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Simple Summary: Aging and frailty are complex processes implicating multifactorial mechanisms,
which demand for new therapeutic strategies against their devastating effects. Mesenchymal stem
cells (MSC) participate in a “galaxy” of tissue signals (proliferative, anti-inflammatory, and antiox-
idative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to
tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC
have been proposed: remove, rejuvenate, or replace the senescent MSC. We propose the new strategy
of “Exogenous Restitution of Intercellular Signalling of Stem Cells” (ERISSC). This concept is based
on that the potential use of secretome from MSC, which are composed of molecules such as growth
factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells.
Therefore, this strategy allows us to avoid the drawbacks of cell therapy.

Abstract: Aging and frailty are complex processes implicating multifactorial mechanisms, such as
replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of
these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated
secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic
strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells
(MSC) participate in a “galaxy” of tissue signals (proliferative, anti-inflammatory, and antioxidative
stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue
homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have
been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use
of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC.
Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the
different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new
strategy of “Exogenous Restitution of Intercellular Signalling of Stem Cells” (ERISSC). This concept is
based on the potential use of secretome from MSC, which are composed of molecules such as growth
factors, cytokines, and extracellular vesicles and have the same biological effects as their parent
cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects,
such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify
the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context
of the functional heterogeneity of these cellular populations, to optimize the mass production and
standardization of the primary materials (cells) and their secretome-derived products, to establish
the appropriate methods to validate the anti-aging effects and to determine the most appropriate
route of administration for each case.
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1. Introduction

The number of people older than 64 years will reach over 1.5 billion between 2019
and 2050, which means that the population of that age group will double compared to the
current one [1]. In other words, within 30 years one in six people will be considered an
“older adult” in the world [1]. The aging is characterized by physiological vulnerability
due to both an inadequate response to stress and homeostasis balance. Therefore, at age 65
there is an elevated risk of neurodegenerative diseases, cardiovascular diseases, diabetes,
cancers, osteoporosis, and osteoarthritis, among others [2,3]. In addition, elderly people
are not only more frequently subjected to polypharmacy, but they are also more susceptible
to its interactions and adverse effects in general [4]. For all of this, aging is increasing
burden on our healthcare, particularly in countries with the highest longevity [5]. In fact,
despite the accredited modern social and medical advances, the biological age did not grow
in an equivalent dimension. On the contrary, the increasing life expectancy tends to be
accompanied with increasing morbidity.

All of this causes the demand for new therapeutic alternatives in a growing part
of society that, endowed with economic resources and accessibility to medical-scientific
information, are raising the expectations of a better quality of life in the prelude to a vital
chronology truncated by an exhausted physiopathology. In this scenario, the emergence
of the paradigm of regenerative medicine can unleash a “perfect storm” of ideas and new
approaches in order to face the challenge of a healthier longevity. Therefore, novel and
urgent therapeutic strategies are necessary to help with age-related disorders by developing
novel strategies of treatment.

Here, we will address the potential interest of MSC (mesenchymal stem cells) for their
regulatory role in tissue homeostasis, their alterations in aging and associated diseases, and
their possible value as the basis for a new therapeutic strategy.

2. Mechanisms of Aging

Aging is a complex process not only from the psychological and social point of view,
but also from the biological context [6,7]. In fact, none of the existing definitions of aging fit
the enormous complexity of the process [8,9].

There are several hallmarks which have characterized aging [10]. These include ge-
nomic instability, epigenetic alteration, telomere attrition, metabolic dysfunction, loss of
proteostasis, mitochondrial dysfunction, stem cell exhaustion, cellular senescence, and
altered intercellular communications (for review, see [11,12]). Tentatively, a narrative of
the process that leads to aging can be constructed, starting from a concept that is the
consequence of continuous endogens and/or exogenous stresses, including oxidative
stress, replicative exhaustion, chemicals, or irradiation. These pernicious conditions af-
fect adult somatic cells, inducing cell cycle arrest as well as resistance to cell death by
necrosis, autophagy, or apoptosis. All of this collectively may induce a state of replicative
senescence [13] (Figure 1).

When DNA replicates, the telomere is shortened. Continuous telomere erosion may
drive in an irreversibly restricted proliferation, named replicative senescence. This process
is intimately connected to oncogene-induced senescence. Activation and/or overexpres-
sion of oncogenes, such as RAF, MEK, cyclin E, and BRAF, not only drives senescence
but is also a necessary step in tumorigenesis. Stress-induced premature senescence may
be because of several stimulations, such as mechanical stress, hypoxia, osmotic stress,
high glucose concentrations, ionizing radiation, heat shock, and reactive oxygen species
(ROS) [14,15]. With regard to this latter stimulation, the dysregulation of the production
of ROS and antioxidants causes both DNA and protein damage, as well as mitochondrial
dysfunction, which impacts aging [16]. This is due to mitochondria, as cellular energy
places contribute to key cell activities (apoptosis, initiation of signal transduction pathways,
or cell matrix metabolism).

Another mechanism that has been associated with senescence is autophagy. This phys-
iological process is necessary for maintaining cellular homeostasis. Autophagy prevents
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age-related cellular injury by removing cell damage components, such as proteins and
mitochondria [17]. However, autophagy efficiency gradually decreases with the growth of
age [18].

Epigenic modifications in histone regulation, which lead to silencing genes, are also
strongly related to cellular senescence [19-21].

All of these senescent processes lead to morphological cellular changes characterized
by flattened morphology with stress fibers, enlarged nuclei, and vacuolization due to
the accumulation of macromolecules. Most of these macromolecules, such as the acidic
senescence-associated 3-galactosidase (SA-Gal), senescence-associated lysosomal o-L-
fucosidase (SA-«-Fuc) [16], cell cycle regulators (p16INK4a, p21, p27, p53, pRB), and
senescence-associated secretory phenotype (SASP) factors, are used as senescence markers.
The SASP comprises growth factors (vascular endothelial growth factor (VEGF), hepatocyte
growth factor (HGF), basic fibroblast growth factor (bFGF), insulin growth factor-1 (IGF-1),
TGEFp), cytokines (interleukin-13 (IL-1§3), IL-6), chemokines (monocyte chemoattractant
protein-1 (MCP-1), IL-8), and extracellular proteases (matrix metalloprotease-1 (MMP-1),
-3,-13). It is relevant to mention that SASP, by producing a self-perpetuating intracellular
signaling loop in senescent cells, contributes to subclinical inflammation [22].
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Figure 1. Hallmarks of aging.
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2.1. The Importance of the Relationship between Aging and Immune System

In general, the above-mentioned mechanisms associated with senescence, such as
the incessant oxidative stress, telomere shortening, impaired autophagy, or epigenetic
alterations, impact both the innate and adaptative immune systems (reviewed by [23]). All
of this has led to a line of evidence between the immune system and aging, which can be
narrowed down to two categories, namely immunosenescence and inflamm-aging [24].
The term immunosenescence refers to decline in the immune system competence with
aging. With aging comes upregulated expression of inflammatory pathway genes in
the monocytes/macrophages [25]; increased propensity to viral, bacterial and parasitic
infection; cytokines such as TGF-f3 and IL-10 suppressing dendritic cells (DC) function
and promoting the M2-type macrophage polarization; and the neutrophils decreasing their
phagocytic ability and diminished bactericidal activity [26]. With regard to the natural
killer (NK), it was reported that their antiviral capacity also decreases with age [27]. On the
other hand, the toll-like receptors’ (TLRs) activity also declines with age [28,29].

It is relevant that senescent lymphocytes have a limited capacity in eliminating novel
antigens, display a proinflammatory cytokine profile, can evade apoptosis, and favor the
development of autoimmunity [30-32]. This incessant replication of T cells affects their
proliferation capacity and leads to an immune cell refractory state [33,34]. Especially, B
cells in older adults decrease their response capability toward pathogens [32], particularly
in their switched memory B cells [31,34].

All of these proinflammatory changes associated with immunosenescence may drive
to state of inflamm-aging, which, as proposed by the Prof. Claudio Franceschi in 2000, is an
evolutionary perspective on immunosenescence [35]. Thus, inflamm-aging, which arises
without a clear external stimulus, translates into a negative imbalance between innate and
adaptive immunity.

3. Aging and Disease

Immunosenescence and inflamm-aging have been suggested to be largely respon-
sible for the origin of the diseases of the elderly, such as chronic inflammatory diseases,
autoimmune disorders, infections, and cancer. In an extreme stage, it may occur as a
complex phenomenon named frailty, which has been defined as a generic condition of
reduced strength, stamina, stability, and process and is a potential risk of morbidity and
mortality [36].

It is relevant that most age-related diseases share a similar inflammatory pathogenesis.
In addition, inflamm-aging may exacerbate these disease processes and their morbidity.
This common inflammatory disease includes atherosclerosis, hypertension and myocardial
infarction, Alzheimer’s disease, Parkinson’s disease, rheumatoid arthritis, and type II
diabetes [22,37,38]. As a result of degenerating immunity, older age groups are also
more susceptible to severe infections such as community-acquired pneumonia [39,40]. In
addition, there are strong data pointing to higher morbidity from infections in the elderly
population, reflected, for example, in developing cognitive decline post-infection [41]. It is
remarkable that older adults have a higher autoimmunity, which is characterized by high
levels of circulating T-regulatory cells (Treg) and a reduced CD4/CD8 ratio, which results
in a predisposing imbalance to infection and cancer [42]. On the other hand, due to immune
system dysfunction with aging, vaccines are less effective in the elderly population [43-46].

4. MSC and Tissue Homeostasis

MSC are defined by their capacity to adhere to plastic, by expressing a set of pheno-
typic markers (CD73+, CD90+, CD105+, CD11b- or CD14-, CD19- or CD79a-, CD34-,
CD45-, HLA-DR-) and by their ability to differentiate toward osteoblasts, adipocytes,
and chondrocytes [47]. Multiple effects of MSC, depending on their origin and/or hetero-
geneity, suggest a key role in controlling tissue homeostasis, which is truncated in several
age-related diseases [48]. This may be in part because their mesodermal origin, whose
biology leads to the constitution of a stroma intimately interconnected with both ectoderm-
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or endoderm-derived tissues. Other examples of specialized interstitial cells of mesoderm
origin are interstitial cells of Cajal or the synovial fibroblasts [49,50]. With regard to MSC,
there is growing evidence that they participate in a “galaxy” of intercellular signals con-
tributing to tissue homeostasis [51,52]. In fact, a decrease or dysfunction of MSC have been
related with inflammatory and degenerative base diseases such as diabetes mellitus (DM),
rheumatoid arthritis (RA), or systemic lupus erythematosus (SLE) [53]. For all of these
reasons, mesenchymal (stromal) stem cells are probably the adequate term. Due to their low
immunogenicity, MSC have been safely transplanted autologously or allogeneically [48,54].
In the treatment of various diseases, such as graft-vs.-host disease (GVHD) [55], Crohn’s
disease (CD) [56], diabetes mellitus (DM) [57], multiple sclerosis (MS) [58], and myocardial
infarction (MI) [59], etc., today it is essential that MSC can exert their functions through
a paracrine manner mainly by secretion of soluble factors (growth factors and cytokines),
but also by the extracellular compartment. There are two main subtypes of extracellular
vesicles (EVs): exosomes and microvesicles [60]. Exosomes, of less than 120 nm in size,
are originated from the endosomal compartment. Microvesicles, which are between 100
and 500 nm, are formed by the budding of the plasma membrane. Apoptotic bodies are
a type of EV (500-5000 nm) and are released upon the fragmentation of apoptotic cells.
The content of EVs consist of nucleic acids (mRNA, DNA, or microRNAs), proteins, and
lipids. EVs isolated from MSC have similar functions of the parental cell [60]. Globally,
MSC-derived secretory products have anti-inflammatory, regenerative, and antioxidative
stress, and antitumor, antifibrotic, and antimicrobial effects, which may positively impact
aging frailty and aged-related diseases.

4.1. Anti-Inflammatory Effects

It is considered that MSC act on the immune system mainly by a paracrine manner
rather than direct cell-to-cell contact [61,62]. MSC secrete soluble factors, which produce an
immunomodulatory effect, such as TGF-f3, hepatocyte growth factor (HGF), prostaglandin
E2 (PGE2), indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO), interferon-gamma (IFN-
v), IL-2, and IL-10. Consequently, MSC result in immunoregulatory effects on all of the
immune cell types: (i) inhibit the proliferation of T cells [63] and attenuate their functional-
ity [64,65]; (ii) influence B cells, reduce their plasmablast formation and induce regulatory
B cells (Bregs) [66]; (iii) polarize monocytes (M0) toward the anti-inflammatory M2 phe-
notype [67] and reprogram M1 macrophages to the M2 phenotype [68]; (iv) suppress the
proliferation of NK and their cytotoxicity; and (v) inhibit the differentiation and migration
of dendritic cells (DCs) [69].

4.2. Regenerative Effects

MSC produce many active factors which contribute to tissue regeneration [70]. These
factors include ECM proteins (MMP-1, -2, -3, -7; TIPM-1 and 2, elastin, collagens, laminin,
and ICAM), growth factors (TGF-f3, HGF, EGF, KGF, FGF, VEGF, PDGF, GF-1, NGEF-3,
BNDE, I G-CSE, or GM-CSF), and inflammatory proteins (MCP-1, PGE2, IL-1, -6, -8-11, -13).
Another mechanism of regenerative effect is angiogenesis. MSC secreting molecular factors
stimulate the proliferation and migration of endothelial cells. These factors include VEGE,
ANG-1y 2, PDGFE TGF-$1, TGF-«, EGF, FGF, CXCL5, MCP-1, and MMPs [71,72]. However,
the secretion of these factors is reduced in aged MSC. On the contrary, aged MSC produce
high levels of antiangiogenic factors (thrombospondin-1 (TBS1) and plasminogen activator
inhibitor-1 (PAI-1)) [73,74]. On the other hand, there are data supporting the idea that MSC
could promote neurogenesis and improve the neurological state in several studies, in vivo
and in vitro [75,76].

4.3. Antioxidative Stress Effects

MSC express antioxidant enzymes, such as the antioxidant glutathione (GSH), glu-
tathione peroxidase (Gpx), SOD1, SOD2, and catalase (CAT) [77], as well sirtuin (SIRT) and
heat-shock protein 70 (HSP70) [78]. Consequently, in vitro studies have demonstrated the
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antioxidant effect of MSC on immune cells, fibroblasts, skeletal muscle cells, endothelial
cells, cardiomyocytes, renal cells, hepatocytes, pancreatic islet cells, glial cells, and neurons.
In addition, this protective effect of MSC was also proved by in vivo studies on aging,
ischemic injuries, diabetes, gastrointestinal inflammation, infections, and radiation- or
chemotherapy-induced cognitive disorders. MSC have antioxidant effects by the scav-
enging of free radicals via reactive oxygen species suppression, promoting endogenous
antioxidant defenses and altering mitochondrial bioenergetics [79,80].

4.4. Antitumor Effects

Aging is a recognized condition that is highly linked to cancer development. If fact,
the incidence of cancer is over 10-fold higher in the population over 65 years old [81]. It has
been estimated that, especially, 40% of individuals aged over 65 years will have cancers [82].
In addition, it is known that the adverse effects of anticancer therapies increased with
aging [83].

Several studies suggest that the pro or antitumor effect of MSC is dependent on their
tissular origin and the type of tumor [84,85]. MSC originated in the uterus could become
good candidates for cancer therapies [86].

MSC secrete high amounts of cytokines, which induce the inhibition of tumor growth
in vivo in breast cancer cells such as IL12, IFN-«, CXCL10, LAP, DKK-1/3, TRAIL, TNFSF14
(also known as LIGHT), and FLT-3 ligand [87-89]. The antitumor effect of MSC may be also
partly related to TIMP-1 and TIMP-2, present in their secretomes [88,90]. This might be due
to the inhibition of MMPs, which is related with the loss of invasiveness of cancer cells. It is
also known that EVs from human UC-MSC inhibit the development of bladder carcinoma
cells [91] and exosomal miRNA from AD-MSC suppress the proliferation of ovarian cancer
cells [92]. All if this is very relevant if we take into account that cancer cells internalize a
greater amount of EVs than normal cells [93,94].

4.5. Antifibrotic Effects

Fibrotic effects consist of an accumulation of ECM proteins, such as collagen I, colla-
gen III, and fibronectin. This condition is consequence of subjacent mechanisms such as
inflammation, oxidative stress, and aging. There are data from in vivo studies showing
the antifibrotic effect of Warthon jelly MSC against skeletal muscle fibrosis [95] or renal or
hepatic fibrosis [25,96], via the secretion of MMP-1, VEGEF, and HGEF, respectively.

4.6. Antimicrobial Effects

It is important to consider that, apart from the vulnerability to infections due to
mechanisms associated with senescence, the role of the microbiome at any part of the
organism may contribute to inflamm-aging. [97,98]. With aging, there is a disbalance
between the commensal good microbes and the bad microbes, especially in the gut [99-101].
In this context, the possible antimicrobial homeostatic role of MSC may be relevant. This is
due to their expression of interferon (IFN) and their stimulated genes (ISGs), which include
CCL2, IFI6, PMAIP1, p21/CDKN1A, ISG15, and SAT1. In addition, members of the ISG
family can prevent viral infections before viruses cross the lipid bilayer. Consequently,
MSC are usually resistant to viral infection [102,103].

MSC might also act directly through the secretion of antimicrobial peptides. These
small effector molecules, with 10-150 amino acids such as cathelicidin, defensins, cystatin C,
elafin, and lipocalin 2 [104,105], may disrupt the microbial membrane integrity and inhibit
their protein, DNA, or RNA synthesis [106]. Nevertheless, the main mechanism of action is
by a cleavage product of the cathelicidin, which has a broad range of antibacterial [107-109],
antifungal [110], and antiviral [111] activities. IL-10, IDO, IL-17, and prostaglandin E2
(PGE2) are other proteins secreted by MSC that have antimicrobial activity [112,113].



Biology 2022, 11, 1678

7 of 27

5. MSC and Aging

Replicative senescence may be activated in MSC and undergo many cell divisions.
This may be, in part, due to telomere shortening, which leads them to replicative senes-
cence [114]. In addition, there are other mechanisms that lead MSC to senescence, such
as the above-mentioned oncogene-induced senescence [115-118], stress-induced prema-
ture senescence [119,120], epigenic alterations [121], autophagy [122], and mitochondrial
dysfunction [123]. All of these pro-aging mechanisms implicate both morphological and
functional changes in senescent MSC. Morphological changes include enlarged and more
granular morphology and nuclei with small and condensed spots of heterochromatin
structure [124] (Figure 2). They also have a decrease in cell colony numbers (CFU) [15]
and an increase in the expression of SA-3-gal [125]. In addition, they have a prolonged
G1/GO0 phase of the cell cycle and a significantly decreased S phase [126]. On the other
hand, senescent MSC tend to change their differentiation potentials. Specifically, aged MSC
exhibit a reduced osteogenic ability, while an increased adipogenic differentiation abil-
ity [127] contributes to decreased bone formation [128] and osteoporosis [129]. Senescent
MSC also have a low capacity to recruit macrophages and fail to polarize them toward the
anti-inflammatory M2 phenotype [130].

e

NS

Figure 2. Morphological differences between proliferative (left) and senescent cells (right) (10x),
human mesenchymal cervical stem cells (hUCESC). Scale bar: 50 um.

Interestingly, senescent MSC affect their neighboring cells by secreting the above-
mentioned SASP factors [131], which are also responsible for inflamm-aging [132]. Senes-
cent MSC also change the composition of their exosomes (for review, see [133,134]). Spe-
cially circulating exosomes from elderly donors reduce the osteogenic potential of young
MSC, which may be by secreted microvesicular miR-31 (for review, see [135]).

Several studies showed that aging is generally associated with increased EV produc-
tion by senescence cells [136—138]. It has been reported that EV secretion by senescent cells
is at least in part dependent on p53 and its downstream target gene tumor suppression-
activated pathway 6 (TSAP6) [139]. There are two possible benefits of this physiological
finding. On the one hand, the enhanced secretion of EVs from senescent cells may facilitate
cell survival by the removal of toxic molecules (for review, see [140]). On the other hand,
the release of EVs by senescent cells may be a protective mechanism for signaling the
distress, by which neighboring cells may respond more adequately to stress. However, it is
more possible that those EVs produced by senescent cells integrate the collation of SASPs
that, as a whole, will contribute to strong prosenescent signals.
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5.1. Functional Alterations of MSC in Aging and Related Diseases

Functional alterations of MSC in aged-related diseases have been reported: for exam-
ple, in osteoarthritis (OA), idiopathic pulmonary fibrosis (IPF), or cardiovascular diseases.

Diseases of the musculoskeletal system are classically age-associated and are gaining
relevance because they are assosciated with disability; they are related with an increased
risk of falls, depression, and higher mortality [141]. It has been found that there is a higher
number of MSC in the OA cartilage than in the normal cartilage [142,143], but they show
alterations [144]. Senescent MSC of the human OA cartilage, when injected intra-articularly,
were sufficient to induce cartilage degeneration. In addition, senescent MSC of human OA
cartilage are prone to osteogenesis rather than chondrogenesis [145].

IPF is a disease leading to irreversible loss of lung function [146]. There are data
indicating a link between senescent MSC and the onset of the IPF [147]. In fact, when
human lung fibroblasts were cultured with IPF MSC, an increased expression of senescence
markers, such as SA-f3-gal, p16INK4A, and p53, was found.

A group of self-renewal multipotent cardiac stem and progenitor cells in human heart
has been identified [148], the functions of which are decreased by aging, leading to cardio-
vascular disease [149]. Analysis of these cells isolated from patients with cardiovascular
diseases revealed how they have a reduced capability for self-renewal and differentiation,
which may be due to the increased expression of SASPs, including MMP-3, GM-CSEF, PAI1,
IL-1B, IL-6, and IL-8 [150].

6. MSC as Basis of Anti-Aging Strategies

Aging frailty is a complex geriatric syndrome caused by the disruption of physio-
logical homeostasis. Frailty can be identified by at least three of these components: slow
walking speed and low physical performance, self-reported exhaustion, weakness and
unintentional weight loss [151]. Notably, the brain (brain atrophy, loss of neurons, and
synapse connections) [152], cardiovascular system (myocardial infarction, atrial fibril-
lation, and chronic heart failure) [153,154], skeletal muscle (progressive loss of muscle
mass and strength) [155,156], and endocrine system (imbalance between the anabolic and
catabolic [157-159]) are intrinsically interrelated to frailty (reviewed by [160,161]).

The management of geriatric patients consists of the implementation of calorie re-
striction, exercise regimes, and hormonal supplementations [37,61,162]. Diets high in n-3
polyunsaturated fatty acids and vitamin D in reduced levels of inflammatory cytokines
reduce the mortality of the inflammatory diseases [163,164]. Although including exercise
and/or nutrition and/or cognitive training have good results [165], these personalized
approaches have failed to produce consistent results for frailty [165]. Thus, new strategies
are necessary that allow us to delay the onset of frailty.

Moreover, we have mentioned above evidence indicating the recognized role of MSC
in tissue homeostasis; strategies based on their positive biological effects or their secretome-
derived products may be an alternative for aging frailty. Therefore, the mechanisms
associated to these biological effects might face to relive several frailty symptoms, such
as unintentional weight, muscle loss and weakness, a feeling of fatigue, and low levels of
physical activity [160]. In this sense, Lui et al. proposed the “3Rs”: remove, rejuvenate, or
replace (3Rs) the senescent MSC [166]. In addition, we propose here the new concept of
“Exogenous Restitution of Intercellular Signalling of Stem Cells” (ERISSC).

6.1. Senolytics: Elimination of Senescent Cells

Experimental studies reported that senolytic drugs eliminated senescent cells in mice
and alleviated age-related diseases, such as muscle loss, pulmonary fibrosis, metabolic
syndrome, osteoporosis, cardiac dysfunction, vascular dysfunction, diabetes, and demen-
tia [167]. Several BCL-2 family inhibitors (dasatinib, quercetin, or ravitoclax) have been
used by this proposal. It was basic that the BCL-2 gene family plays a central role in the
regulation of programmed cell death [168-170]. In fact, patients with IPF, treated with the
senolytics dasatinib and quercetin, showed significantly improved physical performance in
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a first human clinical trial [171]. Other drugs inhibiting BCL-2 family members, such as
A1331852 and A1155463, have also been promising [172].

6.2. Rejuvenation of MSC

Approaches to the rejuvenation of MSC may be based on antioxidant drugs, au-
tophagy regulation, microRNA treatment, and preconditioning modification and genetic
modification [173].

MSC senescence can be reversed by reducing RO production with antioxidants such
as ascorbic acid, lactoferrin, N-acetyl-L-cysteine, or Cirsium setidens [174-177].

Regulating the autophagy level is also a strategy to rejuvenate senescent MSC. Treat-
ment with rapamycin, an autophagy inhibitor, remarkably downregulated SASP in senes-
cent MSC [178]. In addition, it was shown that inhibition of mTORC1 with AICAR and
NAM boosts autophagy and postpones senescence-associated changes [179]. Melatonin can
also reverse MSC senescence through upregulation of HSPA1L, a heat shock protein, which
increases the antioxidant enzyme activity in mitochondria from senescent MSC [180].

Genetic engineering is another strategy used to slow MSC aging, for which several
molecules have been identified as potential targets (reviewed by [181]). Thus, for example,
it has been reported that ectopic expression of telomerase reverses transcriptase in MSC-
abolished senescence [182]. The introduction of Erb-B2 receptor tyrosine kinase 4 (ERBB4)
in aged MSC rescues the senescence phenotype and conferred resistance to oxidative
stress [183]. Overexpression of macrophage migration inhibitory factor (MIF) rejuvenates
aged MSC by activating autophagy [184]. On the other hand, it has been shown in in vitro
studies that microRNAs can regulate MSC senescence (reviewed by [125]). Thus, for
example, MiR-1292 regulates senescence and osteogenesis through the Wnt/ 3-catenin
signaling pathway [185]. Further in vivo studies targeting several senescent-associated
microRNAs in MSC are necessary to achieve an effective effect.

6.3. Replacing MSC

Considering that the chronological age of a donor strongly conditions the quality
and lifespan of MSC [186,187], it would be reasonable to use their allogenic younger MSC
due to their higher proliferative capacity and differentiation potential compared with
those from aged donors [188]. In fact, there is recent evidence supporting this strategy.
It has been shown that allogeneic MSC transplantation reduced the serum TNF-« in
older patients [189]. This is an interesting finding because serum TNF-« is considered
an inflammatory marker linked with age-related chronic diseases [190]. In a model of
traumatic brain injury, it was found that functional recovery was remarkable after the
transplantation of MSC from younger rats compared with those from older rats, which
demonstrates that the neuroprotective properties of MSC are age-dependent [191]. More
specifically, a recent study in patients with dilated cardiomyopathy demonstrated that with
the myocardial injection of young allogenic, but not aged autologous, MSC improved their
cardiac function [190].

It also worth considering that the transplantation of MSC can be utilized as treat-
ment of several diseases, such as traumatic brain injury [192], spinal cord injury [193],
cardiovascular diseases [194], stroke [195], and liver diseases [196]. Taken together, this
led us to consider that the transplantation of MSC may serve as a therapeutic strategy
in aging frailty [37,197]. Two clinical trials—phase I and phase II—were conducted in
aged patients by administering different doses of allogeneic BM-derived MSC. In the first
clinical trial [198], five patients in each group intravenously received 20 million, 100 million,
and 200 million, respectively. All the patients had an increased 6 min walk distance at
3 months and 6 months, and their serum levels of TNF-« decreased. In a consecutive
clinical trial [199], in which 30 patients with aging frailty were randomized into 100 million,
200 million was found to be safe and immunologic improvement detected in the two treat-
ment groups. In addition, these two trials confirmed that 100 million cells were better than
200 million cells. One possible explanation may to be related to the potentially deleterious
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effects of higher doses on cell retention or cell survival. On the basis of these preliminary
clinical studies, and the impending phase III clinical trials, we may have to consider that
MSC transplantation might be a possible innovative treatment of frailty. However, caution
is still needed when considering the limitations of cells therapies, as shown in the following.

6.4. Therapy Based on MSC Secretome-Derived Products: A New Proposal for Aging Frailty Treatment

Based on the hypothesis that MSC contribute to the maintenance of tissue homeostasis
by the secretion of a “galaxy” of intercellular signals [200], we can propose the new con-
cept of “Exogenous Restitution of MSC Intercellular Signalling of Stem Cells” (ERISSC)
(Figure 3). This close-up may be possible by using the strategy of MSC secretory-derived
products, which may be obtained through in vitro cultures of these multifunctional cells.

Facilitation

OXIDATIVE STRESS

+ Replicative senescence
Telomere attrition
+ Genomic instability

Facilitation

Normal functional
\ 7 MSC
k / |
/

Senescent MSC /

~

-
7]
]
Q.

E

Indycjg,,

—-—

Secretion by

<

I

I W \

| <°

[ 1 Tisular homeostasis

1 Regenerative processes
MSC from 1 Antimicrobial
reproductive )
’ origin § Inflamm-aging
1 Metabolism alteration 1 Pro-tumor
1 Frailty ll | YFraity
Hy, 1

| an Ipg

|
F g\
g 3\
E S\

5

\
\
\ \
\
Rejuvenated

{

somatic cells

Senescent somatic cells

Figure 3. Physiopathological mechanisms associated with the senescence of MSC (mesenchymal
stem cells) and somatic cells, as well as the “Exogenous Restitution of Intercellular Signalling of Stem
Cells” (ERISSC) strategy.

The initial idea, based on their ability to home injury sites though cell differentiation
and so contributing to regeneration, was abandoned due to the implantation time of MSC,
which is usually too short to have an effective impact [201,202]. In fact, it is now known that
the survival of MSC is less than 1% one week after systemic administration [67,203,204],
and their contribution to the tissular regeneration is generally minimal [205]. Nonetheless,
there are many biological effects of promoting cell-to-cell interactions and cellular prolifera-
tion [206,207], and the more recent data indicate that the majority effects of MSC are due to
the secretion of paracrine factors, such as growth factors, cytokines, and EVs, which overall
display regenerative, anti-inflammatory, angiogenic, antiapoptotic, or antioxidative stress
properties. MSC secretome may represent a new medical biotechnology [208]. This makes
MSC secretome a potentially ideal strategy to restore the physiological tissular homeostasis
after virulent senescence progressive development.

Preliminary reports show the efficacy of secretome-derived products from MSC, such
as CM or EVs, in experimental models related to aging. It was reported that CM from
human fetal MSC significantly reduced SA-BGal expression, ameliorated replicative senes-
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cence of adult MSC, and enhanced their cell proliferation and differentiation potential [209].
A similar approach demonstrated that CM from MSC regulated senescence features in
IL1B3-treated OA chondrocytes, reducd the number of actin stress fibers and accumulation
of YH2AX foci, and decreased the oxidative stress [210]. In a very recent study, the fetal
dermal MSC-CM improved the anti-aging effects against adult dermal fibroblasts induced
in an experimental model [211].

With regard to MSC-EVs, there are data showing that these vesicles from healthy
donors downregulate SA-3Gal activity and YH2AX in osteoblasts isolated from OA pa-
tients [212], as well as reducing the oxidative stress and the proinflammatory cytokines
PGE2 and IL6. EVs from young MSC also reduce senescent features of MSC after passages
10-14 [213]. In addition, it was shown that the administration of EVs from young mice
reduces senescence in mice [214]. In this sense, it was recently reported that EVs derived
from young MSC rejuvenate senescent endothelial progenitor cells (EPCs) [215]. This is a
relevant finding when one considers that, following ischemic events, EPCs are mobilized
from the bone marrow and migrate to sites of vascular injury, promoting angiogenesis [216].
However, aging-associated EPC senescence increases the risk of ischemic events [217].
EVs from young MSC were shown to rejuvenate hematopoietic stem cells by transferring
autophagy- and lineage commitment-related mRNAs [218] and also have a protective effect
in liposaccharide-induced acute lung injury [219].

Nevertheless, the application of this new concept of the extracellular restitution of
intercellular signals from stem cells (ERISSC), based on cell-free therapies, will create a
great challenge.

7. The Challenge to Implement a Therapy Based on ERRISC for Aging Frailty Treatment

To face this ambitious challenge, we have to clarify key strategy aspects, such as
establishing tools that allow us a more precise diagnosis of the aging frailty in order to
identify the therapeutic requirements adapted to each case, to identify the ideal type of
MSC in the contest of functional heterogeneity of these cellular populations, to optimize the
mass production and standardization of the primary materials (cells) and their secretome-
derived products, to establish the appropriate methods to validate the anti-aging effects, to
explore the mechanisms, and to determine the most appropriate route of administration for
each case.

7.1. More Precise Diagnosis of the Aging Frailty

In order to attain a more precise approach to the biological and functional diagnosis
of the frailty that allows us to monitor the therapeutic possibilities and, thus, adapt the
possible treatments, we will need more precise biological markers of this complex process.
We will probably have to integrate the previously mentioned classical molecular markers
of senescence, such as A-BGal or SA-x-Fuc, with new tools to monitor MSC aging, such as
SiR-actin [220] and/or CyBC9 (another fluorescent probe), which contribute to evaluating
the loss of membrane potential of mitochondria in senescent MSC [221]. On the other
hand, senescent late-passage MSC secrete larger amounts of MSC-derived microvesicles
(MSC-MVs) than those in early passages, and their RNA sequencing suggests that most
genes are involved in aging-related diseases [134]. Therefore, there is a need to integrate all
these senescence markers, probably by employing bioinformatics-based analyses in order
to provide potential drug targets for senescence intervention.

7.2. The More Suitable Source of MSC

Today, there are no data suggesting the best source of MSC for clinical use in frailty.
The heterogeneity between MSC according to their origin as well as the different protocols
used in their culture and expansion make their comparison difficult. BM-MSC were initially
widely used. However, some of their drawbacks, such as the invasive method to obtain
them and their low cell yield (0.001-0.01% of bone marrow mononuclear cells), have
motivated the search for other tissue sources. Although it is possible to obtain peripheral
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blood-derived MSC (PB-MSC) mobilized by the G-CSFE, both BM-MSC and PB-MSC have a
longer doubling time in vitro compared to MSC from other sources [222]. Other options
are ASC-MSC, which can be obtained easily as surgical waste and lipo-aspirates at a high
concentration up to 3%, or UC-MSC, which have a higher degree of multipotency than
BM-MSC and ASC [62]. More recently, dental pulp-derived MSC (DPSCs) have been
identified in the surgical removal of wisdom teeth. DPSCs present high proliferative [223]
and differentiation capabilities; for this reason, they have been proposed in regenerative
therapies [224]. Interestingly, DPSCs have not only the potential to differentiate into dentin-
forming odontoblasts [225] or to induce bone regeneration [226], but also neurogenic
capability, perhaps due to their neural crest origin [227]. DPSCs have been positively
applied in clinical trials for the surgical treatment of intrabony periodontal defects with
promising results [228], and they are currently under development as a cell-based therapy
for ischemic stroke [229].

Another factor that one should keep in mind, in addition to the tissue origin source
from MSC, is the heterogeneity among donors, which may be independent of the chronolog-
ical age. One biological function that significantly influences biological age is reproductive
function [230]. An association between shorter life spans and reproductive failure for a
cohort of men has been demonstrated [231]. In this context, cardiovascular disease is rare in
premenopausal women, but this process increases during menopause or in young women
with premature ovarian failure [232,233]. On the other hand, humans are the one species
in which a consistent gender-specific survival advantage exists. Women live longer than
men. However, adult women generally appear to be in poorer health than men. This
phenomenon, termed “the mortality-morbidity paradox”, is seen only in humans [234,235].
Based on all of these premises, one led us to consider the hypothesis that MSC from female
active reproductive system may to a relationship with all of these favorable conditions
from women and, therefore, be a good candidate to obtain secretome-derived products for
regenerative strategies. In accordance with it, there is evidence indicating that the uterus
from nonpregnant, premenopausal women has a surge of MSC, such as those of endome-
trial or cervical origins, which have a wide differentiation capability into many cellular
linages, as well as a potential therapeutic effect in several pathological processes (reviewed
by [236]). In addition, human mesenchymal cervical stem cells (hUCESC) secretome shows
potent anti-inflammatory [237,238], regenerative [238-240], antimicrobial [239,241] and
antitumor properties, this latter aspect being very relevant in consideration of the protumor
senescent condition and the recognized current limitations of MSC cellular therapies, such
as protumor risk [242].

7.3. The Need for Mass Production of MSC

Due to the minute amount of MSC in organs and tissues, the in vitro expansion of
MSC is necessary for clinical applications [16,242]. However, after prolonged expansion
in cultures, senescence-induced alterations in their function may be experimented in
MSC [243]. Thus, once the ideal MSC have been chosen, their expansion in cell cultures
is necessary.

It was estimated that the possible number of passages that can be achieved by MSC
in cultures is from 30 to 40 [244,245]. The differentiation potential of MSC decreases after
extended passages [246]. Therefore, strategies that allow obtaining a large number of MSC
while retaining their stemness are appropriate. Another possibility is to induce pluripotent
stem cell (iPSC)-derived MSC (iMSC), which can be passaged many times without showing
signs of senescence [247]. However, this process requires molecular manipulation and has
the risk of tumorigenicity after in vivo transplantation of MSC [248].

On the other hand, identifying an effective large-scale expansion technique is essential
to obtain the necessary high number of cells without sacrificing the cell quality. The classic
T-flasks production system is only profitable to obtain MSC for therapeutic purposes for few
patients. For larger clinical trials, the mandatory resources for cell culture would become
insupportable [249]. Bioprocessing strategies for large-scale production are multilayered
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flask, spinner flask, roller bottle, or bioreactor. In particular, the expansion of MSC in
bioreactors permits large-scale expansion in a cost-effective manner [250,251]. In addjition,
it permits greater traceability, elimination of contamination, inappropriate fluctuations in
pH, oxygen concentration or nutrients.

Stirred tank reactors are the most widely used devices for large-scale MSC expan-
sion [252]. Among the technological keys in these cell culture expansion systems are the
microcarriers and hydrodynamic parameters. Microcarriers are made of diverse materials
with different surface properties [62], which provide a high surface-to-volume ratio for
high-density cell cultures, allowing the growth of cultures in 3D [253-255]. Hydrody-
namic parameters include aeration and agitation. Aeration is required to culture cells with
the optimal supply oxygen. However, in bioreactors, aeration must be actively aerated
by, e.g., bubbling the gas into the liquid, which generates strong forces that can damage
cells [256]. Therefore, agitation in bioreactors is necessary to disperse gas.

Culture modifications to improve the therapeutic interest of MSC comprise oxygen
and pH. The oxygen saturation in standard T-flasks (21% O,) is quite distant from nature
(5-7% Oy). There are data indicating that maintaining cells at a low pH [257] or a low O,
tension [258-261] can improve the release and capacity of exosomes.

7.4. Standardization, Functional Test for Anti-Aging Effects, and Mechanisms

It has been demonstrated how both molecular and functional differences among
MSC are from the same origin but are produced in different laboratories [262]. These
situations may occur because there is no standardized protocol for the MSC manufacturing
process. Many studies reported variations in MSC functionality in accordance with both
the donor-to-donor and tissue source [263-266] and also with regard to different culture or
preconditioning strategies [267]. Likewise, the impact of bioprocessing parameters on MSC
therapeutic potency have been reported [268,269]. For all of this, it is necessary not only to
minimize donor-to-donor variability, but also to harmonize and standardize the large-scale
expansion of MSC in order to reduce the bioprocessing variability before allogenic cell
therapies or based on their derived-secretomes.

On the other hand, the implementation of acceptable potency assays of MSC for
clinical therapies that predict their in vivo efficacy is necessary [134].

In vitro functional tests of the effects of the biological products should be performed
before anti-aging treatment. On the other hand, the studies of the mechanisms of action are
important aspects, which may be required by regulatory agencies. In addition, we have to
consider that, traditionally, there is a low inclusion of geriatric patients in clinical trials, and
most therapies were validated on experimental models using young animals [270]. Con-
sidering this, ideally experimental models that reflect exactly the same sudden biological
changes undergone by the aging of the human body should be used.

7.5. The Selection of Administration Route

Another no less important aspect to solve is the choice of the appropriate route of
administration for each case. If we take as a reference the studies based on cell therapy, local
administration of MSC that targeted the injury site produced rapid results, but there also is
a risk of cell death and bleeding [90]. When we compare the different methods of systemic
administration of MSC, we observe in some cases different effects. MSC administered
through the intravascular (IV) route tend to become entrapped in the lungs [90,271]. The
preference for intraperitoneal (IP) over IV as to avoid the risk of pulmonary embolization
has been reported (Roux et al. [272]). In addition, IP infusion of MSC produced better
homing and inflammation suppression than IV (Castelo-Branco et al. [273]). On the contrary,
the IV administration of MSC was more effective than the IP method in the treatment of
colitis (Gongalves et al. [274]). IM injection of MSC, which is less invasive than IV, produces
the longest cell retention (more than 100 days) when compared to IV, IP, and subcutaneous
(SC) (Braid et al. [271]). On the other hand, IV-infused MSC can cross the blood-brain barrier
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(BBB), which is essential for efficacy [275-277]. Administration of MSC via intracerebral
and intrathecal routes also showed positive results in experimental studies [278,279].

In this scenario of the different modes of administration of products in the field of
regenerative medicine, the use of derivatives of the secretome of MSC opens up new,
interesting expectations. Regarding topical applications, there is the possibility of using
tailored hydrogels of these new products, as we recently described for the treatment of
experimental colitis using a mucoadhesive hydrogel containing CM-hUCESC [238]. Along
the same lines, the possible topical or local application (for example, intra-articular) of
products derived from the secretome of MSC combined with materials that, based on
nanotechnology, allow their slow and sustained release can be very interesting. Regarding
systemic administration, we can also take advantage of the strategic interest of exosomes for
therapies. They are smaller and less immunogenic than their progenitor cells [280]. Their
storage is easier, they have a longer half-life in the blood stream [281], tropism towards
inflamed tissues and tumors, and the ability to cross the blood-brain barrier [282,283].
Regarding this latter aspect, interestingly, it was shown that secretome derived from MSC
administered intranasally re-established mouse memory in an experimental model of
Alzheimer’s disease [284].

8. Discussion and Conclusions

Aging and frailty are complex processes implicating multifactorial mechanisms, such
as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disor-
der. All of these mechanisms drive dramatic changes in the tissue environment, such as
SASP and inflamm-aging. Although aging and aging-related pathophysiological changes
are inevitable, and for which there are no treatments, society demands strategies that
promote this biological process to be at least healthier, mainly with regard to delaying as
much as possible or avoiding the state of fragility. However, at present it has not been
possible to identify the ideal strategies for this purpose. The implementations of person-
alized approaches, such as dietetics, exercise regimens, or hormonal supplementations,
have failed to produce consistent results [165]. Therefore, it is necessary to find strategic
alternatives different from the classic ones.

Considering that the biological mechanisms associated with aging translate into a
complex alteration of tissue homeostasis, MSC could be a good anti-aging strategy. This
is because MSC influence the intercellular communication by controlling several aged-
related processes and associated diseases, such as anti-inflammatory, regenerative, and
antioxidative stress, and antifibrotic, antitumor, or antimicrobial effects. In fact, it has
been demonstrated that an alteration in the functionality of MSC is related to early aging
syndromes and age-related diseases [142-150]. These relatively new concepts have led to
the attractive 3R strategy: remove senescent MSC, rejuvenation, or reprogramming [166].
However, these possibilities show important limitations, starting with the fact that MSC
are not immune to senescence.

Removing MSC in an aging organism may have unknown consequences. It was
suggested that the abrupt removal of senescent cells can result in the loss of normal cellular
reprogramming, wound healing, and tissue regeneration [285-287]. In addition, long-
term use of senolytic drugs might have side effects, such as severe thrombocytopenic and
neutropenic effects [288,289].

Rejuvenation of MSC by systemic administration of high doses of ant-oxidant agents
can produce DNA damage and induce premature senescence [290]. Thus, the use of this
strategy needs to be carefully evaluated. In addition, genetic engineering to slow MSC
aging can increase the risk of malignant transformation.

Restitution aging MSC by younger MSC has a priori all the drawbacks associated
with cell therapy, but especially the recognized low rate of implantation of transplanted
MSC [67,203,204].

Based on all of these limitations of potential strategies based on MSC, we consider
that “Exogenous Restitution of Intercellular Signalling of Stem Cells” (ERISSC) may be an
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attractive option. This proposal seems reasonable if we consider that MSC seem to exert
their positive effect on tissue homeostasis through a paracrine mechanism by producing
a cocktail of proteins and extracellular vesicles that impact positively with host cells [72].
The use of this product as a therapeutic strategy can help avoid the different drawbacks of
direct cell therapy with MSC, among them, immunological incompatibility, the formation
of emboli or transmissible infections, and tumorigenicity. In addition, unlike cell therapies,
the use of secretome has additional advantages such as better evaluation of the dose and
potency and safety, and it can be stored without the application of toxic cryopreservative
agents. Thus, the use of products derived from the secretome is more practical for clinical
use and could be prepared in advance for treatments when necessary [291].

Another important advantage of cell-free therapy based on secretome, as opposed to
cell therapy, is to avoid the absence of a biological effects of MSC in the progressively most
frequent older patient population compared with young people. This circumstance has been
attributed to a tissue microenvironment related to senescence, which includes the above-
mentioned production of bioactive factors such as inflammatory cytokines, chemokines,
growth factors, and proteases. All of them, collectively labeled the SASP, contribute to a
particularly hostile environment for MSC viability and functionality, which leads to an
unsatisfactory effect of this type of cell therapy [125]. It is, therefore, indispensable to find
new future strategies for this age group that demand so many new therapies.

For ERISSC, we propose that several challenges should be faced. In the first place,
strategies for monitoring senescence and identifying the possible intervention opportunities
are necessary. In addition, to obtain an optimal MSC secretome, their proper standardiza-
tion and mass production are required, as well as the use of functional assays to test the
obtained biological products and appropriate experimental models to explore the mecha-
nisms. With regard to these latter aspects, new emerging tools such as human organoid
cultures could be the model for research dedicated to aging in some therapeutic fields [292].
Fortunately, there are human MSC of anatomical origin and attractive biological potential
for these purposes, such as DPSCs or hUCESC. In addition, the appropriate technology
is being developed for MSC expansion and mass production of their secrets by using
bioreactors. There are also new tools to establish the more adequate mode of administration
for MSC secretome-derived products, such as the use of tailored hydrogels for topical
applications [238] or MSC-derived exosomes for systemic therapies [282,283]. All of these
advantages permit us to challenge this. The only failure would be not trying.
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