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Abstract: Healthcare is one of the most complex systems to manage. In recent years, the control of

processes and the modelling of public administrations have been considered some of the main areas

of interest in management. In particular, one of the most problematic issues is the management of

waiting lists and the consequent absenteeism of patients. Patient no-shows imply a loss of time and

resources, and in this paper, the strategy of overbooking is analysed as a solution. Here, a real waiting

list process is simulated with discrete event simulation (DES) software, and the activities performed

by hospital staff are reproduced. The methodology employed combines agile manufacturing and

Six Sigma, focusing on a paediatric public hospital pavilion. Different scenarios show that the

overbooking strategy is effective in ensuring fairness of access to services. Indeed, all patients respect

the times dictated by the waiting list, without “favouritism”, which is guaranteed by the logic of

replacement. In a comparison between a real sample of bookings and a simulated sample designed

to improve no-shows, no statistically significant difference is found. This model will allow health

managers to provide patients with faster service and to better manage their resources.

Keywords: agile; DMAIC; six sigma; modelling and simulation

1. Introduction

An increasing number of works deal with the problem of health management [1,2], which is a

central issue in many political and social debates about the consumption of healthcare resources [3,4].

In this context, tools and methodologies, such as agile manufacturing, lean-agile manufacturing, and

agile supply chains, promote a higher level of readiness for the continuous evolution of an extremely

variable and unpredictable market [5,6]. For this reason, they are defined as “market sensitive” [7].

The literature offers numerous definitions of agile:

• Van Hoek et al. [8] defined agile as “everything related to customer response and market turbulence that

requires specific skills achieved using Lean Thinking”.

• Robarts [9] defined it as “the company ability to grow in a competitive and changeable market, to respond

quickly to rapid changes in the markets driven by the improvement of products and services based on

customer needs”.

Int. J. Environ. Res. Public Health 2020, 17, 1052; doi:10.3390/ijerph17031052 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-3269-1307
https://orcid.org/0000-0001-7290-6432
https://orcid.org/0000-0003-1346-515X
http://www.mdpi.com/1660-4601/17/3/1052?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17031052
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 1052 2 of 17

• Furthermore, Lee defined it as “a set of strategies that solves the problem of uncertainty and the variability

of demand by increasing the flexibility of the system” [10].

Some common aspects emerge from these definitions: sensitivity to the environment, the

exploitation of customer impact, and variability leaning through flexible strategies.

Carvalho et al. [11] analysed the differences and similarities between lean, agile, resilient, and

green (LARG) methodologies. Lean is focused on flexibility and on the reduction of costs through

the continuous elimination of wastes. It brings high returns and minimizes the inventory throughout

the chain. Moreover, it shortens the lead time without increasing costs. Conversely, agile systems are

basically focused on the rapidity of changes to guarantee higher flexibility.

In the healthcare system, the concepts of flexibility, modularity, and readiness make it possible to

strengthen the response system for patient clients. Health managers need new service management

strategies that are effectively responsive to changes and the negative effects of variability in patient

care demand. Improvement consists of increasing the level of governance and control of a process and

in decreasing errors through by analysing the causes that generate them.

In healthcare and in other sectors, lean and agile principles can be combined with the Six Sigma

methodology to improve the performance, quality, and response of a process through data analysis.

The premise of a Six Sigma project is the definition of a measurable quantitative objective. Therefore,

it is fundamental to determine a relationship between the quantity to be improved (e.g., number of

defects, the length of waiting lists, the use of a resource), generally called Y, and the input variables of

the process (e.g., unique centre of booking (UCB) programming, status of equipment and resources),

generally called X [12]. The correct definition of the answer (Y) and the discovery of the fundamental

causes (X) require a complete knowledge of the process to be improved, a great analytical attitude,

and the correct application of a certain number of qualitative and quantitative investigation tools,

such as process maps, cause and effect matrices, failure mode and effects analysis (FMEA), and the

define–measure–analyse–improve–control (DMAIC) cycle. DMAIC is one of the most effective tools

for problem solving and constitutes the roadmap for project development.

Regarding the combination of lean and Six Sigma, many efforts have been made by researchers

in the management of hospital processes through the application of lean Six Sigma and the DMAIC

methodology. Southard et al. [13] studied the introduction of radio frequency identification (RFID)

technology for surgical procedures. Similarly, also concerning surgical procedures, Improta et al. [14–17]

analysed the implementation of fast track surgery for patients undergoing prosthetic hip replacement

surgery through the DMAIC cycle. In contrast to the previous authors, Vijay did not focus on

surgical procedures but applied the same methodology to improve the hospital discharge process [18].

Moreover, recently, Six Sigma has been used for software development, with the aim of eliminating

waste-inducing defects [19], as reported in the works of Hamid et al. [20] and Asghar et al. [21].

Notably, regarding the combination of agile and Six Sigma, the agile approach is based on the

daily collaboration of team members and focuses on observations and short-term improvements,

neglecting decision-making based on measurable data. The integration of Six Sigma will provide agile

teams with a structured methodology as well as tools for empirical problem solving, as reported by

Safaie [22]. According to Alipour et al. [23], agile complements both lean thinking and Six Sigma

methodologies by adding to them responsiveness and adaptability. Lean Six Sigma emphasizes

project work on the identified variation from the proposed standard without focusing on the voice of

customers. The combined implementation with agile improves this weakness. Moreover, Felhmann

and Santillo [24] showed that merging a standard measurement method such as Common Software

Measurement International Consortium (COSMIC) function points with Six Sigma within the agile

development framework produces numerous benefits and advantages. Finally, Morris [25] examined

the relationships of some methodologies, such as agile, lean production, and Six Sigma.
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1.1. Patient No-Shows

Patient no-shows have been recognized as a critical issue within modern outpatient healthcare

systems. Many studies have revealed a no-show rate higher than 10%. Deyo and Inui noted that the

no-show rate generally ranged from 15% to 30% for both adult and paediatric patients, while Rust and

Oliver reported that the rate of absentee patients for public paediatric facilities also reached 80% [26,27].

Common impacts include reduced clinical efficiency and low productivity, wasted medical resources,

increased healthcare costs, and limited access to patient care.

As reported by Guzek et al. [28], academic medical centres (AMCs) take care of 26% of all medical

hospitalizations but account for only 5% of hospitals. The yearly reimbursement loss because of missed

appointments in a paediatric neurology clinic with a 26% no-show rate was $257,724.57 during the July

2013–June 2014 academic year (numbers based on estimated reimbursements). Billing losses amounted

to $788,733.58, representing lost opportunities to improve patient access to care and to expand other

parts of an AMC’s mission, including education.

Patient no-shows create unexpected downtime for medical personnel that is unrecoverable.

Many efforts have been made by hospitals to reduce the rate of absenteeism: reminder letters, telephone

calls, text messages, and even disincentives such as advance payment for the service, but the problem

continues to be substantial [29]. Therefore, the development of proactive solutions, which identify

patients’ failure to present and reduce the negative impact, is a fundamental task for improving the

delivery of health services [30–32]. Various scheduling methods have attempted to reduce waiting lists

and the negative impact of absentee patients. As a result, some researchers have proposed overbooking

as an effective approach to handle the criticalities of absenteeism [33].

For example, overbooking was carried out to mitigate absenteeism in a health centre with 18

outpatient clinics in Denver (USA) through a lean Six Sigma approach [34–36]. Through lean, gaps

and waste were identified in the process, while with Six Sigma, the desired target status, the causes of

variability, and the intervention policies to reduce the gaps were described. Finally, overbooking was

adopted to reduce patient no-shows.

Similarly, other examples regarding the implementation of overbooking can be found in the

literature [37,38], such as the work of Liu and Ziya [39], where two different scenarios were compared:

in the first scenario, they assumed that the daily service capacity is fixed and that the clinic does

not have the option of overbooking patients; thus, the only decision variable is the arrival rate of

patients, and the objective is to maximize the average number of patients served per day. In the second

scenario, they assumed that the clinic’s service capacity is flexible (the clinic can opt for overbooking),

and it represents a decision variable together with the arrival rate. After the characterization of both

scenarios, the optimal decisions and their influence on patients’ show-up probabilities were identified,

and the overbooking decision proved to play an important role in the management of the appointment

scheduling policy.

Zacharias and Pinedo [40] presented an overbooking model for scheduling the arrivals of patients

who have different no-show probabilities and different weights, exploring the trade-offs between the

benefits of efficient physician utilization and the costs of patient waiting time. They demonstrated that

the no-show rate and patient heterogeneity have a significant impact on the optimal schedule.

Samorani and La Ganga [41] dealt with the problem of scheduling outpatient appointments given

individual day-dependent no-show predictions, and they found that when overbooking occurs, while

it is desirable to maximize the number of patients seen, it is desirable to limit patient waiting time and

clinic overtime. To solve this trade-off, they developed a dynamic scheduling procedure that considers

no-show predictions, tested it via simulation, and validated it using the dataset of a large mental health

centre. They showed that the open access approach would lead to a profit increase of up to 18% and

that for low no-show rates, the quality of prediction should be shifted towards high sensitivity, while

for high show rates, it should be shifted towards high specificity.
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1.2. Objective of the Study

Within this framework, this study aims to improve patients’ access to clinical assistance in a

paediatric hospital in southern Italy. To that end, we analysed all the activities carried out in the UCB

of the hospital and investigated solutions to improve the scheduling policy of the UCB. An agile Six

Sigma approach was implemented following the DMAIC cycle to identify process gaps and to measure

performance improvements. A model was developed to simulate, examine, and evaluate different

strategic choices adopted to manage and reduce patient no-shows.

2. Materials and Methods

This project was conducted at the Presidium Hospital of Naples AORN Santobono Pausilipon,

which is a representative healthcare structure that is always active in facilitating access to services and

reducing waiting times, in accordance with regional and national strategic directions. The strategic

mission of the hospital is to satisfy the assistance needs of all paediatric citizens, guaranteeing services

of effective, efficient, and timely prevention, treatment, and rehabilitation, provided with respect for

the person and in conditions of absolute security. At the hospital, there are approximately 15,000

admissions per year (averaging the last 10 years), and it performs more than 100,000 outpatient services;

additionally, it has approximately 400 beds. The hospital’s activities are carried out at two facilities:

• Santobono Hospital, divided into four pavilions: “Santobono”, “Torre”, “Volano”, and “Ravaschieri”,

located in Naples;

• Pausilipon Hospital: located in Naples.

Booking services are managed by the UCB of the hospital, which is open Monday to Friday

8:00–17:30 and Saturday 8:00–12:00 and has three front office workers during the morning shift

(8:00–14:00) and one employee in the afternoon shift (14:00–17:30). After booking, admitted patients

are directed to the “Volano” pavilion, where outpatient services and activities are performed.

The issues raised by the general management of the hospital can be summarized in the

following points:

1. Management of absentee patients and changes in and cancellations of services; and

2. Waiting lists.

To achieve the project objective, i.e., identifying and mitigating inefficiencies in patients’ access to

services, the DMAIC cycle was used. We started from an analysis of inefficiencies in the access routes

to the outpatient services performed by the structure. Through the different DMAIC phases, it was

possible not only to identify critical aspects and the causes of the process inefficiencies but also to

plan and implement improvement actions, with the aim of eliminating or mitigating the effects due to

entropy resulting from transfers, cancellations, and no-show patients, and to make the process fair

from the perspective of access to services.

Data were collected in the January 2016–December 2016 period and include the following

information:

• Description of the visit booked (operative unit, department, type of service);

• Number of visits booked;

• Date and time when the visit is booked;

• How the visit is booked (over the phone/in person/other);

• ID booking;

• ID patient;

• ID visit;

• ID acceptance;

• Date and time when the visit is scheduled;
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• Date and time when the patient is admitted;

• Time when the visit is assigned to the patient;

• Time when the patient is assigned for the visit; and

• Type of patient (chronic/first visit/other).

During the measure and analysis phases, the percentages of absenteeism of patients (i.e., patients

who were not present at the time of the scheduled visit) were calculated for each unit, in addition to the

mean, min, max, and standard deviation of the waiting time. Furthermore, other parameters (chaos,

inefficiencies, potential, improvement, and waiting list reduction) to measure the process performances

were calculated as follows.

Chaos is considered a synonym of entropy; thus, it is calculated by considering how many

procedures are cancelled, shifted to another day, or not performed due to absenteeism Equation (1):

Chaos = (#No-Show + #shift + #cancel)/(#booking). (1)

Equation (2) represent inefficiency, which is calculated as the difference between capability

(number of visits that could effectively be performed) and the number of bookings, normalized

by capability:

Inefficiency = (Capability − #booking)/Capability. (2)

If the daily availability of booking is saturated, the number of visits that could be performed is

calculated based on Equation (3):

Potential = Useful outpatient days * Availability. (3)

The difference between the potentiality of the system and what it actually achieves, compared to

its availability, provides the theoretical improvement in terms of the number of days useful for carrying

out visits Equation (4):

Improvement = (Potential − Realized)/Availability. (4)

To have the data in terms of a waiting list, improvement must be multiplied by 7/3 since visits are

available for only 3 days of the week Equation (5):

Waiting list reduction = Improvement * (7/3). (5)

This reduction can be achieved with the logic of scientific overbooking (as reported in the

Results section).

After the analysis of the service-providing process, the description of the mechanism of operation,

its characteristics, the logic in force, and the critical issues, the delineation of a conceptual model

of access routes and performance executions is successfully completed. At this point, through a

formal model, we could reproduce what we have mentally defined, thus simulating reality in analysis.

Through the discrete event simulation (DES) approach, this conceptual model was materialized in a

formal model that made it possible to represent the reality of the organization under study through a

simulation model [42].

DES is a process of codifying the behaviour of a complex system as an ordered sequence of

well-defined events. Known applications include stress testing, assessing possible financial investments,

and modelling procedures and processes in the manufacturing and healthcare context. In healthcare,

Baril et al. [43] reduced patient delays in an oncology clinic by 79% after 19 weeks, while Glover et

al. [44] highlighted the benefits of using DES in a case study of abdominal aortic aneurism. Zhang [45]

conducted a systematic review to explore the current advances and extent of DES, identifying four

major areas: health and care systems operation, disease progression modelling, screening modelling,

and health behaviour modelling.
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Finally, based on the collected data, we virtually simulate the model by formulating ad hoc

strategies to respond to the chaos resulting from absentee patients, shifts, and cancellations.

3. Results and Discussion

3.1. Define

First, the team dealing with the project was defined as follows: a medical manager was the project

leader, a biomedical engineer was the project champion, and the team was composed of three engineers.

While the leader and the champion dealt with conceptual issues, the team collected and analysed data;

each member had to make a substantial contribution to the work.

To determine the relations between the quantities to be improved (Y) and the variables in input (X)

able to influence their value, a detailed mapping of the process was carried out (Figure 1).

 

 
 
 

 
 
 

 
 

Figure 1. Map of the process.

A project charter was developed with all the necessary details of the project:

• Project title: Agile and Six Sigma to reduce patient absenteeism.

• Question: Excessive absenteeism in the Presidium Hospital.

• Critical to quality (CTQ): X9 Work organization, X14 Scheduling method, X12 Shifts and

cancellations, X15 State of equipment, X11 Absenteeism, X10 Production capacity.

• Objective: To realize corrective measures to reduce/increase the CTQ elements.

• Team members:

• Timeline:

Define: August 2016

Measure: September 2016
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Analyse: October 2016

Improve: November 2016

Control: November–February 2017

• Within scope: Absenteeism of patients within the hospital context.

• Out of scope: Other management problems regarding medical visits.

3.2. Measure

After the presentation of the variables in the define phase, in this phase, a decision is made

concerning their inclusion and exclusion. According to the management of the hospital, the variables to

be improved were selected, and a weight for each of them was provided: Y3 service site, Y4 information

system, Y6 equity of access to performance, Y7 waiting time of performance, and Y9 time of stay in

the waiting room were chosen by the director of the hospital as the target variables to be improved.

A priority matrix makes it possible to select those critical variables that affect the output to be improved.

For each of the input variables (X), a score was calculated considering their contributions to the output

variables (Y); then, a cumulative score was computed.

By calculating the cumulative score based on the priority matrix, it was possible to identify which

input variables contributed to approximately 80% of the critical issues (Figure 2): X9 Work organization,

X14 Scheduling method, X12 Shifts and cancellations, X15 State of equipment, X11 Absenteeism, and

X10 Production capacity. These variables represent the CTQ elements in the DMAIC approach.

 

 

 

 
 

 

Figure 2. Calculation of the cumulative score. The circle in the graph indicates the variables that

represent 80% of the critical issues.

3.3. Analyse

A Pareto analysis highlighted those performances that have the greatest impact in numerical terms.
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The total number of visits, belonging to 198 different services, amounts to 66,649. These visits

were booked and scheduled in 2016.

Eighty percent of the above sample (66,649) is represented by 21% (43 different performances) of

the visits.

Regarding the services obtained, the following are calculated:

• Average waiting time: The difference between the agenda date (or date of referral) and the

booking date, expressed in days;

• Standard deviation: The dispersion of waiting time with respect to its average value, expressed

in days;

• Max: The maximum waiting time recorded for the performance in question, expressed in days;

• Min: The minimum waiting time recorded for the performance in question, expressed in days; and

• Total: The number of services booked.

Please note that the value of waiting time is approximated for those services rather than for

general visits or first visits because the system does not record the date on which the visit should be

scheduled as a direct consequence of a medical referral.

In our study we examined the following eight areas:

• Otolaryngology,

• General neurology,

• Emergency surgery,

• General orthopaedics,

• Infant neuropsychiatry,

• Dermatology,

• Medical day hospital,

• Cardiology.

The Absenteeism rate and Waiting times for the services provided by each area were measured

with the following results: the Absenteeism rate ranged from 13% of the Emergency surgery to 38%

of the Infant neuropsychiatry; the maximum Waiting time ranged from 182 days of the orthopaedic

to 421 days of the Infant neuropsychiatry, while the mean Waiting time ranged from 16 days of the

Emergency surgery to 208 days of the Infant neuropsychiatry.

The Chaos (computed as the percentage of no-show, shifts, and cancellations) and the Inefficiency

of the process (computed as the percentage of services not compliant with the times established by law)

were also computed for all the areas in order to understand which one of them affected the hospital.

The Chaos and Inefficiency of the process are reported below for each examined area:

• Otolaryngology: 31% and 20%.

• General neurology: 25% and 30%.

• Emergency surgery: 47% and 3.3%.

• General orthopaedics: 34% and 24%.

• Infant neuropsychiatry: 56% and 85%.

• Dermatology: 53% and 42%.

• Medical day hospital: 49% and 54%.

• Cardiology: 33% and 19%.

After the analysis, due to the above-mentioned measurements, the Infant neuropsychiatry has

been identified as a representative case to be improved, since it shows the highest value of both Chaos

and Inefficiency of the process, respectively 56% and 85% (Table 1). Therefore, our simulation model

has been tested on this representative area.
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Table 1. Parameters of the Infant Neuropsychiatry Unit.

Medium Wait
(Days)

Max Wait
(Days)

Min Wait
(Days)

Chaos
(%)

Inefficiency
(%)

208 421 0 56 85

3.4. Simulation

From the analysis of the ambulatory service process of the hospital presidium, it was possible to

outline the conceptual model of the department through the DES approach.

The modelling and simulation phases are reproduced and implemented on a computer to test

different strategic solutions that make the model evolve towards successful solutions. Controlling the

independent variables, it is possible to identify among different evolutions those to which the best

business scenario corresponds [42].

The critical parameters of the model, i.e., those that must be monitored, are as follows:

• Waiting list of the service;

• Minimum waiting time;

• Maximum waiting time; and

• Waiting steady time: the time needed to work through the entire queue.

Based on these parameters, it is also possible to monitor the fairness of access to services.

The following are the different design phases for conducting a simulation:

• Capacity calendar creation: This is defined as the sequence of days, in Julian format, in which the

availability of the service to be simulated is open. Formally, the calendar is an n x 2 matrix, where

n are the simulated days and for each day, the date and value of available services are shown—that

is, the maximum number of visits expected on that particular day. From the real system, on

average, the daily scheduled bookings are equal to 11, i.e., normally 10 plus an additional unit

of overbooking.

• Booking calendar creation: This is defined as the sequence of the total bookings made by patients

on different days of the week during a time window of amplitude necessary to work through

the entire queue. To generate this calendar, first, the total daily bookings, recorded by the real

system, were checked in the January–December 2016 time window and on different days of the

week. This control was used to evaluate the homogeneity of bookings for the “day” factor and for

the “month” factor.

For the data available, which belong to several groups (number of bookings on different days of

the week and the year), it is necessary to understand whether they are “different” from each other or

are part of the same “population” and whether their differences are due to normal statistical variability.

“Different” means that the data are samples of a population described by a statistical distribution that

is different for each of the groups.

Statistical analysis provides us with methods for interpreting these possible differences: the

ANOVA method, based on comparing variances (Figures 3 and 4).

Analyzing the ANOVA results, it is possible to conclude that since the p-value (0.000) associated

with the F test is lower than the chosen significance level (0.05), the homogeneity hypothesis must be

rejected. Therefore, it is possible to conclude that the bookings vary significantly (with significance

level α = 0.05) depending on the month of recording.



Int. J. Environ. Res. Public Health 2020, 17, 1052 10 of 17

 

 

 

 

(a) 

 

(b) 

Figure 3. (a) Residual Plots for the variable “bookings” grouped according to the factor “month”; (b)

Residual Plots for the variable “bookings” grouped according to the factor “day”. Visual inspection of

the normal probability plot and the histogram seems to indicate that the residuals follow a normal

pattern for both.

 

 

(a) 

 

(b) 

 

α

Figure 4. (a) Probability plot of the residuals for the variable “bookings” grouped according to the

factor “month”; (b) Probability plot of the residuals for the variable “bookings” grouped according to

the factor “day”.

One-way ANOVA for both factors produced the following results (Tables 2 and 3).

Table 2. One-way ANOVA results. (DF = Degree of Freedom; Adj SS = Adjusted sums of squares; Adj

MS = Adjusted mean squares)

Bookings Per Month

DF Adj SS Adj MS F-Value p-Value

Month 11 837.2 76.106 7.86 0.000
Error 256 2477.4 9.677
Total 267 3314.6

Bookings Per Day

DF Adj SS Adj MS F-Value p-Value

Day 6 62.64 12.527 2.00 0.079
Error 261 1632.02 6.253
Total 267 1694.66
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Table 3. One-way ANOVA model summary.

S R2 R2 (adj) R2 (pred)

Bookings per month 3.11084 25.26% 22.05% 18.23%
Bookings per day 2.50059 3.70% 16.5% 14.6%

Since the p-value (0.079) associated with the F test is higher than the chosen significance level (0.05),

the hypothesis of homogeneity of the bookings with respect to the “day” variable can be accepted.

Following the ANOVA results and considering that only one sample is held, the non-parametric

bootstrap method is applied to generate the bookings, which are of finite size and of which the

distribution is not known.

3.5. Model Validation

In the next phase, it is necessary to check whether the model that has been created provides valid

results for the system under study. In particular, the measurements of the real system must be well

approximated by the measures generated by the simulation model.

The calibration process was followed by a model validation process or a “quality control” operation

in which the capacity of the calibrated model to reproduce the real operation of the system is ascertained.

In this phase, a comparison between real observations and simulated values was made using indicators

of goodness of fit, with the aid of appropriate graphical representations.

In particular, the Kolmogorov–Smirnov (K-S) test was used. This test is a non-parametric test that

allows one to compare a sample of data and a theoretical distribution or two samples of data to verify

the statistical hypothesis that the population from which the data come are from the one in question or

the hypothesis that both samples come from the same population, as in our case.

The comparison was made between the real sample and the simulated sample for the executed

and absent visits variables. The real sample refers to the infant neuropsychiatry visit services in the

August 2016–December 2016 time window, the window from which the data were extracted.

Kolmogorov–Smirnov Two-Sample Test.

• K-S test statistic: 0.160.

• K-S critical value (approximately): 0.254.

• Alpha level: 0.05.

The test statistic is less than the critical value; therefore, there is not sufficient evidence to conclude

that the underlying distributions are different.

3.6. Improve

The following table (Table 4) shows the following for each level of overbooking:

• #Under: The number of visits below the expected availability;

• #Over: The number of visits exceeding the expected availability;

• Average under: This considers those visits below the expected availability, evaluating the

difference between the simulated value and the real value. Average under is the average value

among the registered gaps;

• Average over: This considers those visits above the expected availability, evaluating the difference

between the simulated value and the real value. Average over is the average value among

registered gaps;

• Diff.: The absolute value of the difference between the average under and the average over;

• Equilibrium: The average value among the gaps between the average under and the average

over. If one imagines that the overbooking level is a faucet, positive values of the equilibrium

indicate an overflow and, therefore, overbooking; in contrast, negative values indicate a clogged

or malfunctioning faucet;
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• Steady time: The number of days required to work through the entire queue.

Table 4. The level of overbooking increases, the time to work through the queue is reduced, and as a

result, the reference time sample is reduced for the calculation of the number of visits above (#Over) or

below (#Under) the expected availability.

Scenario
Overbooking

Levels
#Under #Over

Average
Under

Average
Over

Diff. Equilibrium
Steady
Time

1 18 118 35 −3.52 2.63 0.89 −2.12 615
2 19 107 39 −3.34 2.71 0.63 −1.73 581
3 20 62 34 −3.27 3.02 0.25 −1.13 551
4 21 74 47 −3.16 3.06 0.10 −0.74 523
5 22 60 48 −3.15 3.48 0.33 −0.20 495
6 23 52 51 −2.94 3.67 0.73 0.33 474
7 24 44 53 −2.77 3.74 0.97 0.78 454
8 25 32 52 −2.88 4.10 1.22 1.44 432

A total of 187 visits over 112 useful days must be covered. Currently, the availability includes 10

visits a day; if the specialist in question works 8 h per day, the visits performed every single hour are

those expressed in Equation (6).

Visits/Hours = Availability/(Working hours per day) = 10/8 = 1.25. (6)

The actual time expressed in medical hours is described by Equation (7).

Hours/Doctor = (Visits to cover)/1.25 = 187/1.25 = 149.6. (7)

The use of this project guarantees that all the visits are booked; therefore, overbookings are also

carried out.

If the management of the hospital does not intend to adopt the “objective project” as a solution,

the level of overbooking to be implemented must also consider other parameters. In fact, in the first

analysis, the choice would fall on scenario 1, as it presents the lowest value of occurrences. However,

this variable is not sufficient because it does not take into account the value of equilibrium and the

possible overtime.

The balance leads to the exclusion of those scenarios in which the equilibrium is far from its ideal

value (i.e., far from zero). Therefore, our attention is focused on scenarios 4–7 (Table 5), which have

equilibrium values ranging from −1 to +1.

Table 5. Scenarios 4–7 are the only scenarios that take into consideration the presence of the value

of equilibrium.

Scenario 4 Scenario 5 Scenario 6 Scenario 7

Tot. occurrences 43 48 51 54
Tot. useful days 133 123 112 104
% occur./useful days 32% 39% 46% 52%

If one unit of overtime that covers two visits is considered tolerable, the overbookings become as

shown in Table 6.
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Table 6. Adding overtime parameters to scenario 4–7 as “covered visits”.

Scenario 4 Scenario 5 Scenario 6 Scenario 7

Covered visits 27 19 20 19
Tot. occurrences 18 29 31 35
Tot. useful days 139 123 112 104
% occur./useful days 13% 24% 28% 34%

Scenario 4, which provides an overbooking level of 21 performances, is the best in terms of balance,

occurrences, and visits covered by overtime.

3.7. Control

The control phase plays a key role because the process, if left to itself (without control), tends

to degrade over time because it is influenced by external factors [46]. To be more responsive to the

environment, the parameters that make it possible to define the level of overbooking must be constantly

monitored and possibly modified, as a situation could be created in which the daily availability

is exceeded, and vice versa. A continuous monitoring system makes it possible to understand in

a preventive way when the parameters change significantly, directing the process towards a drift

condition and then acting on them before non-conformities, represented by excessive overtime, occur.

In this context, the dynamic overbooking presented in the literature is the most effective solution.

4. Conclusions

Adding agile to the Six Sigma approach has helped achieve a faster deployment of the model

than would have been possible without the agile approach. The scheduling of visits and the timing of

each task were dictated by the agile methodology, while the structure of the improvement process was

followed based on the Six Sigma methodology. Indeed, both were characterized by deeply listening to

the needs of customers (in this case, the hospital) and having an attitude oriented towards statistical

thinking. It is important to highlight that the process underwent many analyses regarding variables to

include, service to be considered, and model validation.

In this work, the aim of which is to identify and mitigate the inefficiencies in accessing services,

we focus, from an agile perspective, on a preliminary analysis of the different constitutive stages of the

services, carrying out a mapping of the different phases; moreover, we identify any redundancies and

process losses. The progress process has established a discrepancy between what is foreseen by the

procedures and what is actually implemented. Lean logic, which includes reservations by appointment,

best deals with the problem of inflow and, therefore, safety at the hospital. However, it is not applicable

in reality due to the external variability caused by absentee patients who distort the process.

National trends over the last three years, with high average no-show rates ranging from 17.1% to

19.3% [47], have shown that despite reminder phone calls, postcard reminders, direct cell phone calls,

and administrative charges for patient no-shows aimed at addressing and altering no-show rates [48,49],

the no-show phenomenon is still a challenging issue both nationally [50] and internationally [51].

Although using an overbooking strategy can improve revenue and clinical resource utilization,

there is limited evidence documenting that the overbooking strategy is a positive contributor to

lowering no-show rates because overbooking is beneficial only under certain conditions [39]. Indeed,

overbooking can significantly increase the clinic service volume by increasing the availability for

patients and the overall productivity of the clinic, leading to a reduction in costs and improved patient

satisfaction. However, overbooking can prolong queues in clinics and increase patient dissatisfaction

prior to the appointment at hand. However, the bottle neck was not represented by the low number

of medical resources but by their unsaturation. Dimensioning the overbooking in the correct way,

keeping into consideration the entire process (no-show, cancellations and movements), would allow

hospital to obtain a substantial improvement.
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Therefore, the use of such a simulator to choose whether or not to adopt overbooking and, above

all, what level of overbooking is recommended could be helpful for the lean management of healthcare

organizations. Indeed, the simulator could suggest the best strategy for the management of the booking

calendar, reducing unbalanced waiting times between the booking and the scheduling of visits and

granting equity to patients and a more timely and fair delivery of healthcare services.

The proposed simulation model for overbooking appointments proved to be an effective method

of dealing with no-shows. The agile methodology was useful for fine tuning the parameters related to

overbooking. The final reports of the hospital showed that the overbooking strategy, based on the total

external disturbance caused by travel, cancellations, and no-shows, is effective in guaranteeing fair

access to services. In this situation, in fact, all patients respect the times dictated by the waiting list,

without “favouritism” guaranteed by the logic of replacement. Substantially, equity with regard to

the order of patients who booked medical visits is guaranteed. In the presence of critical issues with

waiting lists, the most useful intervention with an immediate impact consists of providing economic

incentives to handle the criticality: overtime work.

Agile logic requires that the clinical staff organize some meetings to understand whether there is a

period with a major influx of patients (such as an epidemic or a simpler “flu period”). This kind of

situation will reduce absenteeism, and clinical staff should be prepared by having the correct amount

of resources.

Regarding the results of the implementation of the model, the simulation of healthcare processes

will benefit both the managerial side of hospitals and, of course, patients. The former will achieve a

better management of critical situations such as absenteeism, while the latter will benefit from a shorter

waiting time since more medical examinations will be available daily, reducing absenteeism. Of course,

the simulation of processes will also affect the management of resources. There are also advantages that

are related to the methodology we implemented: there is not the need to experiment the change in the

real practice because it is possible to simulate it and quantify the economic consequences in advance;

there is the possibility to experiment the improvement more than once and in different ways so that

the process can be deeply understood; the time required for a real experiment is much greater than the

one necessary for a simulation; ethics and law are not a problem when just making a simulation so the

bureaucracy is not a limitation; finally, risky ideas can be implemented and tested without perturbing

the real system.

Limitation of the Study and Future Developments

Of course, there are some limitations of this study. The focus of this paper was mainly the creation

of a simulation model to deal with patient no-shows. Therefore, classical statistical pre–post analyses

were not performed. The model was tested in an infant neuropsychiatry unit, but extension of the

model to other units should be achieved in the future.

Further studies could also try to extend the model to other healthcare contexts to test its

effectiveness. Moreover, different models could be implemented through the DES approach to handle

absenteeism to evaluate the most efficient and effective model since overbooking is not the only strategy

available. Nevertheless, the combination of agile and Six Sigma proved to be useful in and feasible for

analysing simulation models in healthcare.
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