventions.
The RCT does have an important role but it must be
used when the research question dictates its use. We
see at least three use cases: (1) quality assurance of a
complex intervention that will be released Bas is^ to a
large population; (2) as an BA/B^ style test that is often
used in the tech industry; and (3) as used in the Btrials
of principles^ [51]. RCTs of complex interventions are
the most logical method for establishing that a specific
complex intervention will work for a specific target
population. An investment in an RCT of a complex
intervention is warranted whenever there is a large
enough population that will use a standardized proto-
col over an extended period of time without updating
the protocol. For example, if a health maintenance
organization plans to have two million individuals
use a complex intervention, conducting an RCT with
a representative sample is appropriate.
The second use is A/B testing [36]. In the digital

technology industry, there is a common practice of
comparing different versions (often two, hence A/B)
of a given system. The two versions represent different
hypotheses on how the system might function and are
often only subtly different. For example, Bond et al.
conducted a 61 million person A/B-style experiment
on Facebook to explore how message framing might
influence voting behavior [52]. There were three

conditions: the information condition, which provided
information about voting; the social condition, which
included everything in the information condition and
images of friends that voted; and a control group that
did not receive any information. As this example illus-
trates, the A/B test uses the logic of an RCT but is
focused on small differences. As such, it ismore akin to
the optimization methods discussed earlier. The third
use case for RCTs is the trials of principles, which
emphasizes that in behavioral intervention technolo-
gies, it is common for a software to change over time
but the general principle (e.g., using goal setting as a
technique) does not. Within a Btrials of principles^
RCT [51], the focus is on ensuring the test is on those
principles (i.e., the module constructs to use our labels
in this paper), while allowing non-tested parts of the
system not deemed principles to be updated over time.
In a trial of principles, heterogeneity between condi-
tions is minimized with careful comparator selection
and the method does not ignore technology changes.
As such, it fits well with agile science within the eval-
uate phase.
While the agile science process likely makes the

most sense within digital health interventions, can it
be applied to other interventionmediums?We believe
it is quite plausible that the same process can work for
other intervention modalities (e.g., face-to-face, group)
and other types of complex problems (e.g., precision
medications, public policy initiatives). As with any
scientific process, the essential requirement is replica-
tion with sound definitions, robust versioning control,
and a process of rapidly sharing and curating that
information. This is easier with software but can be
difficult with other modalities. That said, striving to-
ward better-specified operations and constructs, repli-
cation, and more efficient curation is possible with
non-technology interventions. Behavioral science has
many examples of carefully replicated experimental
manipulations (e.g., careful specification of cognitive
dissonance [53]). The major limitations are interven-
tion specification to support replication, which is ideal
for all sciences and effective curation as already point-
ed out by others [20].

Future directions

More research is needed on early-stage work, which
we label the generate phase. The generate phase pro-
duces the contender operations and constructs and
provides insights about real-world feasibility that then
can be tested in the evaluate phase. Previous work
suggests early studies often test feasibility of methods
(e.g., recruitment, randomization, retention, and as-
sessment), not hypotheses [48]. Other recommenda-
tions suggest a clear distinction between testing feasi-
bility of the operations versus research methods [54].
Future work should be conducted to assess how the
early-phase process could be adjusted to better enable
the generation ofmultiple contender operations, initial
filtering of these operations related to issues of feasi-
bility, and careful, but plausibly separate, testing of the
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research methods themselves for a later trial, when
that is appropriate.
Further work is needed on devising resource-

efficient experimental designs and statistical analyses
for the generate phase, particularly to support decision
making on if rigorous evaluation is warranted. For
example, sequential n-of-1 trials could serve as a more
efficient feasibility testing method by allowing for in-
tervention adjustments after each series of trials [55].
From a human-participants perspective, micro-
randomization trials are very efficient and thus could
also be used after more classic n-of-1 trials have pro-
vided enough confidence to warrant investment in the
design of one [16]. In terms of statistics, a Bayesian
approach might be more appropriate than Fisherian
statistics [56] as the Fisher approach is not appropriate
with limited data [48]. As demonstrated elsewhere,
careful use of priors within studies of novel systems
can be used to help mitigate problems with magnitude
effect errors and thus could be a more appropriate
statistical method for the generate phase [47].
With regard to idea generation and vetting, there are

important cognitive biases that likely come into play
that need to be better acknowledged in the generate
phase. For example, Dow and colleagues showed the
possibility of developing better results through itera-
tion [57] and a subsequent study examined the differ-
ences between parallel and iterative development ver-
sus serial and iterative development [58]. Results
found that individuals randomized to work on multi-
ple ideas at once (i.e., parallel group) had greater
openness to incorporating feedback and also produced
better end products compared to the single iterative
concept group. Individuals in the single concept group
were less open to feedback and instead often Bstayed
the course.^ This stay the course observation is similar
to the sunk cost bias [59], which is a well-known
cognitive bias that suggests an individual will pursue
a less desirable option even if a more desirable option
becomes available because of the resources already
invested. The substantial fiscal and intellectual cost of
the current research enterprise may make scientists
prone to the sunk cost bias thus stymying changing
course when it might be warranted. More rapid and
parallel development could support both better defin-
ing of a construct and minimize the impact of the sunk
cost bias, thus further reinforcing the value of early-
and-often sharing and developing multiple operations.
Finally, it is essential to continue exploring how the

research enterprise might enable or stymy the creation
and early-and-often sharing of products from science,
particularly operations [3, 60]. As suggested by
Ioannidis, it is quite plausible that the current reward
system for academics, particularly the currency (i.e.,
publications and grants), may be resulting in the unin-
tended consequence of incentivizing the creation of
only minimally useful products for real-world use.
Further exploration on the impact of the design of
the research enterprise is warranted that not only ex-
plores how to minimize bias (e.g., the sunk cost bias)
but also articulates how the incentive structures of

science can be better aligned to useful products for
real-world use. For example, early-and-often sharing
is not well incentivized in the current research enter-
prise, particularly the products from the generate
phase. That said, it could very likely improve the
scientific community’s ability to create efficient accu-
mulation of knowledge about behavior change. Future
work should study incentives for academics that rein-
force early-and-often sharing. In addition, we further
reinforce Chorpita et al.’s call for more focus on effec-
tive knowledge curation [20].

SUMMARY

In this paper, we established three products: modules,
computational models, and personalization algo-
rithms, as logical targets for supporting more effective
and efficient knowledge accumulation for evidence-
based practice. We then presented a rough outline of
an agile science process that emphasizes more scientif-
ic products to share early and often, including opera-
tions and also failed tests. As our ongoing suite of
complementary projects illustrate, we are actively
working toward testing the assumptions outlined. We
see our suggestions as complementary to the many
other suggestions for improving the efficiency of
knowledge accumulation for evidence-based practice.
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