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ABSTRACT High resolution and wide swath, which are related to imaging quality and observation

efficiency, are the key specifications for spaceborne synthetic aperture radar (SAR). Owing to the restrictions

of the Nyquist sampling theorem, it is difficult to improve both specifications simultaneously. The increase

of the swath width often leads to the decrease of the spatial resolution, e.g., in scanning SAR and terrain

observation with progressive scan SAR. For a sparse scene, an image containing only a few targets has

massive data but little useful information. This paper proposes a novel SAR observation mode, AgileSAR,

which is based on the time–space sampling method and can overcome the limitations of the Nyquist theorem.

It also increases the swath width while preserving the resolution of the sparse scene. AgileSAR steers the

antenna beam towards a different sub-swath, generally after one or two pulse intervals, and the average pulse

repetition rate corresponding to every sub-swath is much lower than that determined by the Nyquist theorem.

Compared with Sentinel-1, which can achieve 5-m resolution and 80-km swath, a single azimuth-channel

AgileSAR system can achieve 5-m resolution and 300-km swath for a sparse scene, once the corresponding

system parameters are designed. The l1 relaxation method is used to reconstruct sparse SAR images, and the

reconstruction performance is quantitatively analyzed based on the estimation error. The simulation results

validating the proposed method with sub-Nyquist samples can achieve approximately similar performance

as conventional SAR with Nyquist samples.

INDEX TERMS Synthetic aperture radar, sparse, time-space sampling, estimation error, wide swath.

I. INTRODUCTION

SAR transmits pulses and receives echoes from the target

region at the rate of the pulse repetition frequency (PRF). For

conventional SAR imaging, PRF should satisfy the Nyquist

sampling theorem and be higher than the instantaneous

Doppler bandwidth [1], [2]. If not, the azimuth spectrum of

the echo would be aliased, and the azimuth ambiguity would

be a serious challenge [1], [2]. In addition, the echo must

be completely received within one pulse repetition interval,

i.e., the reciprocal of PRF, such that an increase of the swath

width often leads to a decrease in the spatial resolution

for conventional SAR. However, the backscattering of most

targets in the target area observed by SAR is so weak that

such an area is considered to be sparse for the extraction of

strong scattering information [3], [4]. Therefore, the imaging

result corresponding to the area can be reconstructed from

an appropriately undersampled SAR echo according to the

compressive sensing (CS) theory. Under the assumption of

a sparse scene, this study will achieve a wide swath while

preserving the resolution using the sub-Nyquist sampling

method.

Research on sub-Nyquist sampling has been conducted

for several decades and has attracted renewed attention

since the CS theory is proposed. Sub-Nyquist sampling

is applied in numerous fields and relieves the strain on

the analog-to-digital converter (ADC) and storage media

as the amounts of data keep increasing. From the per-

spective of conducting or omitting waveform modulation

before sampling at a rate below Nyquist, the existing sam-

pling methods can be divided into two categories. In the

first, the input signal is modulated by a random or peri-

odic waveform, and then sampling is conducted at a lower

rate. It is adopted by single-pixel cameras [5]–[7], ran-

dom demodulators [8], and modulated wideband converters

(MWCs) [9]–[11]. A MWC is also applied on the

range dimension by lower rate ADC in SAR sys-

tems [12]. In the other category, sampling is con-

ducted directly at low rate without pre-processing.
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It includes multi-coset sampling [13], [14], random

equivalent sampling (RES) [15]–[17], randomly choosing

sub-Nyquist samples from the already receiving Nyquist

samples [18] or non-uniformly transmitting a smaller number

of pulses [12] on the azimuth dimension in the SAR system.

To achieve the wide swath SAR system without the loss of

resolution, sub-Nyquist sampling should be adopted on the

azimuth dimension. Because the SAR system has no source

of generating modulation, the first category of sub-Nyquist

sampling method is not applicable on the azimuth dimen-

sion in SAR systems. Multi-coset sampling and RES, among

the second category, are not applicable to achieve the wider

width SAR system, because the former is equal to sample at

a Nyquist rate and the latter may lead to conflict between the

transmitting and receiving in the SAR system. Only the con-

cept of the sub-Nyquist sampling on the azimuth dimension

in SAR system was presented, which puts on one sub-swath

to process [12], [18]. The practical sampling mechanism to

widen the swath is not proposed, as available space-time

resources are wasted.

This paper proposes a new SAR observation mode, Agile-

SAR, which achieves a much wider swath without the loss

of resolution for sparse scenes. SAR data acquisition can be

regarded as the sampling of scene information in the space

domain and the azimuth time domain. AgileSAR adopts a

sparse sampling method applied for SAR by comparing with

other sub-Nyquist sampling methods. It can achieve better

reconstructed performance, i.e., in terms of mean square

error. Fig. 1 illustrates the strip mapping mode and AgileSAR

mapping mode. As shown in Fig. 1(b), AgileSAR allocates

NNyquist consecutive Nyquist pulses for Q sub-swaths. The

observed order of sub-swath is random, and the beam is

steered towards the corresponding sub-swath. Comparedwith

the conventional strip mapping mode in Fig. 1(a), Agile-

SAR modifies the sampling in the space–time domain and

increases the total swath width to Q times that of the strip

mapping system, while the span of the Doppler frequency

shift for targets in every sub-swath is unchanged and the

resolution is preserved.

The paper is structured as follows. Section II adopts the

l1 optimization method to reconstruct the azimuth signal

using sub-Nyquist samples. Simultaneously, it fits the sta-

tistical distribution of a scene backscattering cross-section

with an ocean having several ships as an example, and

quantitatively estimates the SAR image reconstruction per-

formance under this prior distribution. Section III proposes

the pseudo-random sub-Nyquist sampling method according

to the reconstruction performance, and qualitatively proves

that this sampling method can achieve optimal performance.

Based on the pseudo-random sub-Nyquist sampling method,

a novel time–space sampling method to increase the swath

width with unchanged resolution for a sparse scene is pro-

posed, and the corresponding observed method named as

AgileSAR is introduced in Section IV. This section also

overviews the process of SAR focusing and compares it

with the reconstruction performance of conventional SAR.

FIGURE 1. Illustration of time–space sampling. Each dot on the
azimuth-time axis denotes one sample. (a) shows the conventional SAR
sampling. The swath is sampled by the rate of PRF in the azimuth
direction. The accumulated time is T1, which is determined by the
azimuth resolution. (b) shows the proposed time–space sampling.
Q consecutive pulses are randomly allocated to Q sub-swaths. The beam
needs to be steered towards the corresponding sub-swath. For each
sub-swath, the sampling rate is much smaller than PRF, and the
accumulated time is approximately T1, which lays the foundation for
preserving the azimuth resolution. In addition, sub-swaths except the Qth
sub-swath with the largest incidence angle in Q sub-swaths should be
squinted in the azimuth direction observed to guarantee echo completely
received during the beam position design.

The design example of AgileSAR and simulation results are

presented in Section V. Section VI concludes the paper.

II. SAR IMAGE RECONSTRUCTION BASED ON CS

Usually, spaceborne SAR is assumed to remain stationary

while transmitting one pulse and receiving the correspond-

ing echo before moving to the next position [1], [2]. Under

this assumption, the echo from M point targets on the same

nearest slant range can be modelled as follows:

s0 (τ, η) =
M∑

m=1

σmWm (τ, η) rect

{(
τ − 2Rm (η)

c

)/
Tr

}

· exp
{
jπKr

[
τ − 2Rm (η)

c

]2
− j4π

Rm (η)

λ

}

+ n (τ, η), (1)

where τ denotes the fast time in the range direction, and η

represents the slow time in the azimuth direction. σm and

Wm (τ, η) are the backscattering cross-section and theweight-

ing factor of themth point target, respectively. Kr denotes the

frequency modulation rate of the pulse. Rm(η) represents the

distance between the radar and the mth point target at η. Tr is

the pulse width. c is the light speed, and λ is the wavelength.

n(τ, η) denotes the noise.
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After range compression and range cell migration correc-

tion, the signal is given by the following:

sc (τ, η)

=
M∑

m=1

σmWm (τ, η)Tr · sinc
{
KrTr

[
τ −

2Rm
(
ηcm

)

c

]}

· exp
{
− j4πRm(η)

λ

}
+ n (τ, η), (2)

where ηcm is the beam centre crossing time for themth target.

Equation (2) at many azimuth sampling instants can also

be expressed as a vector-matrix form as follows:

sN×1 =




sc (τ, η1)

sc (τ, η2)
...

sc (τ, ηn)
...

sc (τ, ηN )



N×1

= DN×MσM×1 + nN×1, (3)

where

nN×1 = [n (τ, η1) , n (τ, η2) , · · · , n (τ, ηN )]T ,

σM×1 = [σ1, σ2, · · · , σM ]T , DN×M = {Dnm}N ,M
n=1,m=1 ,

Dnm = Wm (τ, ηn) · Tr · sinc
{
KrTr

[
τ −

2Rm
(
ηcm

)

c

]}

· exp
[
−j4πRm (ηn)

/
λ
]}

,

and N is the number of samples in the azimuth direction.

When the number of columns in the matrix DN×M is more

than the number of rows, and the reconstructed vector σM×1

is sparse, i.e., most elements of σM×1 are zero or very small,

σM×1 can be reconstructed by adopting the appropriate algo-

rithms under a certain condition. A typical l1 regularization

formulation [19] as follows:

σ̂ = min
σ

{
‖sN×1 − DN×MσM×1‖22 + γ ‖σM×1‖1

}
(4)

is used to accomplish the azimuth processing and reconstruct

the image in this study. Here, ‖·‖1 and ‖·‖2 represent l1-norm
and l2-norm, respectively [20]. γ is a trade-off parameter

balancing sparsity and the quality of fitness.

Usually, the noise nN×1 is assumed to satisfy Gaussian

distribution with zero-mean and variance σ 2
n [19]. Under

this assumption, maximum a posteriori (MAP) estimation

explains that the approximation equation in (4) equals adopt-

ing the Laplace prior on the vector σM×1 [19], [21]. Simulta-

neously, Laplace priors heavily enforce the sparsity constraint

so that most elements of σM×1 close to zero are preferred.

However, using the Laplace prior directly to analyse vari-

ous prior on the vector σM×1 is not readily accomplished.

Different priors corresponding to different hypotheses about

underlying truth can be invoked [22]. The prior distribution

of a scene backscattering cross-section is affected by the

observation incidence angle, wavelength, and surface struc-

ture, and many effect factors are not totally accounted for

by a simple deterministic model [23]. Therefore, we hope to

achieve the prior distribution from an SAR image, although

speckle noise exists. The statistics of SAR images have been

investigated under the assumption of Gaussian statistics for

the backscattering cross-section [24], [25]. The simulation

in Fig. 2 takes ships on the ocean as an example of a sparse

scene to analyze in this study, and it also validates that the

backscattering cross-section of ships on the ocean obeys the

Gaussian distribution.

FIGURE 2. (a) is an SAR image of ships on the ocean. (b) and (c) are the
statistical distributions of the real and imaginary parts of the SAR image
in (a), respectively. The histogram of SAR image data fits well with a
Gaussian distribution with a nearly zero mean.

Therefore, this kind of sparse scene satisfies the Gaussian

distributionwith zero-mean and variance σ 2
x . Under the above

assumption about the noise n without the subscript, it means

the following:





pn (n) = ps|σ (s|σ ) = 1√
2πσn

exp

{
− ‖s−Dσ‖22

2σ 2
n

}

pσ (σ ) = 1√
2πσx

exp

{
−‖σ‖22

2σ 2
x

}
,

(5)

The reconstruction performance based on CS is interest-

ing. As the reconstructed algorithm is an estimation method,
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a classical point target evaluation system (e.g., 3 dB resolu-

tion, PSLR and ISLR) is not available in the CS-SAR system.

For a given vector σ , the reconstruction performance can be

evaluated using the estimation error E{σ̂ − σ )2}, where σ̂

is the reconstruction result, and σ is the real backscattering

cross-section. Under the distribution in (5), the reconstruction

performance of σ̂ satisfies (see APPENDIX I)

E
{
(σ̂ − σ )2

}

≥
{
−E

[
∂2 ln ps/σ (s/σ )

∂σ 2

]
− E

[
∂2 ln pσ (σ )

∂σ 2

]}−1

≥ o (log (M)) · trace



(
FHN×SFN×S

σ 2
n

+ I

σ 2
x

)−1



>
o(log(M )) · S · σ 2

x

SNR · L ·
[
1 + 1

/
2 · (1 − u)

]
+ 1

, (6)

where trace (·) denotes the trace of a matrix, and SNR =
σ 2
x

/
σ 2
n is the signal-to-noise ratio in the SAR image. I is

the unit matrix. L is the number of samples in one aperture

time and is proportional to the number of samples N when

the scene sizeM is certain. The mutual coherence coefficient

as follows:

u = max
1≤m1 6=m2≤M

∣∣〈Dm1
,Dm2

〉∣∣
∥∥Dm1

∥∥
2
·
∥∥Dm2

∥∥
2

(7)

reflects the maximum similarity between any two different

columns m1, m2 in DN×M . FN×S is the submatrix formed

by taking S columns from DN×M , which are specified by the

index vector 3 and each element in 3 satisfies the following:

σ3l ≫ 0 (l = 1, 2, · · · , S) .

The inequality (6) indicates that a higher number of sam-

ples N , larger SNR and smaller u lead to better reconstruction

performance. This study uses sub-Nyquist sampling for every

sub-swath, which reduces the number of samples N and

affects the mutual coherence coefficient u. To compensate

for the deterioration of reconstruction performance owing to

the decrease of N , SNR can be improved by increasing the

transmitting power. The error caused by u can only be com-

pensated for by choosing the optimum sub-Nyquist sampling

principle to make u as small as possible, which is discussed

in the next section.

III. PSEUDO-RANDOM SUB-NYQUIST SAMPLING

Restricted isometry property (RIP) of the reconstructed

matrix DN×M is a sufficient and necessary condition for

reconstructing a sparse scene [26]. RIP implies that ran-

domness plays a crucial role in constructing the recon-

structed matrix. The more random the reconstructed matrix

is, the more easily RIP is satisfied. The sub-Nyquist sam-

pling method and the form of the azimuth receiving sig-

nals affect the randomness of the reconstructed matrix. The

azimuth receiving signal in an SAR system is decided by

the Doppler movement between movement platform and the

observed scene, and it does not have randomness. Therefore,

the randomness of the reconstructed matrix is improved by

the sub-Nyquist sampling method.

Random sub-Nyquist sampling is a commonly used

method for reconstructing sparse signals, and achieves good

performance [27]. Fig. 3(a) demonstrates the corresponding

azimuth sampling series. From the perspective of probabil-

ity theory, each sampling instant η in random sub-Nyquist

sampling method is a continuous random variable with prob-

ability density p (η) in the [0,T1] interval. All the sampling

instants are mutually independent and identically distributed,

and mean value ūr , the numerical characteristic of random

variable, is used to substitute the mutual coherence ur in

random sub-Nyquist sampling method (see APPENDIX II)

as follows:

ūr = lim
A→∞

A∑

inf =0

A∑

i(nf +1)=0

· · ·

A∑

inl=0



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0

(
in

A
T1

)}∣∣∣∣∣∣
·
(
inf

A
T1

)

·p
(
inf +1

A
T1

)
· · · p

(
inl

A
T1

)
· T1
A

· T1
A

· · · T1
A

)/
L2,

(8)

where nf and nl are the first and last index of a row in

which elements of two columns with maximum correlation

are non-zero, respectively. Ve is the equivalent velocity of

the satellite. R0 is the nearest slant range between SAR and

the M point targets. d is the ground spacing between two

point targets corresponding to two columns with maximum

FIGURE 3. Comparison between the random and pseudo-random
down-sampling. (a) shows the conflict between the transmitting pulses
and echoes caused by the random sampling. (b) illustrates that only one
pulse is randomly selected from Q consecutive Nyquist pulses with a
certain PRF, which avoids the conflict in (a).

VOLUME 7, 2019 677



Z. Yu et al.: AgileSAR: Achieving Wide-Swath Spaceborne SAR Based on Time–Space Sampling

correlation. L denotes the l2-norm of one column. The ran-

dom sub-Nyquist sampling can achieve small u, because it

can break the correlation inside the azimuth signal. However,

random sub-Nyquist sampling method possibly causes the

conflict between the transmitting and the receiving because

SAR system uses a common antenna to transmit pulse sig-

nals and receive echoes, as shown in Fig. 3(a). Consider-

ing this unavoidably conflict, a pseudo-random sub-Nyquist

sampling is proposed. As shown in Fig. 3(b), samples in

pseudo-random sub-Nyquist sampling method are randomly

chosen from the number of Nyquist samples NNyquist with

a certain PRF. Each sampling instant η in this sub-Nyquist

sampling method is a discrete random variable and the set of

possible values is as follows:

� =
{

T1

NNyquist − 1
· 0, T1

NNyquist − 1
· 1, · · · ,

T1

NNyquist − 1
· (NNyquist − 1)

}
, (9)

where NNyquist is the number of Nyquist samples with a

certain PRF. Similarly, mean value upr , i.e., the numerical

characteristic of a random variable, is used to substitute the

mutual coherence upr in the pseudo-random sub-Nyquist

sampling method as follows: (see APPENDIX II)

ūpr =
NNyquist−1∑

inf =0

NNyquist−1∑

i(nf +1)=0

· · ·
NNyquist−1∑

inl=0

×



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0
·
(

in

NNyquist − 1
T1

)}∣∣∣∣∣∣

· p
(

inf

NNyquist − 1
· T1

)
· p
(

i(nf +1)

NNyquist − 1
· T1

)

· · · p
(

inl

NNyquist − 1
· T1

)

· T1

NNyquist
· T1

NNyquist
· · · T1

NNyquist

)/
L2, (10)

Equation (8) and Equation (10) denote the summation of

the infinite and finite series, respectively. When the number

of finite series NNyquist is very large and the interval length

T1 is very small, the summation of the infinite series is

nearly equal to the summation of the finite series. In SAR

system, the number of Nyquist samples NNyquist is very large

and the sampling duration T1 is very small, so ur ≈ upr .

The simulation shown in Fig. 4 also verifies this, and the

corresponding simulation parameters are given in Table 1.

Therefore, pseudo-random down-sampling can achieve opti-

mal performance and is adopted in this study.

IV. SPACE-TIME SAMPLING AND AGILESAR

Based on pseudo-random sub-Nyquist sampling, a novel

time–space sampling is proposed to achieve wide swath for

the sparse scene in a spaceborne SAR system, illustrated

in Fig. 5. Like the existing wide-swath working modes, e.g.,

FIGURE 4. Illustration of mutual coherence coefficients. Two curves
approximately overlap, which indicates that the mutual coherence
coefficients achieved by random and pseudo-random sub-Nyquist
sampling are basically the same.

TABLE 1. Simulation parameters.

ScanSAR [29] and TOPSAR [30], wide-swath coverage is

also mosaicked by several range sub-swaths. ‘Time sam-

pling’ of time–space sampling means the pseudo-random

sub-Nyquist sampling on the azimuth dimension, and ‘space

sampling’ of time–space sampling means the range beam is

adjusted to observe different sub-swaths generally after one

or two pulse intervals. During the observation period, the

SAR system transmits pulses at the rate of PRF and receives

echoes. Suppose there are Q sub-swaths. ⌊NNyquist/Q⌋ pulses
from NNyquist consecutive Nyquist pulses with a certain PRF

are randomly selected for one sub-swath, which indicates

that the sampling method for every sub-swath satisfies the

pseudo-random sub-Nyquist sampling principle presented in

Section III, where ⌊•⌋ is the floor function. NNyquist consec-

utive Nyquist pulses with a certain PRF are allocated to Q

sub-swaths.

We name this working mode AgileSAR in this study

because the beam must be adjusted towards different

sub-swaths between adjacent pulses if two adjacent pulses are

not assigned to the same sub-swath.

A. AGILESAR

To introduce AgileSAR, it is compared with TOPSAR:
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FIGURE 5. Illustration of AgileSAR. (a) shows the geometry between SAR
and the swath. Different sub-swaths correspond to different squint
angles. The maximum squint angle is applied to the first sub-swath. The
Qth sub-swath is observed with zero squint angle. (b) demonstrates the
relationships between transmitting pulses and echoes. Although the
AgileSAR works at the rate of PRF, the average sampling rate for every
sub-swath is only 1/Q of PRF.

1) TIME INTERVAL OF SAMPLES IN EACH SUB-SWATH

Transmitting one pulse is essentially one sample in SAR sys-

tem. From the perspective of trans-receiver, the time interval

of every two pulses is certain and satisfies the Nyquist sam-

pling theorem. However, from the perspective of the sampled

sub-swath, the time interval of every two samples in each

sub-swath is not certain and the average sampling frequency

is smaller than the Nyquist frequency in AgileSAR. In com-

parison, PRF satisfies the Nyquist sampling theorem in each

sub-swath of TOPSAR to guarantee an exact reconstruction

of scene. The antenna beam steers to the different sub-swath

after TOPSAR transmits many pulses during the dwell time,

which is designed to meet azimuth resolution, but the beam

steers to a different sub-swath after one or two pulses in

AgileSAR.

2) JUMPING RULE OF THE RANGE ANTENNA BEAM AMONG

ALL THE SUB-SWATHS

After the dwell time, the antenna beam of TOPSAR jumps

from the qth sub-swath to the (q + 1)th sub-swath or

from the Qth sub-swath to 1st sub-swath, where q ∈
{1, 2, · · · , (Q− 1)} is the serial number of the sub-swath.

In AgileSAR, the antenna beam randomly jumps to any one

of all the sub-swaths to transmit one pulse after receiving one

echo, and then the antenna beam leaps on the sub-swath of

echo arrival to receive the echo.

3) ROTATING RULE OF AZIMUTH ANTENNA

In TOPSAR, the azimuth antenna has a dwell time in each

sub-swath and rotates the antenna throughout the dwell time

from backward to forward. The rotating angle of antenna

continuously varies. This rotating mechanism guarantees the

consistency of antenna weighting and the azimuth ambiguity

in each sub-swath to solve the problems of scalloping and

azimuth-varying ambiguities. In AgileSAR, to avoid the over-

lap among the echoes of different sub-swaths as the swath is

ultra-wide and the conflict between transmitting and receiv-

ing as illustrated in Fig. 3(a), it adopts squinted acquisition

to make the echo delays of all the sub-swaths same. Except

the sub-swath with the biggest incidence angle working in the

side-looking scheme, all the sub-swaths have specific squint

angles, the squint angle of each sub-swath is as follows:

θq = arccos
(
Rq
/
RQ
)
,

0 ≤ θq ≤ π/2, q = 1, 2, · · · , (Q− 1), (11)

where q is the serial number of the sub-swath from small

incidence to large incidence. θq denotes the squint angle of

the qth sub-swath. Rq is the slant range on the center beam

of the qth sub-swath. RQ is the slant range on the center beam

of the Qth sub-swath. (11) indicates that the closer the sub-

swath away from the nadir is, the larger the squint angle is.

When the range antenna beam jumps from one sub-swath

to another sub-swath, accordingly the azimuth antenna also

rotates from one squint angle to another squint angle. The

rotating angle of antenna discretely and randomly varies,

and only has Q values. After the squinting scheme, all the

sub-swaths have the same echo delays, and the PRF of

transmitting pulses is certain. Therefore, like the transmit-

ting and receiving method in one sub-swath in TOPSAR,

AgileSAR also adopts the same method, i.e., it transmits one

pulse and then receives one echo from the perspective of the

trans-receiver.

4) AZIMUTHAL SPECTRUM WIDTH

In the TOPSAR mode, the antenna beam dwells on one

sub-swath for a period of time determined by the azimuth res-

olution and jumps to the next sub-swath. As a result, the cor-

responding azimuthal spectrum width for each sub-swath is

approximately 1/ (Q+ 1) of the entire Doppler bandwidth

decided by the azimuth antenna length, which results in

decreased azimuth resolution. Although the azimuthal spec-

trum corresponding to each sub-swath is sparse for Agile-

SAR, its span is equal to the entire Doppler bandwidth. This

lays a good foundation for the image reconstruction with full

resolution based on CS.

5) DATA PROCESSING ALGORITHM

For the transmitting signals in these two working modes,

both of which are linear frequency modulated (LFM) signals,

the range compression methods are the same. Range migra-

tion of TOPSAR data is corrected using the sin c function

interpolation method or frequency scaling method [2] while

AgileSAR corrects range migration by back projection [31].

Here, matched filtering (MF) or CS can be adopted to com-

press the azimuth signals satisfying the Nyquist theorem in
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TOPSAR, and the azimuth signals in AgileSAR are com-

pressed only based on CS. The details of the processing

algorithm are explained later.

B. ALGORITHM OF RECONSTRUCTION

Section II already mentioned that no matter which algorithm

is adopted, the algorithm of reconstruction includes three

steps: the range compression, RCMC, and the azimuth com-

pression. The demonstration of the reconstruction process is

as follows:

1) RANGE COMPRESSION

As long as the transmitted signal is an LFM signal, the range

signal can be compressed based on MF [2]. Assuming that

matched filter H (fτ ) of the range signal in the frequency

domain is denoted as follows:

H (fτ ) = rect

(
fτ

|Kr |Tr

)
exp

(
jπ
f 2τ

Kr

)
, (12)

the signal src (τ, η) after range compression is achieved by

the following:

src (τ, η)

= IFFTτ {S0 (fτ , η)H (fτ )}

=
M∑

m=1

σmWm (τ, η)Tr · sin c
{
KrTr

[
τ −

2Rm
(
ηcm

)

c

]}

· exp
{
− j4πRm(η)

λ

}
+ n (τ, η). (13)

where S0 (fτ , η) is the Fourier transform of the signal s0 (τ, η)

in the range and IFFTτ {·} is the inverse Fourier transform in

the range.

2) RCMC

In the traditional SAR system, the azimuthal signal is nearly

an LFM signal so that there is one-to-one and linear corre-

spondence between the time domain and frequency domain

in the azimuth dimension. Because targets in the same range

cell have the same range migration in the azimuth frequency

domain, most algorithms, e.g., range Doppler algorithm [2]

and chirp scaling algorithm [2], correct range cell migra-

tion in the azimuth frequency domain. To correct the range

migration of one target is equivalent to correcting that of all

the targets in the same range cell, so that correcting range

migration in the azimuth frequency domain is highly efficient.

In the AgileSAR system, sampling is non-uniform so that the

frequency also non-uniformly varies and the rangemigrations

of the targets on the same range cell are different in the

azimuth frequency domain. RCMC is implemented in the

azimuth time domain in this study. The procedure of RCMC

is: i) First, it should choose the imaging area that is guaranteed

to contain all targets in the raw data. For the cell division

of the imaging area, even if the cell of the imaging area is

divided more precisely, the resolution will not change, which

seriously affects the imaging efficiency. Therefore, the cell

TABLE 2. AgileSAR parameters.

division of the imaging area should be slightly smaller than

or equal to that in the raw data. ii) It takes the ascending

sampling to range dimension of raw data. To calculate the

slant range from each division cell of imaging area to radar at

each sampling instant, find the position of each division cell

at each azimuth sampling instant on the ascending sampling

range cell and take the data on this position. Sum up the data

of division cell on the same nearest slant range. After RCMC,

the signal is denoted as (2).

3) AZIMUTH COMPRESSION

Based on the analysis in section II, the azimuth signal in sub-

Nyquist sampling method can be recovered by the optimiza-

tion equation (4) in AgileSAR system.

C. ANALYSIS OF RECONSTRUCTED PERFORMANCE

In addition to the swath width and spatial resolution, the

reconstruction performance should be compared with con-

ventional SAR. As mentioned in Section II, CS is applied

to reconstruct sparse signals. Here, the least square (LS) is

adopted to process the signals satisfying the Nyquist theorem,

and the estimation σ̂ LS satisfies the following:

E
{
(σ̂ LS−σ )2

}
>

o (log (M)) · S · σ 2
x

SNR · L ·
[
1+1

/
2 · (1−ūpr ) · uLS

/
ūpr
] .

(14)

where ūpr and uLS are the mean mutual coherence in (10) and

the mutual coherence in (7).

By comparing (6) and (14), it can be observed that the fac-

tors influencing the estimation error are the mutual coherence

coefficient, the number of samples, and SNR. AgileSAR uses

pseudo-random sub-Nyquist sampling to make ūpr approach

uLS , and improves SNR by increasing the transmitting power

to make the multiplication of SNR and L a constant. As a

result, the lower bounds of the l1 approximation method

and LS estimation are almost equal, and the reconstruction

performances for AgileSAR and the conventional SAR are

approximately the same.

V. VALIDATION AND ANALYSIS

After having understood the observation method of Agile-

SAR, a design example is presented so that the reader can

comprehend the expected wide swath system. The system

parameters decide the performance of the SAR system. Some

system parameters are typical of a conventional SAR system,
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TABLE 3. Parameters and specifications for every sub-swath.

FIGURE 6. Reconstruction results. The ships enclosed by the red
rectangles are enlarged to be the right parts. Compared with the result
achieved by the conventional SAR, i.e., (a), the main details of ships are
preserved in (c), i.e., the result corresponding to the AgileSAR. Although
the sampling is sparse in AgileSAR, satisfactory reconstruction
performance is achieved. A single point target is placed in the middle of
the scene to evaluate the resolution, and the corresponding point spread
functions on two dimensions and on the azimuth dimension are
illustrated in (b) and (d), respectively.

such as the incidence angle and squint angle of the sub-swath.

Other parameters, i.e., the selected time–space sampling

method and the estimation error, are peculiar to AgileSAR.

These are described in sections III and IV, respectively. Com-

pared with Sentinel-1, which can acquire 5-m resolution and

TABLE 4. Simulation parameters for conventional SAR.

80-km swath in the strip mapping mode [32], AgileSAR can

realize the same resolution and a wide swath of 300 km using

a single azimuth-channel, for which the design parameters

are listed in Table 2. To cover the 300-km swath, the swath

is composed of five sub-swaths. The spaceborne AgileSAR

transmits one pulse every 513.6 µs. For every sub-swath,

the average PRF is 389.4 Hz. In addition to resolution and the

swath width, the incidence and squint angles corresponding

to every sub-swath are also listed in Table 3.

Although the sampling is sparse, the span of the Doppler

frequency shift for targets in every sub-swath is unchanged

so that the resolution is preserved. Therefore, the achieved

azimuth resolutions are the same as those of a conventional

SAR system while a wide continuous swath is covered.

To demonstrate the reconstruction performance, simulations

of AgileSAR and the conventional SAR are compared. One

TerraSAR-X image is selected and put at the 5th sub-swath in

the AgileSAR simulation. The corresponding result is shown

in Fig. 6(c). For conventional SAR simulation, the parameters

are given in Table 4, and the result is shown in Fig. 6(a).

By comparing Fig. 6(a) and (c), the main details of the target

remain, which indicates that the reconstruction performance

of AgileSAR approaches that of conventional SAR. A single

point target is placed in the middle of the scene to evaluate

the resolution, and the evaluated resolution in Fig. 6(d) is

approximately the same as in (b).

VI. CONCLUSION

This paper presents a novel time-space sampling method for

spaceborne SAR to increase the swath width while preserving

the resolution. Moreover, the following two major findings

have been obtained:

(1) From the deducted mean square error, we analyse that

a higher number of samples N , larger SNR and smaller u lead

to better reconstruction performance when the scene size M

is certain. The pseudo-random sub-Nyquist sampling method

is analysed and has nearly the same mutual coherence as

random sub-Nyquist sampling, so that it can achieve optimal

reconstruction performance and avoid the conflict between

the transmitting and receiving on one sub-swath when the

number of samples and SNR are certain.

(2) When the pseudo-random sub-Nyquist sampling

method is applied on Q sub-swaths, the overlap between

transmitting and receiving still exists. This study adopts the
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squinting scheme to let all sub-swathes have the same echo

delays. Simultaneously, to guarantee the reconstruction qual-

ity of SAR images compared with the conventional method,

it should increase transmitting power.

The observed mode is applied to not only the strip mapping

mode but also othermodes such as sliding spotlight and TOPS

modes. Further research will focus on developing the source

of generating random waveforms in the SAR system, when

the first category of sub-Nyquist samplingmethod is analyzed

and applied.

APPENDIX I

The equation (3) without subscript is rewritten as follows:

s = Dσ + n. (15)

A. PROOF OF FORMULA (6)

Assuming that the vector σ is a random variable vector,

the mean square error (MSE) of the estimation σ̂ in a

Bayesian framework is denoted by [34] the following:

MSE
(
σ̂
)

=
M∑

m=1

E
{(

σ̂m − σm

)2}

≥ trace

({
−E

[
∂2 ln ps,σ (s, σ )

∂σm1∂σm2

]}−1
)

= trace

({
−E

[
∂2 ln ps/σ (s/σ )

∂σm1∂σm2

]
−E

[
∂2 ln pσ (σ )

∂σm1∂σm2

]}−1
)

.

(16)

where σ̂m and σm are the mth elements of σ̂ and σ , respec-

tively. trace (·) denotes the trace of a matrix. ps,σ (s, σ ),

ps/σ (s/σ ) and pσ (σ ) are the joint probability density function

of the vector s and σ , the conditional probability density func-

tion of the vector s and σ , and the prior probability density

function of the vector σ , respectively. The data information

matrix JD and the prior information matrix JP represent

−E
[
∂2 ln ps/σ (s/σ )

∂σm1∂σm2

]
and − E

[
∂2 ln pσ (σ )

∂σm1∂σm2

]
,

respectively.

The following analyses the Bayesian information matrix

JB = JD + JP from these two information matrices:

1) Calculation of the data information matrices JD:

JD = −E
[
∂2 ln ps/σ (s/σ )

∂σm1∂σm2

]

= E

[
1

2σ 2
n

· ∂ ‖s − Dσ‖22
∂σm1∂σm2

]

= E

{
1

2σ 2
n

· ∂

∂σm1∂σm2

[
s
H
s − s

H
Dσ

−σ
H
D
H

σ + σ
H
D
H
Dσ

] }

= E

{
1

2σ 2
n

· ∂

∂σm2

[
2DH

Dσ − 2DH
s

]}

= DHD

σ 2
n

(17)

2) Calculation of the prior information matrix JP as fol-

lows:

JP = −E
[
∂2 ln pσ (σ )

∂σm1∂σm2

]
= E

[
1

2σ 2
x

· ∂ ‖σ‖22
∂σm1∂σm2

]

= I

σ 2
x

, (18)

where I is the unit matrix. Substituting (17) and (18)

into (16), we obtain the following:

E
{
(σ̂ − σ )2

}
≥
(
DHD

σ 2
n

+ I

σ 2
x

)−1

≥ trace

[(
DHD

σ 2
n

+ I

σ 2
x

)−1
]
. (19)

References [34] and [35] explains that the estimation error

is a logarithmic factor of the oracle performance as follows:

E
{(

σ̂ − σ
)}

≥ o (logM) · trace
[(

FHF

σ 2
n

+ I

σ 2
x

)−1
]
. (20)

Assume that A = FHF, B =
(
FHF

σ 2
n

+ I

σ 2
x

)
, and their

eigenvalues are λ1, λ2, · · · , λS and α1, α2, · · · , αS , respec-

tively. Based on the structure form of the reconstructedmatrix

DN×M in (3) during the reconstruction, the element of the

reconstruction matrix ignores the weighting, and l2-norm of

each column are nearly equal and assuming ‖Dl‖22 ≈ L,

where L is the number of samples in one aperture time. L is

proportional to the number of samples N when the point tar-

getM is certain. Then,
S∑
l=1

λl = L ·S, αl = 1
σ 2
x

(SNR · λl + 1)

and

S∑

l=1

λl ·
S∑

l=1

λ−1
l ≥ S2 ⇒

S∑

l=1

λ−1
l ≥ S

L

S∑

l=1

αl ·
S∑

l=1

α−1
l ≥ S2 ⇒

S∑

l=1

α−1
l ≥ S2 · σ 2

x

S∑
l=1

(SNR · λl + 1)

= S · σ 2
x

SNR · L + 1

Gail’s circle theorem indicates that∣∣∣∣αl −
SNR · L + 1

σ 2
x

∣∣∣∣ ≤ ūpr (S − 1) · SNR · L
σ 2
x

SNR · L + 1

σ 2
x

− ūpr (S − 1) · SNR · L
σ 2
x

≤ αl ≤ SNR · L + 1

σ 2
x

+ ūpr (S − 1)

· SNR · L
σ 2
x
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Therefore,

S∑

l=1

α−1
l ≥ S · σ 2

x

SNR · L ·
[
1 + ūpr (S − 1)

]
+ 1

E
{
(σ̂ − σ )2

}
≥ o(logM ) · S · σ 2

x

SNR · L ·
[
1 + ūpr (S − 1)

]
+ 1

Reference [36] indicates that the sharpness bound is S <
1
2

(
1
ūpr

+ 1
)
, so

E
{
(σ̂ − σ )2

}
≥ o(log(M )) · S · σ 2

x

SNR · L ·
[
1 + 1

/
2 · (1 − ūpr )

]
+ 2

(21)

B. PROOF OF FORMULA (14)

When LS is adopted to process the signals, the estimation

error is [30] as follows:

MSE
(
σ̂
)

= σ 2
n · trace

[(
F
H
F

)−1
]

Proving using the same method as with formula (6), which

is not repeated here

E
{
(σ̂ LS − σ )2

}
>

o (log (M)) · S · σ 2
x

SNR · L · [1 + uLS (S − 1)]

Similarly, the bounds of sparsity defined as S <
1
2

(
1
ūpr

+ 1
)
is applied, then

E
{
(σ̂ LS − σ )2

}
>

o (log (M)) · S · σ 2
x

SNR · L ·
[
1+1

/
2 · (1 − ūpr ) · uLS

/
ūpr
]

(22)

APPENDIX II

Fig. 7 shows the imaging geometry of SAR. In this figure, the

SAR sensor travels parallel to the y-axis and the velocity isVe.

η denotes a sampling instant ranged in the [0, T1] interval. H

is the orbit height. Assuming that C is the tracking position of

one sample, A and B are two point targets corresponding to

two columns with maximum correlation in the reconstructed

matrix DN×M . R0 is the nearest slant range between SAR

FIGURE 7. SAR imaging geometry.

and M point targets on the same nearest slant range. At the

sampling instant η, two slant ranges between SAR sensor and

point target A, and between SAR sensor and point target B are

Ra (η) =
√
R20 + (Ve · (η − T1/2) − Ta)2

≈ R0 + (Ve · (η − T1/2) − Ta)
2

2 · R0
Rb (η) =

√
R20 + (Ve · (η − T1/2) − Tb)2

≈ R0 + (Ve · (η − T1/2) − Tb)
2

2 · R0
,

respectively.

The mutual coherence coefficient u is denoted by the

following:

u = max
1≤m1 6=m2≤M

∣∣〈Di,Dj

〉∣∣
‖Di‖2 ·

∥∥Dj

∥∥
2

=

∣∣∣∣∣
nl∑

n=nf
exp

{
j 4π

λ
(Ra (ηn) − Rb (ηn))

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣
nl∑

n=nf
exp

{
j 2π
λR0

·
[
2Ve

(
ηn− T1

2

)
(Tb−Ta)−

(
T 2
b −T 2

a

)]}
∣∣∣∣∣

‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣
nl∑

n=nf
exp

{
j
4π ·Veηn·(Tb−Ta)

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

·
∣∣∣∣∣exp

{
−j

2π
(
T 2
b − T 2

a + VeT1 (Tb − Ta)
)

λR0

}∣∣∣∣∣

=

∣∣∣∣∣
nl∑

n=nf
exp

{
j
4π ·Veηn·(Tb−Ta)

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣
nl∑

n=nf
exp

{
j
4π ·Veηn·|Tb−Ta|

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

, (23)

Assume that d denotes the spacing |Tb − Ta| between point
target A and point target B. Based on the structure form of

the reconstructed matrix DN×M in (3), the l2-norm of each

column is nearly equal, and assume that ||Di||2 ≈ L2. (23) is

simplified to the following:

u =

∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣
L2

(24)

When the mutual coherence is calculated in the random

sub-Nyquist sampling method, the sampling instant η is a

continuous random variable ranged in the [0,T1] interval, and

assume that the probability density function of η is p (η).

Mean value ūr in the numerical characteristics of random
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variable is used to analyse ur :

ūpr

= max
1≤m1 6=m1≤M

|〈Dm1,Dm2〉|
‖Dm1‖2 · ‖Dm2‖2

=
E

(∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣

)

L2

=

∫ ∫
· · ·
∫

︸ ︷︷ ︸
ηn∈[0,T1]

(∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣

L2

·
p
(
ηnf , η(nf +1), · · · , ηnl

))
dηnf , dη(nf +1), · · · , dηnl

L2

(25)

All the sampling instants are independent and identi-

cally distributed, so p
(
ηnf , η(nf +1), · · · , ηnl

)
= p

(
ηnf
)

·
p
(
η(nf +1)

)
· · · p

(
ηnl
)
. Then

ūr =

∫ ∫
· · ·
∫

︸ ︷︷ ︸
ηn∈[0,T1]

∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣

L2

·
p
(
ηnf
)
p
(
η(nf +1)

)
· · · p

(
ηnl
)
dηnf dη(nf +1) · · · dηnl

L2

(26)

For this, the definite integral is transformed into the sum-

mation of infinite series, ūr in random sub-Nyquist sampling

method is expressed as

ūr = lim
A→∞

A∑

inf =0

A∑

i(nf +1)=0

· · ·
A∑

inl=0



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0

(
in

A
T1

)}∣∣∣∣∣∣

· p
(
inf

A
T1

)
· p
(
i(nf +1)

A
T1

)
· · · p

(
inl

A
T1

)

·T1
A

· T1
A

· · · · T1
A



/
L2. (27)

When the mutual coherence is calculated in the pseudo-

random sub-Nyquist samplingmethod, the sampling instant η

is a discrete random variable and the set of all possible values

as follows:

� =
{

T1

NNyquist − 1
· 0, T1

NNyquist − 1
· 1, · · · ,

T1

NNyquist − 1
· (NNyquist − 1)

}
,

where NNyquist is the number of samples in the Nyquist sam-

pling method. Assuming that the probability of η is f (η),

mean value ūpr in the numerical characteristics of random

variable is used to analyze upr (28), as shown at the bottom of

this page, where each sampling instant η is independent and

identically distributed, so

f
(
ηnf , η(nf +1), · · · , ηnl

)
= f

(
ηnf
)
· f
(
η(nf +1)

)
· · · f

(
ηnl
)
.

In essence, the difference between random sub-Nyquist

sampling method and pseudo-random sub-Nyquist sampling

method is the sampling instant. The sampling instant of the

former is a continuous random variable and that of the latter is

a discrete random variable. To analyze the impact of different

sampling methods on the mutual coherence, both should have

the same distribution, e.g., if the former obeys a continuous

Gaussian distribution with mean 0 and variance 1, the latter

also should obey discrete Gaussian distribution with mean 0

and variance 1. Therefore, we set the following:

f (
in

NNyquist − 1
T1) =

∫ T1
NNyquist

·(in+1)

T1
NNyquist

·in
p (η)dη (29)

ūpr = max
1≤m1 6=m1≤M

|〈Dm1,Dm2〉|
‖Dm1‖2 · ‖Dm2‖2

=
E

(∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣

)

L2

=

NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)=0

· · ·
NNyquist−1∑
inl=0

∣∣∣∣∣
nl∑

n=nf
exp

{
j 4πVed

λR0
ηn

}∣∣∣∣∣ · f (ηnf , · · · , ηnl )

L2

=
NNyquist−1∑

inf =0

NNyquist−1∑

i(nf +1)=0

· · ·
NNyquist−1∑

inl=0



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0
·
(

in

NNyquist − 1
T1

)}∣∣∣∣∣∣

f (
inf

NNyquist − 1
T1) · f (

i(nf +1)

NNyquist − 1
T1) · · · f (

inl

NNyquist − 1
T1) · T1

NNyquist
· T1

NNyquist
· · · T1

NNyquist

)/
L2. (28)
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Substituting (29) into (28), the equation (28) is simplified

to the following:

upr

=
NNyquist−1∑

inf =0

NNyquist−1∑

i(nf +1)=0

· · ·
NNyquist−1∑

inl=0



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0
·
(

in

NNyquist − 1
T1

)}∣∣∣∣∣∣

·
∫ T1

NNyquist
·
(
inf +1

)

T1
NNyquist

·inf
p (η)dη ·

∫ T1
NNyquist

·
(
i(nf +1)+1

)

T1
NNyquist

·i(nf +1)

p (η)dη

· · ·
∫ T1

NNyquist
·
(
inl+1

)

T1
NNyquist

·inl
p (η)dη · T1

NNyquist
· T1

NNyquist

· · · T1

NNyquist



/

L2 (30)

For this, the sampling duration T1 is very small and the

number of Nyquist samples NNyquistis very large,

∫ T1
NNyquist

·(in+1)

T1
NNyquist

·in
p (η)dη ≈ p

(
in

NNyquist − 1
· T1

)
· T1

NNyquist
.

(31)

Then

ūpr

=
NNyquist−1∑

inf =0

NNyquist−1∑

i(nf +1)=0

· · ·
NNyquist−1∑

inl=0



∣∣∣∣∣∣

nl∑

n=nf
exp

{
j
4πVed

λR0
·
(

in

NNyquist − 1
T1

)}∣∣∣∣∣∣

· p
(

inf

NNyquist − 1
· T1

)
· p
(

i(nf +1)

NNyquist − 1
· T1

)

· · · p
(

inl

NNyquist − 1
· T1

)

· T1

NNyquist
· T1

NNyquist
· · · T1

NNyquist



/
L2 (32)

Comparing equation (27) with equation (32), ūr ≈ ūpr
when the number of Nyquist samples NNyquist approaches

infinity. In reality, NNyquist is much larger; therefore, we can

assume that ūr ≈ ūpr .
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