
0018-9162/04/$20.00 © 2004 IEEE26 Computer

Agile Software Development
in Large Organizations

I
n recent years, the use of, interest in, and con-
troversies surrounding agile methods have all
increased dramatically—as has anecdotal evi-
dence for agile methods’ effectiveness in cer-
tain environments and for specific project

types. Exactly in which environments and under
what conditions agile methods work remains
unclear, however. A development team at Motorola,
for example, noted that, “a plethora of subjective
evidence exists to support the use of agile develop-
ment methods on non-life-critical software pro-
jects.”1 Yet the team found no information about
using the approach for its particular development
focus: mission-critical software products.

This shows the need for more evidence that a new
technology works in a certain context before devel-
opers promote and deploy it on a larger scale.
Although most organizations have similar needs,
the need to see compelling evidence before adopt-
ing new methods looms greater in large organiza-
tions because of their complexity and the need to
integrate new technologies and processes with exist-
ing ones.

To further evaluate agile methods and their
underlying software development practices, several
Software Experience Center (SEC) member com-
panies initiated a series of activities to discover if
agile practices match their organizations’ needs.
Although each organization evaluated agile meth-
ods according to its specific needs, here we attempt
to generalize their findings by analyzing some of
their common experiences in the particular context

of large organizations with well-established struc-
tures and processes.

We base this analysis on experience collected and
shared among four SEC members—ABB, Daimler-
Chrysler, Motorola, and Nokia—and focus on the
following areas:

• identifying the business drivers that led to the
evaluation of agile methods,

• ascertaining whether their pilot projects
reached their goals,

• articulating lessons learned regarding incom-
patibilities with the project environment, and

• determining their conclusions regarding future
use of agile methods.

Four SEC meetings and one electronic workshop
(http://fc-md.umd.edu/projects/Agile/3rd-eWorkshop/
summary3rdeWorksh.htm) in which the member
companies shared experience on the application of
agile methods provide the core data for our analysis.
The “Sharing Agile Expertise through the SEC” side-
bar describes these meetings in greater detail. We also
collected experience reports internal to the compa-
nies that provided input to the meetings and gathered
additional information from the member companies
to clarify and refine the results. We have referenced
reports that are publicly available. Unattributed
quotes refer to unpublished reports and presentations
proprietary to individual companies that are not pub-
licly available.

We must admit that the data collection does not

Mikael
Lindvall
Fraunhofer Center
for Experimental
Software
Engineering,
Maryland

Dirk Muthig
Fraunhofer Institute
for Experimental
Software
Engineering

Aldo
Dagnino
Christina
Wallin
ABB

Michael
Stupperich
DaimlerChrysler

David Kiefer
John May
Motorola

Tuomo
Kähkönen
Nokia

While agile practices can match the
needs of large organizations—especially
for small, collocated teams—integrating
new practices with existing processes
and quality systems will require further
tailoring.

C O M P U T I N G P R A C T I C E S

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

December 2004 27

follow the ideal scientific process: The data was
defined after the pilot projects ended, it is mostly
qualitative, and different people collected it.
However, the collected data, drawn from about 15
different pilot projects influenced by eXtreme
Programming2 (XP) across four different organi-
zations, provides a broad overview of the use of
agile methods in large companies.

BUSINESS DRIVERS
Many small organizations have shown interest

in agile methods because they seek alternatives to
the traditional software development methodolo-
gies, which they find too cumbersome, bureau-
cratic, and inflexible. They also feel pressure to
produce more at lower costs.

We found that these same needs drive large orga-
nizations as well. One Motorola team identified a
need shared by all organizations in this study when
they observed: “Software development teams face
a continuous battle to increase productivity while
maintaining or improving quality.” This is indeed

what drives most organizations to look for new
ways to develop software.

Problems related to requirements supplied
another common theme, and developers identified
them as strong drivers among the four organiza-
tions. For example, because mandated ship dates
require that software development begin after defin-
ing only a portion of the requirements, the organi-
zation must look for better ways to manage projects
for which requirements are not yet fully specified.

Another problem typically arises when the
requirements are passed along to the development
team at a high level. This can make it difficult to
decompose the requirements up front into detailed
software specifications. This problem drives the
organization to find ways to better understand the
end users’ real needs.

In addition, work on the specifications is time-
consuming, and the resulting specifications are
often obsolete by the time they are finalized.

In addition to the problems associated with ill-
defined and high-level specifications, rapid changes

For the past five years, several large global businesses have
been sharing experiences in software development practices.
The member companies founded the consortium that makes
this possible in 1999 so that they could share their experience
while protecting its proprietary aspects. The Fraunhofer Center
for Empirical Software Engineering, Maryland (FC-MD), and
the Fraunhofer Institute for Empirical Software Engineering
(IESE) in Germany agreed to facilitate the consortium and pro-
vide the legal umbrella to make this possible.

The member companies of the Software Experience Center
consortium aim to improve their software competencies and
development practices by actively sharing experiences with one
another. The current SEC members are ABB, Boeing,
DaimlerChrysler, Motorola, and Nokia. Fraunhofer directors
Victor Basili and Dieter Rombach have served to guide the SEC,
providing enormous benefits by assuring that key issues are
adequately addressed.

Each of the member companies hosts three-day meetings,
held semiannually on a rotating basis. The SEC Steering
Committee, which draws its members from the participating
companies and two Fraunhofer organizations, develops the
program of topics for each meeting. An enduring theme has
been the sharing of strategies for improving engineering pro-
ductivity and product quality.

Topics addressed at these meetings have covered the gamut
of current software engineering and system development issues,
including

• agile methods,
• software process improvement,
• software and system quality metrics,
• software subcontractor management,

• engineering project management,
• requirements engineering,
• transition from the SEI CMM to the CMMi,
• Six Sigma and system development,
• R&D results deployment,
• system and software architectures, and
• product line practices.

Each company brings appropriate presentations to the three-
day meetings. The steering committee then plays a key role in
identifying and selecting topics that are of broad interest to the
membership, so that each member can participate.

During the meetings, member companies make company-
specific presentations on the selected topics. These presenta-
tions are covered by nondisclosure agreements. Each attendee
receives a complete set of all presentations offered at each meet-
ing. These company representatives then disseminate the results
when they return to their day-to-day activities.

The information shared at SEC meetings has a variety of
uses. For example, in one member company, the SEC Steering
Committee representative prepared a trip report and posted it
to an internal Web site, along with hot links to the presenta-
tions. At another company, meeting attendees made their trip
report to an internal committee at a regularly scheduled inter-
nal meeting. All company participants have been satisfied with
the extent of sharing they see and the information they gain
through the exchange.

Allan Willey is a fellow of technical staff at Motorola Labs.
He received an MS in management sciences from George Wash-
ington University. Contact him at willey@motorola.com.

Sharing Agile Expertise through the SEC
Allan Willey, Motorola Labs

28 Computer

in the requirements and other environmental
factors drive the need to adapt swiftly to keep
pace with evolving markets and technologies.
This leads organizations to seek a flexible
process capable of adapting to volatile
requirements. The need to show early
progress to the customer and present upper-
level management a first version quickly also
promote this behavior.

While any organization that develops soft-
ware could encounter these problems, some

are more likely to occur in large organizations. For
example, some participants reported their disap-
pointment with heavy process approaches and cur-
rent quality systems that are too generic and
complex to provide good support. Large organiza-
tions are more likely to implement defined devel-
opment processes, including a system for assuring
quality throughout the software development
process. These processes and systems often put con-
straints on the development team, limiting what
development practices they can and must use, which
affects how quickly they can develop software.

When pressured to quickly deliver a product to
capture a market opportunity, one software team
reported that they felt they must fight two battles
at the same time—one to develop a product in a
short time and the other to fulfill the quality sys-
tem’s requirements. Finding alternative ways to
develop software faster and more flexibly without
compromising these organizations’ high quality
standards thus becomes essential.

APPLYING AND EVALUATING AGILE PRACTICES
Before introducing new practices, the develop-

ment team must understand their effects and impli-
cations. Although the organizations participating
in this study were aware of reports indicating that
agile methods do indeed work, they remained
unconvinced that these practices would work for
them. For example, they needed to evaluate
whether agile practices would increase productiv-
ity and reduce cycle time while maintaining the cur-
rent level of quality and maintainability.

In addition, they questioned whether an estab-
lished company could use agile practices to develop
large, complex, safety-critical systems that would
be maintained for decades. They also wanted to
assess whether they could use agile practices to
shrinkwrap product development.

To evaluate agile methods, these large organiza-
tions have conducted numerous pilot projects, stud-
ies, and other activities. The pilot projects we
describe here offer a representative sample of how

these organizations evaluated agile methods.
The pilots all used and tailored XP in some way,

either using XP as is, choosing selected XP prac-
tices and incorporating them into their regular
processes, or using XP terms to refer to the prac-
tices they already used. To cover the numerous vari-
ants, we simply say they were all influenced by XP.
We emphasize that XP and agile methods are not
interchangeable terms, but that XP is the most com-
monly used agile method today because it is the
best documented and thus the easiest to implement.

Researchers at ABB applied and evaluated agile
practices in several different ways. For example,
they conducted a systematic study as a pilot XP
project over 10 weeks. Along with piloting XP, the
project members also evaluated software develop-
ment lifecycle models and methodologies. In addi-
tion, on three occasions the developers used
ADEPT, an evolutionary in-house lifecycle model
that combines agile and traditional practices, in
their evaluations of agile practices. ADEPT incor-
porates selected XP practices and is recommended
for use when teams cannot implement a complete
agile lifecycle model.

DaimlerChrysler researchers have made several
partial attempts to apply agile methods, and they
have extended their development approaches with
selected XP practices. Typical applications include
administrative, interactive software portal, Web,
and embedded projects. DaimlerChrysler has con-
ducted several XP practice studies. For example,
the corporate researchers studied a software pro-
ject in a business unit that embarked on a conven-
tional project and later switched to XP.

At Motorola, researchers have applied agile prac-
tices in the form of XP several times. In one 18-
month study, four separate teams developing
embedded systems participated in a pilot project
using XP. In another study, developers used XP for
a project to develop a large safety-critical, real-time
system with extremely high quality requirements.1

At Nokia, developers introduced XP practices on
several projects. In addition, on at least three pro-
jects, developers defined and applied an in-house
method that combined XP and traditional prac-
tices. In general, Nokia has adopted XP practices
for projects when deemed appropriate.

APPLICATION RESULTS
An organization must consider several important

aspects when introducing agile methods. From a
business viewpoint, delivering high-quality soft-
ware on time and within estimated cost and effort
is essential. In the context of applying agile prac-

Before introducing
new practices, the
development team
must understand

their effects
and implications.

December 2004 29

tices, understanding which aspects of the process
became more agile is equally important.

Other aspects to consider include how difficult
introducing and sustaining the practices will be,
their desirable and undesirable side effects, and
employees’ satisfaction with using the methods.
Based on internal acceptance testing and prelimi-
nary product test results, the ABB pilot project indi-
cates that the resulting product exhibits higher
quality than previous releases. In addition, the
product meets its required scope, and the project
only slightly exceeded the required delivery time.

The resulting code exhibited high quality, thanks
both to pair programming, which prevented gold
plating and complex design, and to automated
tests, which prevented introducing errors or hav-
ing them remain undiscovered. Continuous inte-
gration helped improve the quality of changes by
quickly uncovering integration problems.

The increased agility was reflected in the speed
with which the developers implemented change
requests. Team members encountered fewer unpleas-
ant surprises at the development cycle’s end, and they
shared a common view of the project. In addition,
pair programming helped to spread information and
knowledge throughout the team, and daily stand-up
meetings improved work discipline.

Developers noted that they could easily learn XP
without making major investments in tools or
training.

DaimlerChrysler’s experience demonstrated that
using agile methods combined with constant test-
ing and other classical QA techniques produced
high-quality software throughout its projects. The
practice of developing rough specifications instead
of detailed ones also generated cost savings, which
decreased the need for specification updates and
resulted in further savings.

Agility increased in several ways. For example,
flexibility grew through faster responses to chang-
ing requirements, and development velocity in-
creased as implementations finished more quickly.

One DaimlerChrysler project team reported that
using XP cut costs while achieving high levels of
quality and customer satisfaction. The development
team considered the project a success, due in large
part to the impact of adopting XP practices. This
project showed that adapting agile elements for use
in a conventional project environment could lead to
noticeable cost savings while maintaining high
quality. Further, the communication between the
project members and the customer improved sub-
stantially thanks to a variation on the onsite cus-
tomer practice and the planning game practice.

Although the pilots conducted at Motorola
all followed slightly different processes, they
showed relatively consistent results based on
data collected on both qualitative and quan-
titative aspects of the process. The data shows
that the projects achieved quality levels com-
parable to or better than other processes.
Defect density, for example, measured sig-
nificantly better than the division average.

The development teams used custom for-
mal technical reviews to ensure that the pro-
ject produced a maintainable design. When
surveyed, 82 percent of the pilot developers
believed that the design and code generated
using XP resulted in understandable, maintainable,
and extensible software. In addition, 88 percent
believed that the deliverables produced using XP
would be adequate for future development and
maintenance. The pilot teams also experienced a
significant increase in engineer productivity com-
pared to similar teams within Motorola that used
different development processes.

A survey distributed to all developers involved
in the pilot—29 respondents—showed that team
morale increased, the learning curve for new engi-
neers shortened, and test coverage improved.
Among the respondents, 85 percent indicated that
they enjoyed using XP, and 80 percent reported that
they had more confidence in the design and code
generated while they used pair programming than
while they worked alone.

These pilot projects succeeded because the team
produced and tested code earlier. In addition, they
developed the system and executed it in smaller
pieces. Altogether, this meant that the teams could
detect and fix problems earlier.

All pilot projects this study covers had similar
positive experiences. The subjective and objective
measures indicate that these projects succeeded in
terms of increased agility and made improvements
to one or more of the following attributes: customer
satisfaction, quality, productivity, and cost. In addi-
tion, most developers involved in the projects had
positive experiences, team morale increased, and
introducing the practices did not prove costly.

Overall, the teams applying the XP-influenced
practices viewed their experience as very successful.
These findings resemble other experiences with
XP.3-6

LESSONS LEARNED
The greatest challenge to adopting agile practices

involves integrating each pilot with the project envi-
ronment’s existing processes.

Developing rough
specifications

instead of detailed
ones generated cost

savings, which
decreased the need

for specification
updates.

30 Computer

Tailoring XP
All four organizations learned the absolute neces-

sity of tailoring XP to their particular requirements.
The experience at Nokia showed that introducing
XP in a large organization without extensive tai-
loring is generally infeasible. Motorola had a sim-
ilar experience: XP is not a one-size-fits-all software
development process.

Figure 1 shows that the challenges lie not in the
agile project itself and the new practices it puts in
place, but in the interface between the new and
existing practices. In a large organization, a project
cannot be truly independent, but must interact with
and follow the rules of the organization overall.

The amount of tailoring varied from project to
project. In one example, a Motorola team tailored
the process by modifying the customer role slightly,
creating a baseline architecture, adding and modi-
fying some documentation, and adding some for-
mal reviews. Another Motorola team adopted
some XP practices, dropped others, and supple-
mented others with traditional practices.1 In this
case, the mix of traditional and agile practices
resulted in a situation in which “an outsider could
easily interpret the process as a CMM-based
process with some of the XP practices added to it.”1

While some of the tailoring efforts aimed to make
the practices work for a particular pilot project,
most challenges related to making the pilot project
work well within the organizational environment.
DaimlerChrysler, for example, learned that it is
essential to modify XP practices so that they align
with the environment and the rest of the project.
ABB reports a similar experience, noting that most
difficulties were found in the project environment,
not in XP. Motorola had a comparable experience
and reports that the project postmortem revealed
that—although some traditional practices, such as
the change control board (CCB), clashed with XP
practices—few defects could be traced directly to
XP.1

We think this summarizes the differences between
a large organization and a small one. Individual pro-
jects in a large organization often depend on their
environment in several ways. For example, work is
often distributed across several teams.7 The team

must be able to communicate and coordinate with
other teams in the organization, and the developed
software must integrate smoothly with a larger soft-
ware system. In addition, the team must also fit into
the standard processes and quality systems defined
by the organization.

Cross-team communication support
Tailoring XP practices and adding support for

cross-team communication presents an important
lesson, one particularly prominent at Nokia.7 Large
organizations often distribute teams across several
physical locations. However, XP practices aim to
increase a software development project’s agility
by collocating the team. Consequently, XP prac-
tices do not address problems arising from com-
munication and coordination between multiple
teams.7 This creates a need for more formal com-
munication, such as meetings and documentation.
As a result, communication between teams is less
effective than within teams, creating additional
developer overhead7 and decreasing each project’s
agility.

Cultural differences between teams add to this
problem. At Motorola, for example, project man-
agement noticed on several occasions that XP teams
have difficulty interfacing with teams that use tra-
ditional development processes. For example, when
two types of teams shared work on an interface,
the XP team wanted just one or two pieces of the
interface to work with at a time, while the tradi-
tional team wanted to develop and review the entire
interface before providing it to the XP team.

Nokia believes that one solution to this problem
lies in minimizing the need for cross-team commu-
nication. This is possible when, for example, each
team is developing independent subsystems and
occupies one physical space. Nokia’s experience,
however, shows that achieving and maintaining this
alignment and architecture can be difficult in a large
organization. Even though it might be possible to
achieve such an alignment once, the architecture
will evolve, causing loss of alignment. Determining
how developers can reduce communication struc-
ture complexity to minimize the need for cross-
team communication while maximizing synergies
within teams remains an open question. Another
approach that Nokia has been exploring to over-
come this problem uses a continuum of facilitated
cross-team workshops. Several projects at Nokia
reported that these workshops, which amass peo-
ple from different parts of organizations to perform
a specific, well-defined task, can be used effectively
to solve issues that span multiple teams.7

XP pilot
Development Team

Planning game, Short development cycles,
Pair programming, Test-first programming,

Collective code ownership, Frequency integration,
Never solving a problem that has not yet occurred,

Refactoring, Minimal documentation

Customers

Other teams

Requirements
Organizational

software
processes

Architecture
Change
control
boards

Quality systems Legacy systems

Figure 1. Tailoring
XP to the
organization.
The lightning
symbols show the
incompatibilities
between the XP pilot
project and the
environment. To
maximize efficiency,
organizations must
resolve these
incompatibilities.

December 2004 31

Refactoring and CCB clashes
XP encourages the somewhat controversial prac-

tice of continuous refactoring. This practice can
easily clash with existing quality control systems,
such as using a CCB to oversee management of
changes to the source code. Refactoring encom-
passes changes to the system that leave its behavior
unchanged and enhance its quality. These changes
include simplicity, flexibility, understandability, and
performance. XP’s reliance on collective ownership
means that any developer can change any line of
code to refactor it. Refactoring, an integral part of
XP, makes changing the codes easier, thereby allow-
ing the implementation of changed customer
requirements without breaking the design.

Most reports on refactoring consider it beneficial.
One Nokia team even considered the practice a fac-
tor in a project’s success “because the architects
stayed with the project, refactored the architecture
continuously and accomplished the survival and
evolution of the architecture.”8 One Motorola pro-
ject, however, encountered risks when large refac-
torings created some significant project defects.1

The controversy surrounding refactoring arises,
however, because it runs contrary to the commonly
applied practice of “if it isn’t broken, don’t fix it.”
In a culture that encourages a “get it right the first
time” approach to development, many see the need
to refactor as a process failure.1

Refactoring can also easily clash with using
CCBs, which manage and limit code changes. A
Motorola team reported that the refactoring clashed
with the CCB’s desire to minimize code base
changes. To reconcile refactoring and the CCB,
Motorola introduced several process modifications.
For example, management encouraged each devel-
oper to think of refactoring ideas but to ask per-
mission from the CCB before implementing them.1

Continuous integration and CCB clashes
Continuous integration is an XP practice that

resembles refactoring in how it interacts with exist-
ing processes. Experience shows, for example, that
this practice can easily clash with the CCB.
Continuous integration means that developers
should integrate and release code into the code
repository whenever possible, at least every day.
Continuous integration contributes to a project’s
agility by detecting and removing integration-
related defects early and by dividing the integra-
tion work into smaller, easier to manage chunks.

Most projects reported positive experiences with
continuous integration. ABB’s experience, for
example, showed that continuous integration com-

bined with small releases guarantees the con-
stant availability of an executable system. As
a result, the team could always deliver work-
ing software when necessary.

Motorola experienced some difficulties
when the CCB began exercising its power to
control which changes were integrated. The
board met weekly to plan the next build, so
integrations took place weekly. This clash
with the CCB decreased the project’s agility.
On one occasion, the CCB postponed inte-
gration of a minor defect fix. Meanwhile, the
code underwent significant changes before the
CCB approved the fix. By this time, the file version
with the defect fix differed significantly from the
mainline version and, consequently, the merge
became nontrivial and had to be done manually.1

Organizational software processes
Large organizations often follow defined soft-

ware processes, which can result in double work
when projects apply new practices that have not
been well integrated with these traditional
processes. This applies to both input and output
from the project and raises the following issues.

Scope and delivery planning. A team at ABB experi-
enced double work when traditional processes
overlapped or conflicted with agile practices.
Traditionally within ABB, the program defined the
scope and delivery time for the project in advance,
as it did for the XP pilot. The program, for exam-
ple, developed plans up front, with little or no
development team participation. The program also
required that the documentation be frozen before
design and implementation started. Developing
plans without involving the team and freezing doc-
umentation clashes with XP’s core ideas.

Traditional requirements management. By design, XP
expects coarse input requirements, but ABB’s tra-
ditional approach to running programs that
applied XP required delivering detailed require-
ments to the development project in advance.
These requirements did not take the form of user
stories, had not been defined with involvement
from developers, and were seldom accurate by the
time development actually started. For the XP
pilot, this resulted in double work because the pro-
ject team analyzed and decomposed the market
requirements twice, first into traditional project
requirements at the program level, then into user
stories and engineering tasks during the pilot itself.

Traditional acceptance test management. XP expects
acceptance tests to be run continuously during
development, but ABB traditionally calls for the

Large organizations
often follow defined
software processes,

which can result
in double work

when projects apply
new practices.

project to design and implement the code
first, then let another team perform the prod-
uct acceptance test. This procedure caused
the developers to view the acceptance tests
done in the XP pilot as internal only, thus
they required another round of acceptance
tests after the pilot had been finished. The
double acceptance test occurred because
customers and quality systems often require
running such tests independently, with little
or no developer involvement. In addition,
testers often perform these tests on a system
for which many different teams may have
developed the components. Thus, the accep-

tance test the project conducts serves as a test of
the component.

Quality management. XP asserts that when prop-
erly used, pair programming eliminates the need
for formal reviews. But eliminating formal reviews
clashes with traditional quality systems. In most
cases, the pilot projects found that they needed an
additional layer of quality assurance.

One Motorola team, for example, introduced
pair programming and replaced the mandated for-
mal technical reviews with informal reviews.1

When the team later reviewed test cases formally,
they found missing tests and identified ways to
improve the test suite.

In Motorola’s complex environment, a pair of
people will not be able to consider all effects on the
entire system, which makes it unlikely that pair pro-
gramming will eliminate all mistakes during cod-
ing. Further, project management deemed valuable
the discussions that take place in reviews involving
developers with many different viewpoints. They
thus concluded that formal code and test case
reviews can complement pair programming.
Motorola also prevented another of its teams from
skipping the rigorous review process because that
group developed products that could affect public
safety.

DaimlerChrysler expected that agile processes
would not mesh with the project’s more conven-
tional environment. This is exactly what happened:
Both the control and quality management depart-
ments demanded the same documentation as proof
of project progress for this special case, just as they
would for any standard project. The project part-
ners therefore decided to treat the project as a con-
ventional one on the outside, satisfying all
requirements defined by quality management. For
example, the team set up quality gates and quality
plans in accordance with standard templates. As
usual, the contractor kept track of its own project

performance, such as engineering and manpower.
Although this would not have been necessary in
XP, the procedure did help avoid conflicts with the
control department and other organizational units.

FUTURE PROSPECTS
Based on this experience, ABB concluded that

any organization that develops manageable system
elements with small teams could try XP. Further, it
determined that nothing prevents large organiza-
tions from trying XP on a small scale. As most XP
practices can, by themselves, be useful in traditional
development projects, they can become part of the
toolbox offered to projects. Some practices have
already spread outside the development team. A
broader implementation of XP, however, would
require changes to ABB’s culture and current qual-
ity system.

DaimlerChrysler acknowledges that mature
processes require activities such as quality man-
agement, documentation, and measurement. It also
realized that reducing time to market has become
increasingly difficult. The company concluded that
agile practices can help mature organizations
become more flexible. Having mature processes
already in place will ensure that efforts to become
more agile do not turn a mature organization into
a chaotic one. DaimlerChrysler thus identifies agile
methods as another tool in the software process
improvement toolbox that includes, for example,
the SEI’s Capability Maturity Model.

The pilot projects’ success convinced the
Motorola team that it is possible to use XP to
develop large, complex, safety-critical systems with
long life cycles. Motorola’s developers note, how-
ever, that integrating an agile process into a com-
pany with a culture that favors more traditional
development processes can be difficult. The stan-
dard XP process needs tailoring to better mesh with
an organization’s specific circumstances. Carefully
introducing agile processes yields positive results,
however.

Nokia notes that small software development
teams are more productive than large ones. Thus,
they strive to apply the most appropriate software
method for the task at hand and view agile methods
as another tool in the software process improve-
ment toolbox.9 Nokia decided that XP works best
for small, independent, collocated projects and that
using selected agile techniques will become increas-
ingly common. Agile methods will primarily influ-
ence other processes. Hybrid processes of different
agile influence levels will be the primary means for
applying agile development ideas. To achieve orga-

32 Computer

Having mature
processes already in
place ensures that
efforts to become
more agile do not

turn a mature
organization into

a chaotic one.

December 2004 33

nizational agility, Nokia has defined a set of agile
software engineering patterns that organizational
units can use to select agile practices that fit them
instead of trying to apply a one-size-fits-all solution.

B ased on the experiences of the organizations
we have studied, we believe agile practices
match the needs of large organizations, espe-

cially for small, collocated teams. Even so, inte-
grating new practices with existing processes and
quality systems that govern the conduct of software
development requires further tailoring. The chal-
lenge here lies not in applying agile practices to a
project, but in efficiently integrating the agile pro-
ject into its environment. To fully benefit from agile
practices, organizations must better define the inter-
faces between the agile team and its environment,
thus avoiding the double work caused by the con-
flict between agile practices and traditional ones.

These obstacles will not stop large organizations
from using agile methods, especially as the promis-
ing results in pilot projects increase interest in them.
Now that the hype about agile methods has been
substantiated with real-world results, many project
teams will view agile methods as a useful resource.
As these projects identify a few practices that suit
them well, they will then implement them as part of
their regular processes. By using this hybrid ap-
proach, these organizations can maintain existing
quality systems while becoming more agile so that
they can serve their customers better. �

Acknowledgments
We thank the following for contributing to this

article: at Motorola, Azeem Ayoob, Matthew
Baarman, Jason Bowers, Erik Melander, Andrij
Neczwid, David Noftz, Rekha Raghu, and Jerry
Drobka; at DaimlerChrysler, Jan-Peter van
Hunnius and Kurt Schneider; at Nokia, Jouni Jartti,
Kari Känsälä, and Jari Vanhanen. We also thank
the SEC Steering Committee that made it possible
to write this report: Victor Basili, Fraunhofer
Center for Experimental Software Engineering
Maryland, and Dieter Rombach, Fraunhofer
Institute for Experimental Software Engineering;
Martin Bollinger and Manfred Schoelzke, ABB;
Thilo Schwinn, DaimlerChrysler; and Allan Willey,
Motorola. We also thank the following people for
helping improve the article: Patricia Costa, Forrest
Shull, and Roseanne Tesoriero Tvedt for ideas and
feedback; Ioana Rus and Michelle Shaw for review-
ing the text; and Jen Dix for proofing.

References
1. J. Bowers et al., “Tailoring XP for Large System Mis-

sion Critical Software Development,” Proc. 2nd XP
Universe and 1st Agile Universe Conf. on Extreme
Programming and Agile Methods, Springer, 2002,
pp. 100-111.

2. K. Beck, Extreme Programming Explained: Embrac-
ing Change, Addison-Wesley, 1999.

3. D. Karlström, “Introducing Extreme Programming—
An Experience Report,” Proc. 3rd Int’l Conf.
Extreme Programming and Agile Processes in Soft-
ware Eng., Springer, 2002, pp. 24-29.

4. J. Grenning, “Launching Extreme Programming at a
Process-Intensive Company,” IEEE Software,
Nov./Dec. 2001, pp. 27-33.

5. C. Poole and J. Huisman, “Using Extreme Program-
ming in a Maintenance Environment,” IEEE Soft-
ware, Nov./Dec. 2001, pp. 42-50.

6. B. Rumpe and A. Schröder, “Quantitative Survey on
Extreme Programming Projects,” Proc. 3rd Int’l
Conf. Extreme Programming and Flexible Processes
in Software Eng., Springer, 2002, pp. 95-100.

7. T. Kähkönen, “Agile Methods for Large Organiza-
tions—Building Communities of Practice,” Proc.
Agile Development Conf. (ADC 04), IEEE CS Press,
2004, pp. 2-11.

8. J. Vanhanen, J. Jartti, and T. Kähkönen, “Practical
Experiences of Agility in the Telecom Industry,” Proc.
4th Int’l Conf. Extreme Programming and Agile
Processes in Software Eng., Springer, 2003, pp. 279-
287.

9. K. Känsälä, “Good-Enough Software Process in
Nokia,” LNCS 3009, Springer, 2004, pp. 424-430.

Mikael Lindvall is a scientist at the Fraunhofer
Center for Experimental Software Engineering,
Maryland. His research interests include agile meth-
ods, software process improvement, software archi-
tectures, and experience and knowledge manage-
ment. Lindvall received a PhD in computer science
from Linköping University, Sweden. Contact him
at mikli@fc-md.umd.edu.

Dirk Muthig is a department head at the Fraun-
hofer Institute for Experimental Software Engi-
neering. His research interests include product line
engineering, system architectures, and variability
management. Muthig received a PhD in computer
science from the Technical University of Kaiser-
slautern, Germany. Contact him at dirk.muthig@
iese.fraunhofer.de.

Aldo Dagnino is a senior principal scientist in soft-
ware engineering at the US Corporate Research

34 Computer

Center of ABB. His research interests include soft-
ware architectures, software processes, and knowl-
edge-based technologies. Dagnino received a PhD
in systems design from the University of Waterloo,
Canada. Contact him at aldo.dagnino@us.abb.
com.

Christina Wallin is a software engineering consul-
tant. She was previously at ABB and is now at
Process Key. Her research interests include software
development processes. Wallin received a Licenci-
ate in computer science from the University of
Mälardalen, Sweden. Contact her at christina.
wallin@processkey.se.

Michael Stupperich is a senior researcher at Daim-
lerChrysler. His research interests include engi-
neering processes for embedded systems, distrib-
uted software engineering, and agile process mod-
els. Stupperich received a Diploma in computer sci-
ence from the University of Karlsruhe. Contact him
at Michael.Stupperich@DaimlerChrysler.com.

David Kiefer is an engineering manager at
Motorola. His research interests include public
safety communication systems with an emphasis
on mission-critical voice over IP. Kiefer received a
BS in computer engineering from the University of
Illinois at Chicago. Contact him at David. Kiefer@
motorola.com.

John May is a principal staff engineer at Motorola.
His research interests include agile methods, soft-
ware productivity metrics, and call processing design
patterns. May received an MS in engineering from
Cornell. Contact him at John.May@motorola.com.

Tuomo Kähkönen is a process development man-
ager at Nokia Technology Platforms. His research
interests include process modeling, process assess-
ments, and agile software development methods.
Kähkönen received an MS in industrial engineer-
ing and management from Lappeenranta Univer-
sity of Technology, Finland. Contact him at tuomo.
kahkonen@nokia.com.

