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Abstract—Computation has been pushed to the edge to de-
crease latency and alleviate the computational burden of the
IoT applications in the cloud. However, the increasing processing
demands of Edge Applications make necessary the employment
of platforms that exploit thread-level parallelism (TLP). Yet,
power and heat dissipation rise as TLP inadvertently increases
or when parallelism is not cleverly exploited, which may be the
result of the non-ideal use of a given PPI (Parallel Program
Interface). Besides the common issues, such as the need for more
robust power sources and better cooling, heat also adversely
affects aging, accelerating phenomenons such as negative bias
temperature instability (NBTI) and hot-carrier injection (HCI),
which further reduces processor lifetime. Hence, considering that
increasing the lifespan of an edge device is key, so the number of
times the application set may execute until its end-of-life is maxi-
mized, we propose BALDER. It is a learning framework capable
of automatically choosing optimal configuration executions (PPI
and number of threads) according to the parallel application
at hand, aiming to maximize the trade-off between aging and
performance. When executing ten well-known applications on
two multicore embedded architectures, we show that BALDER
can find a nearly-optimal configuration for all our experiments.

Index Terms—Parallel Computing, Aging, NBTI, HCI

I. INTRODUCTION

THE number of cores in a single chip has been increasing

to meet the demands of applications at the edge running

on top of high-end embedded systems (e.g., facial recogni-

tion, human body interaction, or neural networks). However,

heat dissipation has becoming more significant, since power

dissipated per area raises at each new node generation (i.e.,

the well-known end of Dennard scaling [1]). Besides common

issues such as cooling, it also stimulates the aging process of

hardware components, resulting in undesired system behavior

and reducing their lifetime. Aging also makes hardware com-

ponents more susceptible to different types of failures (e.g.,

electromigration and dielectric breakdown).

Considering that aging phenomena (e.g., NBTI and HCI) are

highly influenced by many factors, such as the temperature,

supply voltage, and operating frequency [2], controlling these

hardware-related characteristics is essential to reduce aging

effects. Nonetheless, when a parallel application is running,

the number of concurrent threads influences the processor

temperature as a result of the increased switching activity in

the hardware components (e.g., cores and cache memories).

Manuscript received XXX; revised YYYY. Corresponding author: A. F.
Lorenzon (email: aflorenzon@unipampa.edu.br).

This temperature rise is related to (i) the number of threads

distributed across cores; (ii) the communication model em-

ployed by threads or processes; and (iii) how synchronization

is performed. All these factors are related to the underlying

parallel programming interfaces (PPIs) used.

PPIs speed up the development of parallel applications and

make it as much transparent as possible to the programmer.

OpenMP - Open Multi-Processing [3], PThreads - POSIX

Threads [4], or MPI - Message Passing Interface [5] are some

of the most popular ones. However, each one of these has

different characteristics regarding the management of threads,

workload distribution, synchronization, and communication

[6]. Therefore, each PPI will not only influence the application

performance, but also the aforementioned hardware variables,

affecting the processor aging in different ways. However, we

show that there is no single combination of PPI and the number

of threads that maximizes the lifetime of an embedded device

while keeping performance level as high as possible for all

applications or devices.

Considering that increasing the lifespan of an edge device

is key, so the number of times the application set may execute

until its end-of-life is maximized, we propose BALDER. It is a

framework that employs a learning algorithm to find the com-

bination of PPI and number of threads for a given application

that maximizes the trade-off between performance and aging.

BALDER exploits the fact that many applications may present

the same behavior in terms of TLP even when different input

sizes are considered, which enables it to apply its learning

algorithm using a smaller input size instead of the original

one (which is used during the application execution). With

that, BALDER significantly reduces the learning cost (i.e., the

time spent to find the best configuration). By executing ten

well-known algorithms implemented with four of the most

widespread PPIs (OpenMP, PThreads, MPI-1, and MPI-2) on

two multicore embedded systems, we show that BALDER find

a nearly-optimal configuration, but with an overall learning

time (i.e., time for converging to a solution) 97.9% lower than

an exhaustive search.

II. RELATED WORK

Namaki et al. [7] propose an aging-aware technique for

register files on GPGPUs. Shafique et al. [8] present a content-

aware micro-architectural-level technique to reduce the aging

of SRAM-based memories. Gnad et al. [9] propose a runtime
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system that leverages dark silicon and process variations to

optimize the NBTI-induced aging. Hanumaiah and Vrudhula

[10] propose a thermal constraint technique to determine the

CPU frequency and voltage that guarantee tasks completion

within a deadline. Khdr et al. [11] propose a DVFS-based

boosting technique to reduce the aging effects that are induced

by higher temperatures.

Rahimi et al. [12] present a very-long instruction word

(VLIW) reallocation strategy for reducing the aging of

GPGPU architectures. Mulas et al. [13] propose a thermal

balancing policy that exploits tasks migration for MPSoCs

architectures. Chantem et al. [14] present a solution for

assigning and scheduling tasks on a MPSoC architecture to

reduce the processor aging. Lee et al. [15] propose a workload

management technique that considers the process variation and

aging status together to reduce the aging of embedded GPUs.

Rathore et al. [16] uses a reinforcement learning-based strategy

to map tasks in many-core systems to improve system health.

Our contributions. To the best of our knowledge, this

is the first work that assesses the design space exploration

regarding the use of different PPIs and degrees of TLP to

maximize the number of times an application set may execute

until the processor’s end-of-life. Besides that, BALDER is the

first approach that automatically finds the best combination

of PPI and number of threads for a given application. Hence,

compared to all previous works, BALDER is orthogonal and

can be used with them in order to further reduce aging.

III. BALDER

BALDER aims to maximize the number of applications

that may be executed by an embedded device until its end-

of-life by selecting the ideal combination of PPI and degree

of TLP. For that, it considers as optimization metric the

trade-off between performance (the execution time of a given

application) and the total aging due to NBTI and HCI. The

workflow of BALDER is shown in Figure 1. The user provides

application binaries (one for each PPI), and both small and

regular problem sets, which are the inputs of BALDER. If

the application has not yet been trained, BALDER applies the

learning algorithm (Algorithm 1) over the execution of the

application binaries and small input set to find the combi-

nation (PPI-TLP) that optimizes the target metric. Once this

configuration is found, it is stored into the BALDER’s database

to be used next time the application is executed. Otherwise,

Fig. 1: BALDER Execution Flow

if the application has already been trained, BALDER access

the database to get the best configuration for its input (e.g.,

application and regular input set). Then, the application is

executed with the best configuration and the regular input set.

BALDER works with applications parallelized with OpenMP,

PThreads, MPI-1, and MPI-2. We implemented BALDER in

the Python3 language in the way that users only need to

provide application binaries and input sets (small and regular).

A. Modeling Aging Phenomena

We use the aging model from [15], [17], which takes

into account both the effects of NBTI and HCI. Both these

phenomena lead to increases in the threshold voltage (Vth)

of MOSFET devices over time and, consequently, to slower

switching speeds. Ultimately, devices have a lifetime after

which the timing paths become larger than the clock period,

and thus the timing errors that show up forbid any reliable

computation. In the model from [15], [17], depicted in Fig.

2, given the processor temperature (T , in Kelvin), the supply

voltage (Vdd), the sampling period (tm), the processor fre-

quency (f ), the ∆Vth(NBTI) and ∆Vth(HCI) at time t > 0 can

be estimated by Eqs. 1 and 21 (Fig. 2). To calculate the duty

cycle of each core running the application (δC), we consider

the ration of time that each core is under stress. The same

approach was used to get the activity factor (αC).

B. Learning Algorithm

BALDER’s learning algorithm is given an application A

with a small input set S that can be executed by c distinct cores

C = {C1, ..., Cc} and with p PPIs P = {P1, ..., Pp}. The

optimization problem we are interested in seeks an assignment

of the application A to a subset of threads/cores in C and PPI

in P . We denote by C∗ the set of all subsets of threads/cores

in C, that is, C∗ = ∪c

(

C
c

)

and P ∗ the set of all p subsets

of PPIs, that is, P ∗ = ∪p

(

P
p

)

. A feasible assignment can be

defined as a function φ : A → C∗ × P ∗ that assigns a subset

of threads/cores and PPI to a parallel application. Therefore,

we denote by M : (A × C × P ) → R
+ the measured metric

1Constant values were taken from [17]–[19]: n = 1/6, E0 = 0.335,
Ea = 0.49, E1 = 0.8 C = 0.0163, ξ1 = 0.9, ξ2 = 0.5, ξ3 = 1.0, ξ4 =

10
−8, r = 1.6, AN and AH accordingly to [19], and k is the Boltzmann

constant. For the other values, BALDER uses data obtained from hardware,
with tm = 1s. T is read either with the vcgencmd measure temp command
or lm-sensors; Vdd with vcgencmd measure volts or with lm-sensors. As for
core frequency f , BALDER uses the cpufreq tool.

Fig. 2: Equations used to estimate the total ∆Vth.
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Algorithm 1 BALDER’S Learning Algorithm

Input: C ← {C1, C2, . . . , Ck}: set of threads/cores

P ← {P1, P2, . . . , Pp}: set of PPIs

S ← {Input}: small input set of A
ω: Initial number of threads

β: Increasing number of threads

1: φ(ω, p)←∞: best PPI and number of threads found so far

2: for each p in P do

3: φ′ ← 0: maximum measured metric found so far

4: Ω← ω and M ′ ← M(A,Ω, p)
5: while M ′ ≥ φ′ do

6: φ′ ←M ′ and Ω← Ω + β and M ′ ← M(A,Ω, p)
7: end while

8: if φ′ ≥ φ(Ω, p) then

9: φ(Ω, p)← φ′

10: end if

11: end for

12: return φ(Ω, p)

(e.g., tradeoff between performance and aging) of executing

the parallel application on c distinct cores and p PPIs. An

optimized assignment φ consists of finding a valid assignment

φ that leads to maximum value to M. Algorithm 1 receives

the set of cores C, the set of PPIs P, the small input set for an

application A, and two parameters: ω – the initial number of

threads given to application A, and β – the increasing factor for

the number of threads/processes given to A (we consider ω = 2
and β = 2). The procedure starts selecting a PPI (p) from the

set of PPIs. Then it executes application A parallelized with p

and exploiting TLP with Ω number of threads/processes. This

number increases by a factor β while maximizing the score

function M(φ) = M ′. Because finding the ideal number of

threads to execute a parallel application can be considered a

convex optimization problem, there will be a single specific

number of threads/processes per PPI that delivers the best

tradeoff between performance and aging.

IV. METHODOLOGY

Benchmarks: We consider ten parallel applications already

parallelized from [20], which have different communication

demands and operations to exchange data, as depicted in Table

I. They are classified into two classes: High Communication

(HC) and Low Communication (LC) and were executed with

a small input set, used for the learning phase, and a regular

input set (Table I), used to evaluate BALDER.

Execution Environment: We consider two embedded plat-

forms: (i) Raspberry PI, with four ARM Cortex-A53 running at

distinct frequency levels (0.6GHz-1.2GHz), and Vth = 0.395;

and (ii) Jetson TX-2 machine (4-plus-1 quad-core ARM

Cortex-A15 CPU, and Vth = 0.395). We used the Linux

Ubuntu OS, kernel v.4.15, GCC v. 8.3 with the -O3 optimiza-

tion flag, and the DVFS governor set to ondemand. The fol-

lowing PPIs were used: OpenMP 5.0, PThreads/POSIX.12008,

and OpenMPI 3.1.4. Each configuration (algorithm, PPI, TLP)

was executed ten times with σ ≤ 0.5%.

V. RESULTS

Figures 3 and 4 present the results for each benchmark class

considering the geometric mean of all applications within each

class. They show each PPI running with a different number

of threads/processes (1, 2, 3, 4, and 8), the result found by

BALDER, and the best result found by the exhaustive search.

TABLE I: Main characteristics of each benchmark

Benchmarks
Operations to exchange data

Input size
2 3 4 8

HC

Game of Life (GL) 414 621 1079 1625 4096 x 4096

Gauss-Seidel (GA) 200004 200006 200008 20016 2048 x 2048

Gram-Schmidt (GS) 3009277 4604384 6385952 12472634 2048 x 2048

Jacobi (JA) 4004 6006 8008 16016 2048 x 2048

Turing Ring (TR) 16000 24000 32000 64000 2048 x 2048

LC

DFT 4 6 8 16 32768

Dijkstra (DJ) 4 6 8 16 2048 x 2048

Dot Product (DP) 4 6 8 16 15 billions

Matrix Mult. (MM) 4 6 8 16 2048 x 2048

Histograms Simil. (HS) 4 6 8 16 1920 x 1080

Fig. 3 depicts the ∆Vth(total) (x-axis) and the execution time

(y-axis) for each configuration on each benchmark class and

platform (BP means the configuration that delivers the best

performance while BA, the best aging), while Fig. 4 shows the

number of times that the application set may execute until the

processor’s end-of-life (x-axis) and its respective lifetime (y-

axis). We consider that the end-of-life of a processor happens

when the Vth is increased by 10%. As an example, if HC

applications are executed with OpenMP (2 threads) on the

Rasp. Pi (Fig. 4a.), it will be capable to complete 0.41× 106

executions before its end-of-life, estimated in 2.44 years.

For HC applications, the characteristics of each PPI play an

essential role in the performance and ∆Vth(total) due to the

way synchronization and communication are performed (Fig.

3a and 3b). Overall, applications implemented with OpenMP

are capable of executing more times until the processors’ end-

of-life (Fig. 4a and 4b). The difference between OpenMP

and PThreads is related to the impact of context switching

imposed by the use of mutexes to perform synchronization

and communication among threads. Because of the impact of

context switching on the duty-cycle of each core, PThreads im-

plementations were slower and presented a higher ∆Vth(total)

than the OpenMP. As for MPI implementations, the higher

the number of processes, the worst the trade-off between

performance and ∆Vth(total) due to excessive amount of

send/receive operations. On the other hand, for LC applications

(Fig. 3c, 3d, 4c, and 4d), on average, the PPIs have a similar

behavior due to the CPU intensive nature of the applications,

which amortizes the impact of each PPI on communication

and synchronization.

However, even though OpenMP implementations provide

the best results on the average of each benchmark class,

they are not capable of maximizing the number of times an

application may execute until the device’s end-of-life for all

situations (Table II).

Therefore, by using BALDER to find an ideal or near-ideal

combination of PPI-TLP for each application, the number of

times that an application may execute until the processor’s

end-of-life can be significantly increased. As an example,

if BALDER is used to find the best combination for HC

applications on the Raspberry Pi (Fig. 4a) instead of the

configuration that delivers the best result (i.e., all applications

running with OMP-2), the applications may be executed 1.14

times more while keeping a similar end-of-life.

BALDER is capable of reaching a result that is very close

to the one found by the exhaustive search (Fig. 3 and 4).

However, as BALDER employs the learning algorithm over
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TABLE II: Best pair – PPI (#Threads)– and the learning time

of Balder and exhaustive search for each benchmark

Best Configuration
Learning

of Balder

Learning of

Exh. Search

Pi Jetson Pi Jetson Pi Jetson

HC

GA MPI-1(3) MPI-2(4) 54s 128s 12961s 1742s

GL OMP(4) PT(4) 34s 108s 2403s 395s

GS OMP(8) OMP(2) 87s 25s 3474s 452s

JA OMP(2) OMP(2) 106s 21s 4239s 689s

TR OMP(2) PT(4) 13s 18s 2660s 450s

LC

DFT OMP(3) MPI-1(8) 51s 16s 3392s 1384s

DJ OMP(2) MPI-1(4) 81s 18s 5967s 550s

DP MPI-2(8) OMP(8) 85s 18s 3181s 941s

HS PT(3) PT(8) 29s 14s 1645s 171s

MM PT(2) PT(4) 22s 20s 13442s 2943s

the application with its smaller input set, the learning time of

BALDER is significantly reduced (Table II): only 6.7% and

2.6% of the time spent by the exhaustive search for HC and LC

applications on the Jetson platform. Furthermore, there is also

an implicit overhead of BALDER regarding (i) the database;

and (ii) the time to access it. BALDER occupies 7.9 Kb of

space and that each hash with the best combination stored adds

136 bytes. The time to update the database is 0.001s while the

time for searching a combination and read it is 0.002s.

VI. CONCLUSION AND FUTURE WORK

We have presented BALDER, a framework capable of

finding the pair of PPI and the number of threads so that

the number of times an application may execute until the

processor’s end-of-life is maximized. BALDER is transparent

to both designer and end-user: given different application

binaries already compiled, it optimizes the application exe-

cution without any code changes. As future work, we will

enhance BALDER to consider heterogeneous architectures and

to combine with state-of-the-art approaches.
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