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ABSTRACT

Immunosenescence is characterized by a progressive deterioration of the immune system 

associated with aging. Multiple components of both innate and adaptive immune systems 

experience aging-related changes, such as alterations in the number of circulating monocytic 

and dendritic cells, reduced phagocytic activities of neutrophils, limited diversity in B/T 

cell repertoire, T cell exhaustion or inflation, and chronic production of inflammatory 

cytokines known as inflammaging. The elderly are less likely to benefit from vaccinations as 

preventative measures against infectious diseases due to the inability of the immune system 

to mount a successful defense. Therefore, aging is thought to decrease the efficacy and 

effectiveness of vaccines, suggesting aging-associated decline in the immunogenicity induced 

by vaccination. In this review, we discuss aging-associated changes in the innate and adaptive 

immunity and the impact of immunosenescence on viral infection and immunity. We further 

explore recent advances in strategies to enhance the immunogenicity of vaccines in the 

elderly. Better understanding of the molecular mechanisms underlying immunosenescence-

related immune dysfunction will provide a crucial insight into the development of effective 

elderly-targeted vaccines and immunotherapies.
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INTRODUCTION

Aging, which is a complex biological process, results in profound alterations in the immune 

system. And these changes can accumulate to produce a progressive deterioration in the 

ability to respond to pathogens and develop proper and durable immunity after vaccination. 

Consequently, a higher mortality rate is associated with the elderly population. The 

multifaceted, age-associated changes of the immune system can be described by the term 

immunosenescence, which commonly refers to the diminished ability of the immune system. 

Although immunosenescence has gained increasing attention from the scientific community, 

its underlying molecular mechanisms remain to be fully investigated. Given a dramatic 

increase in the global life expectancy, identifying and understanding the mechanisms 

by which aging affects the components of the immune system will be crucial for the 

development of effective age-targeted vaccines and immunotherapies.
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The cellular and molecular hallmarks of aging have been previously described to include 

the following: genomic instability, telomere attrition, epigenetic alterations, sarcopenia, 

change in intracellular communications, cellular senescence, immunosenescence, and 

mitochondrial dysfunction (1) (Fig. 1). In addition to these features, chronic inflammation 

is considered as the key underlying mechanism leading to aging and aging-associated 

diseases. The term “inflammaging” is used to characterize persistent, low-grade systemic 

inflammation associated with aging (2,3). One possible factor that may contribute to 

age-associated dysfunction and chronic inflammation is cellular senescence. Senescent 

cells have been shown to accumulate over the lifespan of rodents, nonhuman primates, 

and humans (4). Cellular senescence is mediated by p21/p53 pathway, and in addition 

to having a large, flat cell morphology and higher cellular production of reactive oxygen 

species, senescent cells produce senescence associated secretory phenotype (SASP), which 

chronically releases cytokines and chemokines that promote leukocyte recruitment and 

tissue repair and remodeling (5).

The process of aging is closely related to significant alterations in both innate and adaptive 

immune systems (Table 1). In terms of innate immunity, aging can result in both quantitative 

and qualitative changes, including decreased number of circulating monocytic and dendritic 

cells (DCs), reduced phagocytic activities of macrophages or migratory neutrophils, and 

impaired Ag presentation abilities by DCs. With respect to T cells, aging can result in the 

reduction of TCR repertoire, due to the thymic involution at puberty, and the accumulation 

of senescent or exhausted T cells that are functionally inert or dormant. Several factors, 

including chronic viral infection and the release of damage-associated molecular patterns 

(DAMPs), can contribute to age-dependent immune dysregulation that drives age-associated 

diseases, such as atherosclerosis, Alzheimer's diseases, and infectious diseases. Furthermore, 

vaccine efficacy in aging people is influenced by age-related alterations, ranging from 

decreased number of circulating naïve B and T cells, limited diversity in the BCR repertoires, 

and defective Ab response to new Ags (6-8).
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Figure 1. Multiple factors involved in aging. The diagram highlights multiple factors involved in aging; genomic 

instability, telomere attrition, epigenetic alterations, sarcopenia, changes in intracellular communication, 

cellular senescence, immunosenescence, and mitochondrial dysfunction.
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Multiple studies have shown how aging induces immunological changes during viral 

infections and vaccine responsiveness. For instance, immunosenescence in the elderly 

contributes to reduced vaccine efficacy and increased susceptibility to infectious diseases. 

The elderly population is the most vulnerable to viral infections with Influenza virus (IFV) 

and Varicella Zoster virus (VZV), which are among the pathogens causing the most common 

infectious diseases worldwide. Vaccines for both influenza and shingles have been available 

for a long time; however, the low vaccine efficacy and effectiveness in the elderly suggest an 

aging-associated decline in the immunogenicity induced by vaccination.

This review will highlight recent advances and perspectives on the modifications of cellular 

and molecular characteristics of both innate and adaptive immune responses during 

aging. Furthermore, we discuss how aging cells or organisms respond to viral infections 

and vaccines, as well as the recent implications of next generation strategies for vaccine 

development for the elderly.

AGING-ASSOCIATED CHANGES IN INNATE IMMUNE 
CELLS

Receptors/sensors

TLRs are highly conserved receptors that can recognize a variety of stimuli, including 

pathogen-associated molecular patterns such as bacterial lipoproteins, lipopolysaccharides, 

and bacterial or viral DNA/RNA. TLRs play a key role in the innate immune system as 

regulators of the innate immunity against microbial infections. Recent studies have 

elucidated the consequences of aging on TLR function in human cohorts, adding to the 

existing findings that have been observed in animal models. TLR expression and function in 
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Table 1. Summary of the immune changes associated with aging

Immunity Cell Aging-associated changes

Innate Monocytes/macrophages - Reduced phagocytic activity

- Decreased MHC II expression

- Decreased ROS and cytokine production

- Altered TLR expression (decreased except for TLR5)

DCs - Decreased maturation and Ag presentation

- Altered TLR expression and signaling

- Impaired Ag uptake

- Altered CD80 and CD86 expression

Neutrophils - Reduced chemotaxis

- Decreased MHC II expression

- Decreased ROS and cytokine production

- Altered TLR expression

- Decreased NET formation

Adaptive B cells - Limited diversity in BCR repertoire

- Decreased numbers of naïve and circulating B cells

- Reduced Ag-specific Ab production

- Altered memory B cell homeostasis

T cells - Restricted diversity in TCR repertoire

- Decreased numbers of naïve T cells

- Increased numbers of senescent T cells

- Increased numbers of exhausted T cells

-  Expansion of inflationary CD8+ T cell populations caused by 

chronic viral infections (CMV, EBV)

- Diminished effector T cell response to new Ag

BCR, B cell receptor; EBV, Epstein-Barr virus.
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monocytes (9), DCs (10), and neutrophils (11) decline with advancing age. Similar to humans, 

old mice demonstrate lower levels of TLR expression in splenic and peritoneal macrophages 

(12). While macrophages from young mice upregulate expression of most TLRs in response 

to specific ligands, TLR expression in macrophages of old mice is poorly upregulated, and 

TLR3 expression, in particular, is poorly detected (12).

Interestingly, not all TLR expressions were attenuated in the aged groups. For example, 

surface expression of TLR1 decreases significantly with age while surface TLR2 expression is 

unchanged by aging (9). Low surface expression level of TLR1 and defects in TLR1/2 signaling 

in aged groups led to an attenuated MAPK signaling, and further decreased the production of 

TNF-α and IL-6 in human monocytes. Similar to this finding, macrophages from aged mice 

secreted lower levels of IL-6 and TNF-α after stimulation with TLR ligands, especially TLR1/2, 

TLR2/6, TLR3, TLR4, TLR5, and TLR9 (12).

Furthermore, in monocytes from old individuals, elevated level of TLR5 expression resulted 

in an increase in TLR5-induced production of cytokines (13). Lim et al. (14) reported that 

TLR5 signaling is well maintained throughout the course of aging, and in vitro overexpression 

of caveolin-1 enhanced TLR5 mRNA through the MAPK pathway and prolonged the half-life 

of TLR5 through direct interaction. Overall, expression of TLRs, except for TLR5, decreases 

with advancing age, and the impaired localization of TLRs can induce alterations in cytokine 

and chemokine production that ultimately affect the immune response.

In addition to TLRs, the inflammasome—a multi-protein complex containing NACHT, 

LRR and PYD domains-containing protein 3 (NLRP3), apoptosis-associated speck-like 

protein containing a CARD, and caspase 1, which is activated by DAMPs, including 

microbial genome, endotoxin, extracellular ATP, β-amyloid and intracellular uric acid—has 

been suggested as an important modulator of age-associated inflammatory changes (15). 

Furthermore, inflammaging has been suggested to be associated with the canonical NLRP3 

inflammasome (16). Aging can induce changes in NLRP3 expression levels in age-related 

disease model, as evident by the higher NLRP3 gene expression in the old subjects relative to 

the young subjects (17,18). In addition, studies using macrophages isolated from aged mice 

have demonstrated how the aging-associated increase in ROS and endoplasmic reticulum 

stress, mainly due to unfolded proteins, downregulated the activity of caspase 1 and normal 

activation of NLRP3 during Streptococcus pneumoniae infection (19). Moreover, impaired NLRP3 

function was observed in aged mice during the IFV infection (20). Youm et al. (21) has also 

highlighted the importance of NLRP3 in aging, during which NLRP3 deficiency in mice not 

only improved glycemic control, but also attenuated bone loss and thymic demise. Notably, 

NLRP3 inflammasome-dependent IL-1 inhibition can improve cognitive function and motor 

performance in aged mice, suggesting that the abrogation of NLRP3 inflammasome can be 

an innovative therapeutic target for multiple age-related neurological disorders.

Monocytes and macrophages

Despite the lack of significant differences in the number of total monocyte subsets between 

the young and older, global analysis of circulating monocytes in various age groups shows 

dramatic age-associated changes in humans (22). As an example, non-classical CD14+CD16+ 

monocytes significantly increased with age, but displayed reduced HLA-DR and CX(3)CR1 

surface expression in the elderly. On the contrary, classical CD14+CD16- monocyte counts 

did not vary with age, although concentrations of serum MCP-1, but not MIP-1α, MIP-1β, 

or fractalkine (CX3CL1) increased with age (23). In response to TLR agonists, human 
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monocyte subsets were found to have different transcriptional or functional levels according 

to age, and this difference induced alterations in surface molecule expression and reduced 

production of interferons and cytokines like IL-1β (24). Interestingly, monocytes from older 

individuals exhibit impaired phagocytosis but contain shortened telomeres and significantly 

higher intracellular levels of TNF-α both at the basal level and following TLR4 stimulation, 

suggesting dysfunctional monocytes in the aged (25).

In addition to changes in monocytic function, aging can also affect macrophage function. As 

previously described, the expression of TLR on macrophages is reduced in humans and mice 

of advanced age (12,26). Decreased TNF-α and IL-6 and increased IL-10 production levels 

following stimulation with TLR ligands in the aged mice are well described by Chelvarajan 

et al. (27). Also, aged macrophages have reduced number of CD14 and TLR4 expressing 

cells, and this led to the reduction of cytokines such as IL-6, TNF-α, IL-1β and IL-12 (27). 

Additionally, LPS stimulation, TLR activation, and IFN-γ stimulation are less effective on the 

expression of MHC class II molecules in aged macrophages (28). Very recently, van Beek et 

al. (29) proposed that inflammaging can lead to the accumulation of alternatively activated 

(M2-like) macrophages, which remain pro-inflammatory in tissues, and express senescence 

markers. These findings, therefore, demonstrate that aging in macrophages influences many 

processes including TLR signaling, polarization, phagocytosis, and wound repair.

DCs

A number of studies show that aging does not alter the number of myeloid DCs (mDCs), but 

reduce the number and function of plasmacytoid DCs (30-32). Of note, specialized DCs like 

the Langerhans cells present in the epidermis and mucosal tissues are reduced in number with 

aging (33,34). Functionally, DCs from elderly individuals displayed a significantly reduced 

ability to phagocytose Ags. Furthermore, changes in the Ag presentation and migratory 

capacity of DCs can cause malfunctions in adaptive immunity, during which T cells and DCs 

are involved in immune tolerance, and lead to autoimmune diseases (35-37). According to 

Agrawal et al. (36,38), in comparison to young mDCs, old mDCs induce increased levels of 

IL-6 and TNF-α in response to LPS, ssRNA, and self-DNA. This induction is attributed to age-

associated alterations in signaling pathways leading to PI3K, NF-κB, or type I IFN response. 

In DCs from old individuals, increased basal activity level of p65 during NF-κB pathway, in 

addition to increased IFN regulatory factor 3 activation and IFN-α secretion levels in response 

to self-DNA, has been observed. Overall, age-associated changes in signaling pathways in DCs 

can impact their function and result in outcomes such as dysfunctional cytokine secretion in 

response to pathogens or self-DNA and reduced phagocytosis and migration abilities.

Neutrophils

Neutrophils are major phagocytic cells that are specialized in early defense against invading 

pathogens (39). While the number of neutrophils remain unchanged with increasing age, 

neutrophils in the elderly tend to exhibit dysfunctional phagocytic and chemotactic abilities 

(40). Although high level of energy is required for neutrophils to carryout phagocytosis, 

aging inhibits hexose transport and increases intracellular calcium level in order to 

inhibit energy uptake and ultimately phagocytosis. Furthermore, increased activity of 

phosphorylated PI3K, which controls phagocytosis, degranulation, and chemotaxis, in 

the older induces inaccurate migration of neutrophils and damages normal tissue instead 

of abnormal tissues at the site of inflammation or infection (41). Neutrophils from older 

adults, compared to those from younger adults, showed impaired phagocytosis of opsonized 

Escherichia coli and S. pneumoniae (42,43).
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Aging also affects the recruitment of neutrophils, which are the first cells to migrate to the 

infection site, as demonstrated by studies that have observed impaired neutrophil-mediated 

chemotaxis in relation to advanced age (40,44). In addition, neutrophils of the elderly 

produce fewer neutrophil extracellular traps (NET) that are comprised of nuclear components 

and granule proteins, and are able to bind and trap extracellular pathogens to defend 

against infections (45,46). Consequently, age-related reduction in NET production can lead 

to delayed wound healing and high level of susceptibility to invasive methicillin-resistant 

Staphylococcus aureus (45). Given the recent findings that highlight the phenotypic diversity of 

neutrophils, it will be important for researchers to characterize aged neutrophils using global 

transcriptomic and proteomic analysis tools.

AGING-ASSOCIATED CHANGES IN ADAPTIVE IMMUNE 
CELLS

B cells

Diversity in B cell repertoire is essential for an effective immune response, given that B 

cells have to provide a variety of specific Abs to recognize a wide range of challenging Ags. 

Many elderly individuals are known to have limited diversity in B cell repertoire, potentially 

contributing to the older more prone to infectious diseases, less able to response well to 

vaccination and more likely to have autoreactive Abs. A previous report indicates that aging 

may cause significant changes in the selection process during affinity maturation of B cells 

(47), and also that the B cell repertoire is often less diverse in old age with evidence of non-

pathogenic clonal expansions (8). This loss of diversity is likely to be correlated with poor 

vaccine responses against many pathogens (6). In terms of age-associated changes in B cell 

number, aging in mice reduces the number of naïve B cells and plasma cells while increasing 

the population of CD27+ memory B cells (48). Also, human peripheral B cell percentages and 

numbers significantly decrease with age, and although B lymphopoiesis is active throughout 

life, there is a decline in B cell production in the bone marrow in aged groups (49-51).

Changes in the B cell population are also associated with Ab responses, during which age 

decreases the ability of B cells to mount an appropriate Ab response against new or known 

Ags, and the Ab response consists of defective isotype switching and short period of activation 

(52). Activation-induced cytidine deaminase (AID) is the principal regulator of class switch 

recombination (CSR) and somatic hypermutation (SHM), both of which are cellular processes 

that generate diverse Abs. Alteration in MAPK signaling, along with reduced mRNA stability 

and DNA binding affinity of E2A-encoded transcriptional factor E47, further contributes to the 

suppressed AID gene expression in the older. Subsequently, these intrinsic changes in B cells 

ultimately decrease Ab diversity and recently, Frasca et al. (53) has suggested miRNA-155 and 

miRNA-16 as contributing factors to these molecular alterations associated with B cell aging 

via downregulation of AID and E47. Aging-related downregulation of E2A result in defects in 

CSR of IgM memory B cells, and lower AID gene expression level in B cells has been shown 

to induce deterioration of CSR in the older (54,55). Overall, it is highly likely that lower levels 

of AID and E47 expressions in the older also reduce the number and size of germinal centers, 

where Ab affinity maturation processes, including SHM occurs, and in turn decrease Ab affinity 

maturation and the number of circulating Ab from plasma cells (56).

Aging can also affect the quality of Abs from B cells and result in defects such as increased 

number of self-recognition Abs and skewed variable gene usage (57,58). Furthermore, Han 
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et al. (59) demonstrated a substantially higher level of Ab-forming cells in the spleens of 

aged mice than in those of younger controls. On the other hand, a significant decrease in 

the number of high-affinity, class-switched Ab-forming cells was observed in the spleen of 

aged mice. The lack of a considerable reduction in the total number of IgG1 splenic plasma 

cells suggests that a deficiency in isotope switching was not the cause of the accumulation of 

low-affinity IgM Ab-forming cells in the spleens of aged animals. Remarkably, both low and 

high affinity plasma cells were significantly diminished in the bone marrow of aged mice. 

Additionally, age-associated exposure to chronic cytomegalovirus (CMV) infections can lead 

to altered B cell function. Wang et al. (60) examines the repertoire of genes encoding the 

immunoglobulin heavy chain in young and elderly adults to determine the effects of aging 

and CMV infection on B cell populations. Age did not affect the use of variable, diversity, 

or joining segments; however, the loss of selection against longer complementarity-

determining region 3 segments in the older indicate an age-associated difference between the 

tolerance mechanisms utilized by different age groups.

T cells

T cells undergo profound and complex changes with aging, including epigenetic and metabolic 

modifications, affecting a range of subsets including naïve, memory, and effector T cells (61,62). 

Although aging does not change the level of IL-7, a key maintenance factor of T cell homeostasis, it 

generally decreases the number of naïve T cells and increases the number of senescent T cells (52). 

Aging T cells undergo distinct changes, which limit Agic specificity and decrease the expression 

of TCR, that lead to age-associated alteration of TCR-inducible gene expression in human CD4+ 

T cells (63,64). Analysis using high-throughput Illumina sequencing platform revealed age-

associated reduction in TCR diversity, indicating a significant reduction in the number of naïve T 

cells and TCR-beta diversity by the age of 40 (65). Additionally, thymus involution and changes in 

the expression level of transcriptional factors result in defective T cells that induce inflammaging 

and increased susceptibility to infection by decreasing vaccine efficacy.

Given that cytokines are key regulatory molecules of T cell-mediated immune response, it 

has been noted that aging-related T cell defects may originate from alterations of cytokine 

production. In particular, a shift in the cytokine profiling indicates that aged T cells 

predominantly show Th2-like phenotype (66). Th17 cells defend the host against extracellular 

pathogens and are associated with the development of autoimmune diseases and chronic 

inflammatory diseases in humans (67). The ratio of Th17 to Treg appears to increase with 

age and Schmitt et al. (68) suggest that this variation in the ratio may explain the increased 

frequency of autoimmune disease and diminished response to infections in the elderly. In 

particular, age-dependent increase in the ratio of Th17 cells to Treg cells in the elderly may 

trigger a shift in the basal levels of pro-inflammatory cells and contribute to autoimmune 

diseases and reduced immune response to infection.

Fig. 2 shows the impact of immunosenescence on T cells involved in chronic viral infections. 

As an example, aging results in a decreased number of naïve CD8+ T cells, reduced diversity 

of the TCR repertoire, and elevated senescent, exhausted, or inflationary T cells, which are 

CMV-specific CD8+ T cells. Recently, Tahir et al. (69) has defined senescence-associated T (SA-T) 

cell phenotype as PD-1+/CD153+ memory phenotype CD4+ T cells. SA-T cells exhibit features 

of cellular senescence, which is characterized by defective TCR-mediated proliferation and T 

cell cytokine production. In particular, these cells secrete abundant atypical pro-inflammatory 

cytokines, potentially accumulating and causing persistent inflammation in tissues under 

metabolic stress or tumors (70).

7/18https://doi.org/10.4110/in.2019.19.e37

Immunosenescence and Viral Infection

https://immunenetwork.org

https://immunenetwork.org


In addition to increased senescent T cells, progressive and prolonged expansion of 

inflationary T cells also increases in the aged groups (71). Inflationary T cells show limited 

TCR repertoire, low levels of lymph node homing markers that induce accumulation in 

non-lymphoid peripheral organs and co-stimulatory receptors, and high levels of inhibitory 

receptors (72,73). Furthermore, inflationary T cells from old mice with CMV infection 

express lower levels of CD62L and CD127, which are associated with central memory T cells 

(74). Similar to inflationary T cells, senescent T cells from both human and mice display 

loss of CD28 and gain of CD57 expression (75,76). The elderly also exhibit greater T cell 

exhaustion, which is a state of T cell dysfunction that arises during chronic viral infections 

or cancers. In particular, higher expression levels of CTLA-4, PD-1 and TIM-3 by T cells were 

observed in the elderly (77-79). Given the increasing evidence that highlight the important 

role of T cell immunosenescence in diverse age-related chronic disorders and cancer, 

targeted elimination of SA-T cells represents a promising strategy for controlling chronic 

inflammatory disorders and possibly cancer.

IMPACT OF AGING ON VIRAL INFECTION AND 
IMMUNITY

Multiple viruses establish a persistent infection by evolving evasion mechanisms of the host 

immune system. Certain viruses can establish latency at low levels of viral replication and 

also be reactivated to cause devastating symptoms in the absence of appropriate immunity. 

Infections, particularly those of the respiratory tract, can cause complications that can result 

in high morbidity and mortality rate among the elderly. Even though the advancement of 

biotechnology has increased vaccine efficacy while minimizing the side effects, the level of 
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Figure 2. The impact of immunosenescence on persistent viral infection and immunity. Aging leads to numerous changes in major components of both the innate 

and adaptive immune systems. In response to a viral infection, innate immune cells can trigger the activation of IFN pathways to clear the virus-infected cells. 

Age-associated defects in innate immune cells can lead to reduced IFN production. Persistent viral infection, such as CMV persistence, can have a profound 

effect on alterations in adaptive immunity, in particular, T cell composition and function. In the elderly, there are decreased numbers of naïve T cells, but 

increased numbers of senescent, inflationary, or exhausted T cells that are functionally inert or dormant.
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vaccine-induced immune response remains low in older individuals. The detailed mechanism 

and role of senescence underlying the increased susceptibility to viral infection have not been 

well elucidated, and this lack of knowledge highlights the need for further studies.

Table 2 shows current updates on the efforts in vaccine development strategies for the 

elderly. One key strategy to enhance vaccine immunogenicity is to use adjuvants. For 

example, oil-in-water emulsions MF59 and AS03 have been licensed as seasonal or 

pandemic influenza vaccines and have proven to increase vaccine immunogenicity and 

efficacy in the elderly (80,81). Furthermore, AS01, a liposome-based adjuvant, has recently 

been approved as a recombinant protein vaccine against VZV infection in the elderly and 

demonstrated a high protection rate against herpes zoster in vaccine trials (82,83). A more 

thorough understanding of the basic immunological changes that occur with age and the 

mode of action of novel adjuvants is a prerequisite for the development of formulations that 

specifically aim to overcome the limitations of the immune system associated with aging.

IFV

Influenza is an important contributor to morbidity and mortality worldwide as infections 

with IFV result in frequent hospitalization and deaths among the elderly. Greater cases of 

complications and hospitalization due to seasonal influenza are observed among people 

≥65 years of age relative to younger individuals, and up to 90% of influenza-related deaths 

occur in the elderly groups (84). Therefore, World Health Organization recommends 

annual immunization against seasonal influenza for people ≥65 years of age (World Health 

Organization, 2018). However, vaccine effectiveness in the elderly does not mirror that 

observed in younger populations vaccinated with non-adjuvanted trivalent inactivated 

influenza vaccines (85). The efficacy and effectiveness of influenza vaccines decrease with 

age due to the detrimental impact of aging on the immune system's ability to function (6). 

Recently, Henry et al. (86) compared how B cells and Abs from elderly and younger adults 

respond to vaccination with different IFV strains. Interestingly, B cells from younger subjects 

showed a continuous accumulation of mutations, whereas the elderly appeared to have an 

essentially fixed B cell repertoire, lacking recent adaptations that would allow the evolution of 

B cells to divergent IFV strains. Additionally, in terms of T cells, old individuals who received 

influenza vaccination display defects, which result in poor immune response to vaccines 

against IFV, in the production of granzyme B and IFN-γ from CD8 T+ cells (87,88).
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Table 2. Strategies towards more effective vaccines for the elderly

Infectious diseases Vaccine strategies Potential mechanisms

Influenza Increased amount of Ags Increased Ag availability

Quadrivalent instead of trivalent strains - Increased immunogenicity

- Avoid vaccine mismatch

Repeated vaccinations Increased immunogenicity

Mucosal or subcutaneous  

microneedle-intradermal administration

Increased efficiency of vaccine delivery

Adjuvants (MF59, AS03) - Increased Ag presentation activities

- Enhanced immunogenicity

Shingles Increased viral titers for VZV live-attenuated 

shingles vaccines  

(>10 times higher titers than chickenpox 

vaccines)

Increased Ag availability

Major Ag with adjuvants  

(Subunit glycoprotein E vaccine with AS01)

Induction of robust and persistent  

VZV-specific Ab and CD4+ T cell responses
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Currently, the following approaches have been taken to tailor influenza vaccines to the elderly 

population: increased amounts of Ag, mucosal or intradermal route of vaccine delivery, and 

use of vaccine adjuvants (89). To fully understand the underlying role of aging in increased 

susceptibility to influenza infection and decreased vaccine efficacy, it will be necessary to 

use more translational approach such as systems vaccinology to evaluate new technologies 

suitable for vaccine development.

VZV

Shingles is caused by the reactivation of VZV that has persisted in latency within the dorsal 

root ganglia following an earlier episode of chickenpox, characterized by a painful rash 

and affects a significant proportion of the elderly population. Aging can contribute to the 

waning of VZV-mediated immunity, and the limited efficacy and duration of zoster vaccines 

suggest that aging-associated decline in immunogenicity can be improved by vaccination 

(90). The underlying mechanisms involved in VZV reactivation and susceptibility among the 

elderly or immunocompromised populations are currently unclear, although recent studies 

suggest aging cells as the cause of the inefficient clearance of virus-infected cells (91,92). Few 

markers that correlate with age-related severity in shingles or poor response to vaccination 

have also been identified (93-95). In particular, elderly residents in long-term care experience 

elevated incidence of shingles and post-herpetic neuralgia due to the high degree of 

immunosenescence, malnutrition, and existing chronic conditions. C-reactive protein 

level was suggested to be inversely correlated to vaccine responsiveness in the elderly (95). 

Meanwhile, the absolute numbers of CD3+, CD4+, and CD8+ T cells in herpes zoster patients 

were significantly lower compared to those in the control (94). Given these findings, it will be 

important to further characterize age-associated changes in immune cell compartments in 

shingles patients on a larger scale.

CMV

CMV is a herpesvirus that is prevalent worldwide. Although primary CMV infection induces 

innate and adaptive immune responses, CMV has developed various immune evasion strategies 

to modulate host immune activation during lytic and latent infections. CMV persistence has 

a profound effect on alterations in adaptive immunity, particularly T cell composition and 

function. The reduction in naïve T cell levels, specifically, was detected in the elderly infected 

with CMV (96). One hallmark of latent CMV infection is called “memory inflation,” which results 

in extensive expansion of CMV-specific memory CD8+ T cells over time, whereas CMV-specific 

memory CD4+ T cells accumulate to a lesser extent (97). In fact, previous evidences suggest that 

CMV-specific memory T cells gradually increase in numbers in the elderly, and in fact, 50% of 

the entire memory CD8+ T cell population is occupied by CMV-specific cells (71,98,99).

Several studies have focused on the relationships between CMV serostatus and efficacy 

of vaccines, especially against the IFV and CMV has been associated with poor humoral 

response to influenza vaccination in the elderly (100,101). In influenza-specific CD4+ T cell 

response, CMV seropositive elderly exhibit a lower response level compared to CMV-negative 

elderly. The late-differentiated (CD45RA+CCR7−CD27−CD28−) CD4+ T cells, but not CD8+ T 

cells were associated with poorer vaccine response. Thus, latent CMV infection, which has a 

deleterious effect on influenza Ab responses in the elderly, may be mediated by CD4+ T cells 

lacking CCR7, CD27, and CD28, but re-expressing CD45RA (102).
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CONCLUSION AND FUTURE PERSPECTIVES

Immunosenescence is a major cause of increased incidence and severity of viral infections 

in the elderly, and contributes to impaired immunogenicity and efficacy of vaccines. Given 

the rapidly increasing elderly population in the world, improved vaccine efficacy has become 

a priority for the maintenance of global public health. Understanding the biological basis 

for age-associated alterations in viral immunity and vaccine immunogenicity is a challenge 

with substantial clinical importance. Subsequently, the use of systems biology approaches in 

combination with computational model systems will be crucial to understand the complexity 

of age-associated changes in the immune system by identifying molecular networks that 

orchestrate immunity to vaccinations in humans and potentially define correlates of protection.

Going forward, it will be important to better understand how environmental factors, such as 

diet, physical activity, co-morbidities, and pharmacological treatments, delay or contribute 

to the decline of the capability of the aging immune system to appropriately respond to 

infectious diseases and vaccination. Given the plasticity nature of aging and rapidly growing 

field of systems biology, molecular profiling of the aging-related changes is increasingly 

being examined at a single cell level by high-throughput omics technologies, including 

genomics, metagenomics, transcriptomics, and metabolomics (103). Specially, aging of the 

immune cells is affected by changes in homeostasis via cytokine levels, and by modifications 

in the metabolic pathways (104). Caloric restrictions (CR) affected a marked improvement in 

the maintenance and/or production of naïve T cells and the consequent preservation of TCR 

repertoire diversity. Furthermore, CR also improved T cell function and reduced production 

of inflammatory cytokines by memory T cells, suggesting that CR can delay T cell senescence 

and potentially contribute to extended lifespan by reducing susceptibility to infectious 

diseases (105).

A key area for future exploration in the immunosenescence field is the role of the secondary 

lymphoid organs as a critical partner in the development and function of the aging human 

immune system. Although most human studies focus on changes in lymphocytes collected 

from blood, but it will be important to analyze age-related changes in secondary lymphoid 

organs, lymph nodes and spleen, given the aging-associated decrease in the size of lymph 

nodes (52). Lymph nodes not only serve as the key initiating region of the immune response, 

but they also play an important role in maintaining naive lymphocytes. Richner et al. (106) 

reports detailed immunological and microscopic analyses of the defects in germinal center 

development in the draining lymph node and impaired migratory capacity of naïve CD4+ 

T cells within days of West Nile virus infection. Moreover, an increase in the suppressive T 

follicular regulatory cells combined with impaired function of aged T follicular helper cells in 

lymph nodes reduce T cell-dependent Ab responses in aged mice (107). These observations 

emphasize the importance of further analysis of the cellular and molecular characteristics of 

aging lymph nodes in the future.

Next, investigation of how extracellular vesicles (EVs) are linked to aging could be a 

promising area of interest. EVs are membrane-bound vesicles released by multiple cell types 

that include immune cells (108). In addition to SASPs, some senescent cells are reported to 

show increased secretion of EVs that are able to change protein composition and exert pro-

proliferative function in some cancer cell lines (109). Evidence from cellular models suggests 

that exosomes released by macrophages from older are more pro-inflammatory than those 

released by macrophage from younger. In particular, mRNA levels of IL-6 and IL-12, but 
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not TNF-α, in macrophage-derived exosomes were significantly higher in serums of older 

subjects (110). Given that EVs play an important role in immune cell network and cellular 

senescence, the profiles of secretome and the function of senescent immune cells will soon 

be revealed as the EV research field progresses.

Finally, the field of immunology has experienced a rapid increase in the use of single-cell 

sequencing approaches to characterize immune cells in the recent years (111). With the wide 

range of technologies available, researchers are able to use single cell transcriptomics and 

mass spectrometry to quantify changes in cellular activity states of various immune cell types 

and tissue proteome from young and old human samples.

Furthermore, massive efforts have been dedicated to the development of senolytic drugs, 

which selectively induce apoptosis of senescent cells. For example, UBX0101, a potent 

senolytic small molecule inhibitor of the MDM2/p53 protein interaction, is under evaluation 

for the treatment of musculoskeletal disease with an initial focus on osteoarthritis of the 

knee (112) and it is now awaiting clinical trial II. Hence, discovery of senolytic drugs that 

alleviate multiple senescence-related phenotypes in pre-clinical models can reduce the 

burden of aging-associated diseases and help to develop effective elderly-targeted vaccines 

and immunotherapies.
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