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Following recent experiments on power law blinking behavior of single nanocrystals, we calculate
two-time intensity correlation functions ^I(t)I(t1t8)& for these systems. We use a simple two state
~on and off! stochastic model to describe the dynamics. We classify possible behaviors of the
correlation function and show that aging, e.g., dependence of the correlation function on age of
process t, is obtained for classes of the on time and off time distributions relevant to experimental
situation. Analytical asymptotic scaling behaviors of the intensity correlation in the double time t
and t8 domain are obtained. In the scaling limit ^I(t)I(t1t8)&→h(x), where four classes of
behaviors are found: ~i! finite averaged on and off times x5t8 ~standard behavior!; ~ii! on and off
times with identical power law behaviors x5t/t8 ~case relevant for capped nanocrystals!; ~iii!
exponential on times and power law off times x5tt8 ~case relevant for uncapped nanocrystals!; ~iv!
for defected off time distribution we also find x5t1t8. Origin of aging behavior is explained based
on simple diffusion model. We argue that the diffusion controlled reaction A1B
AB , when
followed on a single particle level exhibits aging behavior. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1763136#

I. INTRODUCTION

The fluorescence emission of single colloidal nanocrys-
tals ~NC!, e.g., CdSe quantum dots, exhibits interesting in-
termittency behavior.1 Under laser illumination, single NCs
blink: at random times the NC will turn from state on in
which many photons are emitted, to state off in which the
NC is turned off. One method to characterize blinking quan-
tum dots is based on the distribution of on and off times.
According to the theory of Efros and Rosen,2 these on and
off times, correspond to a neutral and ionized NC, respec-
tively. Thus statistics of on and off times teaches us on ion-
ization events on the level of a single NC. Surprisingly,3,4

distributions of on and off times exhibit power law statistics.
For capped NCs the probability density function ~PDF! of on
time decays like c1(t);t212a

1, while for off times
c2(t);t212a

2, where in many cases a1 and a2 are close
to 0.5.5

Statistical behavior of single emitting NCs, and more
generally single molecules6 or atoms,7–9 is usually character-
ized based on intensity correlation functions.10–12 The calcu-
lation of intensity correlation functions, and the related Man-
del Q parameter, for single molecule spectroscopy is a
subject of intense theoretical research13–22 ~see Ref. 23 for
review!. Experiments on single NCs show how the correla-
tion function method yields dynamical information over time
scale from nanosecond to tens of seconds.10 The correlation
function of single NCs exhibits a nonergodic behavior, as
such these systems exhibit behavior very different than other
single emitting objects.

The goal of this paper is to calculate the averaged inten-
sity correlation function for the emitting NCs. For this aim
we use a simple two state stochastic model. The motivation
for the calculation is twofold. First, the averaged correlation

function exhibits interesting aging behavior, as we will dem-
onstrate. This aging behavior is a signal of nonergodicity.
Second, to obtain understanding of nonergodic properties of
the correlation function, one must first understand how the
averaged correlation function behaves. In a future publica-
tion we will discuss the nonergodic behavior of the NC cor-
relation function, namely, the question of the distribution of
correlation functions obtained from single trajectory mea-
surements.

Aging in our context means that the ~non-normalized!
intensity correlation function

C~ t ,t8!5^I~ t !I~ t1t8!&, ~1!

and the normalized correlation

g ~2 !~ t ,t8![
^I~ t !I~ t1t8!&

^I~ t !&^I~ t1t8!&
5

C~ t ,t8!

^I~ t !&^I~ t1t8!&
~2!

depend on the age of the process t even in the limit of long
times. Here I(t) is the fluctuating stream of photons emitted
from the NC ~units counts per second!. In the ergodic phase
~i.e., when both the mean on and off times are finite! station-
arity is reached meaning that C(t ,t8)→C(t8) when t→`
and similarly for g (2)(t ,t8). The average in Eq. ~1! is over
many single NC intensity trajectories.

Previously, Jung, Barkai, and Silbey24 showed the rela-
tion of the problem to the Lévy walk model.25 The approach
in Ref. 24 is based on the calculation of Mandel’s Q param-
eter and does not consider the aging properties of the NCs.
Verberk and Orrit11 considered the problem of the correlation
function for blinking NC, however they assume that the
mean on and the mean off times are finite, while the experi-
ments show an infinite off and on times ~for capped NCs!. To
overcome this problem Verberk and Orrit introduce cutoffs
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on the on and off times. The results of Verberk and Orrit are
different than ours: they do not exhibit aging and they are
meant to describe the correlation function of a single trajec-
tory ~however, the ergodic problem was not considered!.
Brokmann et al.5 have measured aging behavior of a number
of NCs. They concentrate on the measurement of the persis-
tence probability ~see details below! while this work is de-
voted to the investigation of the intensity correlation func-
tion.

We note that concepts of statistical aging and persis-
tence, used in this manuscript, were introduced previously in
the context of the trap model and glassy dynamics by
Bouchaud and co-workers.26–29 See also Refs. 30 and 31.
Statistical aging is found in continuous time random
walks,32,33 and in deterministic dynamics of low dimensional
chaotic systems.34 Aging in complex dynamical systems, for
example, supercooled liquids or glasses is a topic of much
research.35 In contrast we will later show that aging in NCs
may be a result of very simple physical processes ~e.g., nor-
mal diffusion!. Thus we expect aging and nonergodic behav-
ior to be important in other single molecule systems.

In the context of fractal renewal theory, Godrèche and
Luck36 have considered the problem of the averaged corre-
lation, however, in the language of single NC spectroscopy,
they assume that statistical properties of the on time are iden-
tical to the statistical properties of off times, i.e., c1(t)
5c2(t). Here we use methods developed in Ref. 36 to the
case relevant to experiments c1(t)Þc2(t). We also obtain
the aging correlation function in the scaling limit in the time
domain.

This paper is organized as follows. In Sec. II the math-
ematical model is presented and the physical meaning of on

and off times’ distributions is discussed. A brief discussion of
ensemble average and time average correlation function is
given. In Sec. III statistical properties of the stochastic pro-
cess are considered, e.g., average number of jumps, etc. In
Sec. IV the distribution of the forward recurrence time is
calculated, the latter is important for the calculation of the
aging correlation function. In Sec. V we calculate probability
of number of transitions between t and t1t8, with which the
mean intensity ~Sec. VI! and the aging correlation function
~Sec. VII! are obtained. Section VIII is a summary.

II. STOCHASTIC MODEL, AND DEFINITIONS

The random process considered in this paper is sche-
matically depicted in Fig. 1. The intensity I(t) jumps be-
tween two states I(t)511 and I(t)50. At start of the mea-
surement t50 the NC is in state on: I(0)51. The sojourn
time t i is an off time if i is even, it is an on time if i is odd
~see Fig. 1!. The times t i for odd @even# i are drawn at
random from the PDF c1(t), @c2(t)# , respectively. These
sojourn times are mutually independent, identically distrib-
uted random variables. Times t i are cumulative times from
the process starting point at time zero until the end of the ith
transition. Time t in Fig. 1 is the time of observation.

We denote the Laplace transform of c6(t) using

ĉ6~s !5E
0

`

c6~ t !e2stdt . ~3!

We will classify behaviors of observables of interest using
the small s expansion of c6(s). We will consider the fol-
lowing.

FIG. 1. Schematic temporal evolution
of the dichotomous intensity process.
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~i! Case 1: PDFs with finite mean on and off times,
whose Laplace transform in the limit s→0 satisfies

ĉ6~s!512st61¯ . ~4!

Here t1(t2) is the average on ~off! time. For ex-
ample, exponentially distributed on and off times,

ĉ6~s!5
1

11st6

, ~5!

belong to this class of PDFs.
~ii! Case 2: PDFs with infinite mean on and off times,

namely, PDFs with power law behavior satisfying
c6}t212a

6, a2,a1,1 ~6!

in the limit of long times. The small s behavior of
these family of functions satisfies

ĉ6~s!512A6sa
61¯ , ~7!

where A6 are parameters which have units of timea.
We will also consider cases where on times have finite
mean (a151) while the off mean time diverges
(a2,1) since this situation describes behavior of un-
capped NC ~Ref. 12! ~see also Ref. 37!.

~iii! Case 3: PDFs with infinite mean with a15a25a

ĉ6~s!512A6sa
1¯ . ~8!

Note that Brokmann et al.5 report that for CdSe dots,
a150.5860.17, and a250.4860.15, hence within
error of measurement, a.0.5.

~iv! In Sec. VII D we will briefly consider the behavior of
the correlation function for defected c2(t).

A. Physical meaning of cÁ„t…

As mentioned in the Introduction, and following Ref. 2,
we assume that a charged ~neutral! uncapped NC is in state
off ~on!, respectively. Physically, for charged NC, Auger
nonradiative decay time of a laser excited electron–hole pair,
is much faster than the radiative time of the electron–hole
pair.38 Hence a charged NC is in off state. The physical
mechanism responsible for the power law blinking ~i.e.,
charging! behavior of NCs is still unclear. Models based on
trapping of charge carriers in the vicinity of the NC, and
fluctuating barrier concepts were suggested in Refs. 3, 4, 12,
and 37. Here we will emphasize an alternative simple picture
based on diffusion concepts. Before further experiments are
performed, it is impossible to say if the simple picture we
consider here works better or worse than other approaches.

We note that the simplest diffusion controlled chemical
reaction A1B
AB , where A is fixed in space, can be used
to explain some of the observed behavior on the uncapped
NCs. As mentioned the latter exhibit exponential distribution
of on times and power law distribution of off times. The on
times follow standard exponential kinetics corresponding to
an ionization of a neutral NC ~denoted as AB!. A model for
this exponential behavior was given already in Ref. 12. Once
the NC is ionized (A1B state! we assume the ejected charge
carrier exhibits a random walk on the surface of the NC or in
the bulk. This part of the problem is similar to Onsager’s
classical problem of an ion pair escaping neutralization ~see,
e.g., Refs. 39 and 40!. The survival probability in the off
state for time t, S2(t) is related to the off time distribution
via S2(t)512*0

t c2(t)dt , or

c2~ t !52

dS2~ t !

dt
. ~9!

It is well known that in three dimensions survival probability
decays like t21/2, the exponent 1/2 is close to the exponent
measured in the experiments. In infinite domain the decay is
not to zero, but the 1/2 appears in many situations, for finite
and infinite systems, in completely and partially diffusion
controlled recombination, in different dimensions, and can
govern the leading behavior of the survival probability for
orders of magnitude in time.40–42 In this picture the exponent
1/2 does not depend on temperature, similar to what is ob-
served in experiment. We note that it is possible that instead
of the charge carrier executing the random walk, diffusing
lattice defects which serve as a trap for charge carrier are
responsible for the blinking behavior of the NCs.

One of the possible physical pictures explaining blinking
of capped NCs can be based on diffusion process, using a
variation of a three state model of Ref. 12. As mentioned in
the Introduction, for this case power law distribution of on
and off times are observed. In particular, neutral capped NC
will correspond to state on ~as for uncapped NCs!. However,
capped NC can remain on even in the ionized state. We as-
sume that the ionized capped NC can be found in two states:
~i! the charge remaining in the NC can be found in center of
NC ~possibly a delocalized state!, ~ii! charge remaining in
the NC can be trapped in vicinity of capping. For case ~i! the
NC will be in state off for case ~ii! the NC will be in state on.
The main idea is that the rate of Auger nonradiative
recombination2 of consecutively formed electron–hole pairs
will drop for case ~ii! but not for case ~i!. We note that
capping may increase effective radius of the NC, or provide
trapping sites for the hole ~e.g., recent studies by Lifshitz
et al.43 demonstrate that coating of NCs creates trapping sites
in the interface!. Thus the off times occur when the NC is
ionized and the hole is close to the center, these off times are
slaved to the diffusion of the electron. While on times occur
for both a neutral NC and for charged NC with the charge in
vicinity of capping, the latter on times are slaved to the dif-
fusion of the electron. In the case of power law off time
statistics this model predicts same power law exponent for
the on times, because both of them are governed by the re-
turn time of the ejected electron.

The main point we would like to emphasize is that sev-
eral simple mechanisms might be responsible for the power
law statistics, and hence aging correlation functions in single
molecule experiments may turn out to be widespread. Be-
yond single molecule spectroscopy we note that certain
single ion channels,41,44,45 deterministic diffusion in chaotic
systems,46 the sign of magnetization of spin systems at
criticality,36 all exhibit intermittency behavior, and the corre-
lation function we obtain here might be useful also in other
fields. Hence we do not restrict our attention to the exponent
1/2, as there are indications for other values of a between 0
and 1, and the analysis hardly changes.

B. Definition of correlation functions

Since the process under investigation is nonergodic, and
since measurements are made on a single molecule level,
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care must be taken in the definition of averages. From a
single trajectory ~ST! of I(t), recorded in a time interval
(0,T), we may construct the time average correlation func-
tion

CST~T ,t8!5

*0
T2t8I~ t1t8!I~ t !dt

T2t8
. ~10!

On the other hand we may generate many intensity trajecto-
ries one at a time, to obtain C(t ,t8) and g (2)(t ,t8). We call
C(t ,t8) ensemble averaged correlation function. For noner-
godic processes CST(T ,t8)ÞC(t ,t8) even in the limit of
large t and T. Moreover for nonergodic processes, even in the
limit of T→` , CST(T ,t8) is a random function which varies
from one sample of I(t) to another.

Consider now the intensity of N blinking NCs,

Ĩ N~ t !5(
j51

N

I j~ t ! ~11!

and j is a particle number. The corresponding correlation
function is

G~ t ,t8!5^ Ĩ N~ t ! Ĩ N~ t1t8!&. ~12!

If the blinking behavior of individual NCs is independent,
but statistically identical, and with same initial conditions,
then

G~ t ,t8!5N^I~ t !I~ t1t8!&1N~N21 !^I~ t !&^I~ t1t8!&.
~13!

Clearly for N51 we obtain the correlation function C(t ,t8)
in Eq. ~1!. Below we calculate both ^I~t!& and ^I~t!I~t1t8!&.

III. NUMBER OF JUMP EVENTS BETWEEN 0 AND t

In this section we investigate basic statistical properties
of the on–off process.

The probability of n transitions ~either off→on or on
→off) between times 0 and t is

P t~n ![P~0,t ,n !5^u~ tn,t,tn11!&, ~14!

where u(tn,t,tn11) is 1 if the event in the parenthesis
occurs; otherwise it is zero. Laplace transforming Eq. ~14!
with respect to t yields

P̂s~n !5K E
tn

tn11
dte2stL 5 K e2stnS 12e2stn11

s D L . ~15!

A simple calculation using tn5( i51
n t i yields

P̂s~n !

55 @ ĉ1~s !ĉ2~s !#n/2
12ĉ1~s !

s
, n even,

@ ĉ1~s !#~n11 !/2@ ĉ2~s !#~n21 !/2
12ĉ2~s !

s
, n odd.

~16!

To derive Eq. ~16! we used the initial condition that the state
of the process at t50 is 1. Equation ~16! satisfies the nor-
malization condition (n50

` P̂s(n)51/s .

A. Mean number of renewals Šn‹

Using Eq. ~16! the mean number of transitions is in
Laplace t→s space

^n̂~s !&5 (
n50

`

nP̂s~n !5

ĉ1~s !@11ĉ2~s !#

s@12ĉ2~s !ĉ1~s !#
. ~17!

Using Eqs. ~4!, ~7!, and ~8!, the small s expansion of Eq.
~17!, and then inverting to time domain we get the long time
behavior

^n~ t !&;5
2t

t11t2

, case 1 ,

2ta
2

A2G~11a2!
, case 2 ,

2ta

~A11A2!G~11a !
, case 3.

~18!

B. Asymptotes of P t„n…

For narrow PDFs, i.e., case 1, and for long times we
obtain from Eqs. ~4! and ~16!

P t~n !.H ^t1&

^t1&1^t2&
dS n

2
2

t

^t1&1^t2&
D , n even,

^t2&

^t1&1^t2&
dS n11

2
2

t

^t1&1^t2&
D , n odd.

~19!

To obtain this result we used the small s expansion of Eq.
~16! and then a simple Laplace inversion. We neglected the
fluctuations in this treatment, the latter are expected to be
Gaussian in the long time limit.

For broad PDFs satisfying a15a25a , case 3, we find

P̂s~n !;A6sa21e2k~A
1

1A
2

!sa
, ~20!

where k5n/2 and A65A1 for n even, while k5(n11)/2
and A65A2 for n odd. Inverting to the time domain we find

P t~n !;
A6

a

t

~A1k1A2k !1/a11 laF t

~A1k1A2k !1/aG ,

~21!

where la(t) is the one sided Lévy stable PDF whose Laplace
pair is exp(2sa).

For case 2, with a2,a1 , we get

P̂s~n !;A2 exp~2A2ksa
2! ~22!

for k5n/2 and n even. The probability of finding an odd n in
this limit is zero. This is expected since the off times are
much longer than the on times, in statistical sense. Thus for
long times we have

P t~n !;
A2

a2

t

~A2k !1/a
2

11 la
2
F t

~A2k !1/a
2
G ~23!

and n is even.
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IV. FORWARD RECURRENCE TIME

The time E5tN112t is called the forward recurrence
time. The times ~see Fig. 1! tN11 and tN are defined in such
a way that tN,t,tN11 , hence also N is a random variable.
Let f t(E) be the probability density function of the random
variable E. The subscript t in f t(E) indicates that t is a pa-
rameter, while E is a random variable. Generally the PDF of
E depends on how old the process is, namely on t. A process
is said to exhibit statistical aging if even in the limit of t
→` , f t(E) depends on t. The PDF f t(E) is important for the
calculation of the aging correlation function.

We consider the joint PDF

f t~E ,N !5^d~E2tN111t !u~ tN,t,tN11!&. ~24!

Later we will sum over N to obtain f t(E). We consider the
double Laplace transform L of Eq. ~24! with t→s
and E→u

Lt ,E$ f t~E ,N !%5K E
tN

tN11
dtE

0

`

dEe2st2uEd~E2tN111t !L
5K e2utN11E

tN

tN11
e2~s2u !tdtL

5K e2utN11
e2~s2u !tN112e2~s2u !tN

u2s L . ~25!

For even N we use the averages

^e2stN11&5@ ĉ1~s !#~N/2!11@ ĉ2~s !#N/2,

^e2stN&5@ ĉ1~s !ĉ2~s !#N/2,

^e2u~ tN112tN!&5ĉ1~u !,

and find

f̂ s~u ,N !5

@ ĉ1~s !c2~s !#N/2@ ĉ1~s !2ĉ1~u !#

u2s
. ~26!

In similar way we obtain for N odd

f̂ s~u ,N !5

@ ĉ1~s !c2~s !#~N21 !/2@ ĉ2~s !2ĉ2~u !#ĉ1~s !

u2s
.

~27!

Note that f̂ s(u ,N) is the double Laplace transform of
f̂ t(E ,N), while ĉ6(s) and ĉ6(u) are single Laplace trans-
forms. Summing f̂ s(u ,N) over N we obtain the double
Laplace transform of f t(E)

f̂ s~u !5

@ ĉ1~s !2ĉ1~u !#1ĉ1~s !@ ĉ2~s !2ĉ2~u !#

~u2s !@12ĉ1~s !ĉ2~s !#
.

~28!

For ĉ1(s)5ĉ2(s) Eq. ~28! reduces to Eq. 6.2 in Ref. 36.

A. Limiting cases for f t„E…

We now analyze the long time t→` behavior of f t(E).
In this case we expect that an equilibrium PDF for f t(E) will
emerge. This equilibrium is related to stationarity, ergodicity,
and aging as we will show.

We consider narrow distributions, i.e., case 1 first. Tak-
ing the limit s→0 of Eq. ~28!, corresponding to t→` and
find

f̂ s~u !;
12ĉ1~u !

su~t11t2!
1

12ĉ2~u !

su~t11t2!
. ~29!

The Laplace s→t and u→E inversion of this equation is
immediate

f t~E !5

*E
`c1~ t8!dt8

t11t2

1

*E
`c2~ t8!dt8

t11t2

, ~30!

a behavior which is valid in the limit of long time t ~and
independent of it!. Note that the first ~second! term on the
right-hand side of the equation, corresponds to trajectories
with even ~odd! number of steps. One can show that in the
limit of long times probability of finding the process in state
6 is

lim
t→`

P6~ t !5

t6

t11t2

, ~31!

as might be expected. In the special case of c25c1 we
obtain a well-known equation47 which has several applica-
tions in theory of random walks, e.g., Ref. 48. The important
point to note is that in the limit of large time t, and when
average times t6 are finite, an equilibrium is obtained which
does not depend on t.

We now consider broad distributions, with diverging av-
eraged on and off times, case 2. In the limit of small s and
small u, with their ratio finite

f̂ s~u !;
ua

22sa
2

~u2s !sa
2

. ~32!

The investigation of this equation yields the long time t be-
havior

f t~E !;d t~E !, ~33!

where d t(E) is Dynkin’s function,

d t~E !5

sin~pa2!

p

ta
2

Ea
2~ t1E !

. ~34!

From Eqs. ~32! and ~33! we learn that unlike case 1, the PDF
of E depends on time t even in the long time limit. Equation
~34! was obtained by Dynkin47,49 as a limit theorem for re-
newal processes with a single waiting time PDF. Here we
showed that for a two state process the details on a1 and A1

are not important in the long time limit. This is expected, the
off ~i.e., minus! times are much longer than the on ~i.e., plus!
times in statistical sense, and hence our results in the long
time limit are not sensitive to the details of c1(t). In the
same spirit it can be shown that in the limit of long time t,
and with probability 1, the process is found in state minus.

Finally for case 3 where a15a2,1, we find that Eqs.
~32! and ~33! are still valid. However, now probability of
finding the process in state 6 is given by

P6[ lim
t→`

P6~ t !5

A6

A11A2

. ~35!
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B. Joint PDFs for forward recurrence time

It will turn out important to define the joint PDFs of time
E provided that process is in state plus or state minus at time
t. We denote these PDFs with f t(E ,6) and the correspond-
ing double Laplace transform f̂ s(u ,6). Since the start of
process is state 1 at time t50, we get using Eq. ~26!

f̂ s~u ,1 !5 (
N50,N even

`

f̂ s~u ,N !

5

ĉ1~s !2ĉ1~u !

~u2s !@12ĉ1~s !ĉ2~s !#
, ~36!

and using Eq. ~27!

f̂ s~u ,2 !5 (
N50,N odd

`

f̂ s~u ,N !

5

ĉ1~s !@ ĉ2~s !2ĉ2~u !#

~u2s !@12ĉ1~s !ĉ2~s !#
. ~37!

Note that

f̂ s~u !5 f̂ s~u ,2 !1 f̂ s~u ,1 !. ~38!

The probability of finding the particle in state 1 when t
→` is

lim
t→`

P15 lim
t→`

E
0

`

f t~E ,1 !dE , ~39!

provided that the limit exists. For example, for case 1 it is
easy to obtain from Eq. ~39! the result in Eq. ~31!.

The limiting PDFs f t(E ,6) are obtained in double
Laplace space by considering the small s ~and small u for
cases 2 and 3! limit. They are

f̂ s~u ,6 !;5
12ĉ6~u !

us~t11t2!
, case 1 ,

A1

A11A2

ua
2sa

~u2s !sa
, case 3 .

~40!

For case 2 we find in this limit f̂ s(u ,1)50, i.e., probability
of finding the particle in state1is zero, and

f̂ s~u ,2 !5

ua
22sa

2

~u2s !sa
2

. ~41!

The double inverse Laplace transform of this equation is
given in Eq. ~34!.

V. NUMBER OF RENEWALS BETWEEN TWO TIMES

We now calculate P(t ,t1t8,n) the probability of num-
ber of renewals n between time t and time t1t8. Obviously
the process is generally not stationary and the information on
P(0,t8,n), obtained in Sec. III, is not sufficient for the de-
termination of P(t ,t1t8,n). We now classify the trajectories
according to the state of the process ~i.e., 1 or 2! at times t
and t1t8. It will turn out that the intensity trajectories, when

the process is in state 1 at time t and state 1 at time t
1t8, are those which are important for the calculation of the
correlation function.

The probability of not making a jump in time interval
t ,t1t8, when the process is in state 1 at time t and state
1at time t1t8 is

P11~ t ,t1t8,0!5E
t8

`

f t~E ,1 !dE . ~42!

The probability of finding n.0 transition events in time in-
terval t ,t1t8, when state of process at time t is 1 and state
of process is t1t8 is also 1,

Lt8P11~ t ,t1t8,n !

5 f̂ t~u ,1 !ĉ2~u !@ ĉ1~u !ĉ2~u !#~n/2!21
12ĉ1~u !

u
,

~43!

where n.0 is even, and u is the Laplace conjugate of t8.
Note that Eq. ~43! depends on t through f̂ t(u ,1). The other
combinations, e.g., P12(t ,t1t8,n), are given in Appendix
A, as well as P(t ,t1t8,n).

VI. MEAN INTENSITY OF ON–OFF PROCESS

The averaged intensity ^I(t)& for the process switching
between 1 and 0 and starting at 1 is now considered. In
Laplace t→s space it is easy to show that

^ Î~s !&5

12ĉ1~s !

s

1

12ĉ1~s !ĉ2~s !
. ~44!

One method to obtain this equation is to note that ^I(t)&
5Prob@I(t)51# , hence

^ Î~s !&5E
0

`

f s~E ,1 !dE , ~45!

and therefore the u→0 limit of Eq. ~36! yields Eq. ~44!.
The Laplace s→t inversion of Eq. ~44! yields the mean

intensity ^I(t)&. Using small s expansions of Eq. ~44!, we
find in the limit of long times

^I~ t !&;5
t1

t11t2

, case 1 ,

A1ta
2

2a
1

A2G~11a22a1!
, case 2 ,

A1

A11A2

, case 3 .

~46!

If the on times are exponential, as in Eq. ~5! then

^ Î~s !&5

t1

11st12c2~s !
. ~47!

This case corresponds to the behavior of the uncapped NCs.
The expression in Eq. ~47!, and more generally, the case
a2,a151 leads for long time t to

^I~ t !&;
t1ta

2
21

A2G~a2!
. ~48!
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For exponential on and off time distributions, Eq. ~5!, we
obtain the exact solution

^I~ t !&5

t2 expF2tS 1

t2

1

1

t1

D G1t1

t21t1

. ~49!

Remark. For the case a1,a2,1, corresponding to a
situation where on times are in statistical sense much longer
than off times, ^I(t)&;1.

VII. AGING CORRELATION FUNCTION OF ON–OFF
PROCESS

We are now able to calculate the correlation function
C(t ,t8)5^I(t)I(t1t8)&. We consider the process I(t) as
jumping between state on with I(t)511 and state off I(t)
50. The symmetric case where I(t) jumps between the
states I(t)521 or I(t)521 is discussed in Appendix B.
We assume that sojourn times in state on ~off! are described
by c1(t) @c2(t)# , respectively. Contributions to the corre-
lation function arise only from trajectories with I(t)51 and
I(t1t8)51, meaning that only the 11 trajectories, in Eq.
~43! contribute to the correlation function. Summing Eq. ~43!
over even n.0, and using Eq. ~42! for n50, we find

Ĉ~ t ,u !5

f̂ t~u50,1 !2 f̂ t~u ,1 !

u

1 f̂ t~u ,1 !
ĉ2~u !@12ĉ1~u !#

u@12ĉ2~u !ĉ1~u !#
, ~50!

where u is the Laplace conjugate of t8. We see that the
correlation function generally depends on time t.

A. Case 1

For case 1 with finite t1 and t2 , and in the limit of long
times t, we find

lim
t→`

Ĉ~ t ,u !

5

1

u

t1

t11t2

H 12

@12ĉ1~u !#@12ĉ2~u !#

t1u@12ĉ2~u !ĉ1~u !#
J . ~51!

This result was obtained by Verberk and Orrit11 and it is seen
that the correlation function depends asymptotically only on
t8 ~since u is Laplace pair of t8). Namely, when average on
and off times are finite the system does not exhibit aging. If
both c1(t) and c2(t) are exponential then the exact result is

C~ t ,t8!5

t2 expF2tS 1

t2

1

1

t1

D G1t1

t21t1

3

t2 expF2t8S 1

t2

1

1

t1

D G1t1

t21t1

and C(t ,t8) becomes independent of t exponentially fast as t
grows.

B. Case 2

We consider case 2, however, limit our discussion to the
case a151 and a2,1. As mentioned this case corresponds
to uncapped NCs where on times are exponentially distrib-
uted, while off times are described by power law statistics.
Using the exact solution, Eq. ~50!, we find asymptotically,
when both t and t8 are large

C~ t ,t8!;S t1

A2

D 2 ~ tt8!a
2

21

G2~a2!
. ~52!

Unlike case 1 the correlation function approaches zero when
t→` , since when t is large we expect to find the process in
state off. Using Eq. ~48!, the asymptotic behavior of the nor-
malized correlation function, Eq. ~2!, is

g ~2 !~ t ,t8!;S 11

t

t8D
12a

2

. ~53!

We see that the correlation functions, Eqs. ~52! and ~53!,
exhibit aging, since they depend on the age of the process t.

Considering the asymptotic behavior of C(t ,t8) for large
t, but small t8, yields in the limit of s!u , s!uĉ(u),

Ĉ~ t ,u !'
1

u

t1

A2G~a2!t12a
2

3H 12

@12ĉ1~u !#@12ĉ2~u !#

t1u@12ĉ2~u !ĉ1~u !#
J . ~54!

This equation is similar to Eq. ~51!, especially if we note that
the ‘‘effective mean’’ time of state off until total time t scales
as A2t12a

2. Despite assumptions of s!u , s!uĉ(u) in the
derivation of Eq. ~54!, it also reproduces the result Eq. ~52!
and hence is applicable for any u ~and thus t8) as long as t is
large enough.

For the special case, where on times are exponentially
distributed, the correlation function C is a product of two
identical expressions for all t and t8,

Ĉ~s ,u !5

t1

11st12c2~s !

t1

11ut12c2~u !
, ~55!

where s ~u! is the Laplace conjugate of t (t8), respectively.
Comparing with Eq. ~47! we obtain

C~ t ,t8!5^I~ t !&^I~ t8!&, ~56!

and for the normalized correlation function

g ~2 !~ t ,t8!5
^I~ t8!&

^I~ t1t8!&
. ~57!

Equations ~57! and ~56! are important since they show that
measurement of mean intensity ^I(t)& yields the correlation
functions, for this case. While our derivation of Eqs. ~57! and
~56! is based on the assumption of exponential on times, it is
valid more generally for any c1(t) with finite moments, in
the asymptotic limit of large t and t8. To see this note that
Eqs. ~52! and ~48! yield C(t ,t8);^I(t)&^I(t8)&.

In Fig. 2 we compare the asymptotic result ~52! with
exact numerical double Laplace inversion of the correlation
function. We use exponential PDF of on times c1(s)
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51/(11s), and power law distributed off times: ĉ2(s)
5ĉ2(s)51/(11s0.4) corresponding to a250.4. Conver-
gence to asymptotic behavior is observed.

Remark. For fixed t the correlation function in Eq. ~52!
exhibits a (t8)a

2
21 decay. A (t8)a

2
21 decay of an intensity

correlation function was reported in experiments of Orrit’s
group12 for uncapped NCs ~for that case a250.6560.2).
However, the measured correlation function is a time aver-
aged correlation function, Eq. ~10!, obtained from a single
trajectory. In that case the correlation function is independent
of t, and hence no comparison between theory and experi-
ment can be made yet.

C. Case 3

We now consider case 3, and for long t and t8 we find

C~ t ,t8!5P12P1P2

sin pa

p
BS 1

11t/t8
;12a ,a D ~58!

with P6 given by Eq. ~35! and where

B~z;a ,b !5E
0

z

xa21~12x !b21dx

is the incomplete beta function. The behavior in this limit
does not depend on the detailed shape of the PDFs of the on
and off times, besides the parameters A1 /A2 and a ~see also
Appendix C!. We note that both terms of Eq. ~50! contribute
to Eq. ~58!. The appearance of the incomplete beta function
in Eq. ~58! is related to the concept of persistence. The prob-
ability of not switching from state on to state off in a time
interval (t ,t1t8), assuming the process is in state on at time
t, is called the persistence probability. In the scaling limit this
probability is found using Eqs. ~34! and ~40!,

sin~pa !

p
E

t8

` ta

Ea~ t1E !
dE

512

sin pa

p
BS 1

11t/t8
;12a ,a D . ~59!

The persistence implies that long time intervals in which the
process does not jump between states on and off control the
asymptotic behavior of the correlation function. The factor
P1 , which is controlled by the amplitude ratio A1 /A2 ,
determines the expected short and long time t8 behaviors of
the correlation function, namely, C(` ,0)5limt→`^I(t)I(t
10)&5P1 and C(` ,`)5limt→`^I(t)I(t1`)&5(P1)2.
With slightly more details the two limiting behaviors are

C~ t ,t8!;H P1 ,
t8

t
!1 ,

~P1!2
1P1P2

sin~pa !

pa S t8

t D 2a

,
t8

t
@1 .

~60!

Using Eq. ~46! the normalized intensity correlation function
is g (2)(t ,t8);C(t ,t8)/(P1)2.

In Fig. 3 we compare the asymptotic result ~58! with
exact numerical double Laplace inversion of the correlation
function for PDFs ĉ1(s)5ĉ2(s)51/(11s0.4). Conver-
gence to Eq. ~58! is seen.

Remark. For small t8/t we get flat correlation functions.
Flat correlation functions were observed by Dahan’s group10

for capped NCs. However, the measured correlation function
is a single trajectory correlation function, Eq. ~10!, and hence
no comparison between theory and experiment can be made
yet.

FIG. 2. Exact C(t ,t8) for case 2: ex-
ponential on times and power law off

times with a250.4. We use ĉ1(s)

51/(11s) and ĉ2(s)51/(11s0.4)
and numerically obtain the correlation
function. For each curve in the figure
we fix the time t. The process starts in
the state on. Thick dashed straight line
shows the asymptotic behavior, Eq.
~52!. For short times (t8,1 for our
example! we observe the behavior
C(t ,t8);C(t ,0)5^I(t)&, the correla-
tion function is flat.
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D. Defected off time distribution

As mentioned in the Introduction, an off state of un-
capped NC corresponds to an ionized NC. Assume that the
transition from state on to state off occurs when a charge
carrier is ejected into the vicinity of the NC, and then starts
to move diffusively in the bulk. If the diffusion process takes
place in three dimensions, there is a finite probability that the
charge carrier will not return to the NC. In that case the NC
remains in state off forever.

Such a situation can be modeled based on defected dis-
tribution of off times. In this case we have a non-normalized
PDF of off times

E
0

`

c2~ t !dt5Z,1, ~61!

the small s expansion of the Laplace transform of c2(t) is
ĉ(s)'Z2A2sa

2. Z is the probability of charge carrier to
return; this probability was the subject of extensive investi-
gation in the context of first passage time problems.50

For large t the mean intensity is

^I~ t !&;H A1t2a
1

~12Z !G~12a1!
, a6,1 ,

A1A2t2~11a
2

!

~12Z !2uG~2a2!u
, a2,a151 .

~62!

Note that here a2 can be smaller, larger or equal to a1 when
a1,1.

Using Eq. ~50! we obtain asymptotically, for both t and
t8 large,

C~ t ,t8!

;H A1

~12Z !G~12a1!
~ t1t8!2a

1, a6,1 ,

S A2A1

~12Z !2G~2a2!
D 2

~ tt8!2~11a
2

!, a2,a151 .

~63!

Using Eq. ~62! we can relate the intensity correlation func-
tion with the mean intensity,

C~ t ,t8!;H ^I~ t1t8!& , a6,1 ,

^I~ t !&^I~ t8!& , a2,a151.
~64!

This result shows that for a1,1 ^I(t)I(t1t8)&.^I(t
1t8)&, independent of the value of I(t). Asymptotic validity
of this relation can be explained by noting that the nonzero
contributions to ^I(t)I(t1t8)& come only when both I(t)
and I(t1t8) are equal to 1. However, at long time t, after
jumping off there is a negligible probability of being on
again for a cumulative time duration comparable with the
total time ~note that ^I(t)& scales as the probability of mak-
ing no transition off, i.e., of persistence!. Hence, the nonzero
contributions to ^I(t1t8)& are mainly those staying on from
time t, so that almost certainly, if I(t1t8)51 then also
I(t)51 and ^I(t)I(t1t8)&.^I(t1t8)& .

FIG. 3. Exact C(t ,t8) for case 3, when
both on and off times are power law
distributed with a50.4. We use

ĉ6(s)51/(11s0.4) for different times
t increasing from the topmost to the
lowermost curves. The dots on the left
and on the right show C(t ,0)5^I(t)&
and C(t ,`)5^I(t)&/2, respectively.
The process starts in the state on.
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The above argument does not hold in the case of a1

51, because now the on times are very short and there is no
possibility of staying on persistently for long times. Accord-
ingly, the decay of ^I(t)& and C(t ,t8) is much faster here.
The leading contributions to ^I(t)& and C(t ,t8) in the case of
a1,1 disappear as a1↗1, due to the pole of the G

function.

VIII. SUMMARY

We demonstrated the dependence of the two-time corre-
lation function C(t ,t8)5^I(t)I(t1t8)& on the times t and t8.
This is in full contrast to the well-known convergence of the
correlation function to the stationary limit which is indepen-
dent of t. Such a convergence is found when the average on
and off times are finite ~as shown above for exponential on
and off distributions!. When these times diverge nonstation-
ary behavior is found. The nonvanishing t dependence of the
correlation function C(t ,t8) is known as aging.

We obtain different modes of aging yielding dependence
of C(t ,t8) on the ratio t/t8, product tt8, and the sum t
1t8.

~i! For PDF of on times having finite mean and power
law distributed off times with infinite mean, the cor-
relation function asymptotically splits into a product
of two identical functions, one of t and the other of t8
@see Eq. ~55!#, leading to tt8 dependence, Eq. ~52!.
This case corresponds to the behavior of the uncapped
NCs.

~ii! When both on and off times are described by broad
distributions, with identical exponents a15a2 , the
correlation function depends on the ratio t/t8, Eq.
~58!. This case corresponds to the capped NCs ~within
the error of measurement!.

~iii! For defected off times and a1,1, we find that the
correlation function depends on t1t8, Eq. ~63!.

~iv! Finally, for stochastic processes with finite on and off
times, we recover known behavior, where the correla-
tion function in the scaling limit depends only on t8,
Eq. ~51!.

In different regimes, the correlation function exhibits ei-
ther a strong sensitivity on the details of the stochastic pro-
cess @i.e., on c6(t)], or certain universal features which are
now discussed. We also found relations between the correla-
tion function and mean intensity, for several cases.

~i! For PDF of on times having finite mean and power
law distributed off times with infinite mean, the cor-
relation function is related to the mean intensity ac-
cording to C(t ,t8);^I(t)&^I(t8)&, Eq. ~56!. For short
times t8 the correlation function depends on the de-
tails of c6(t), Eq. ~54!.

~ii! When both on and off times are described by broad
distributions, with identical exponents a15a2 , the

persistence probability governs the aging correlation
function, Eq. ~58!. This is a universal behavior in the
sense that all c6(t) belonging to this family yield
identical behavior for the correlation function C(t ,t8)
in the limit of t→` .

~iii! For defected off times and a1,1, we find that the
correlation function C(t ,t8)5^I(t1t8)&.

~iv! For the standard case, where both the mean on and
mean off times are finite, the correlation function de-
pends on the details of c6(t).

Simple physical explanations for the aging behavior
were briefly discussed. Models, discussed previously in the
literature, based on diffusion processes, or fluctuating barrier
models, or trap models, may all lead to aging behavior of the
correlation function. Thus aging behaviors in single molecule
spectroscopy may have other applications besides single
nanocrystal spectroscopy. The dependence of the correlation
function on control parameters like temperature and laser
intensity can be used to distinguish between the microscopic
scenarios proposed here and in the literature.

ACKNOWLEDGMENTS

Acknowledgment is made to the National Science Foun-
dation for support of this research. E.B. acknowledges fruit-
ful discussions with M. Bawendi, K. Kuno, and M. Orrit, as
well as J. P. Bouchaud for his minicourse on anomalous pro-
cesses.

APPENDIX A: NUMBER OF TRANSITIONS
BETWEEN t AND t¿t8

The probability of finding n.0 transition events in time
interval t ,t1t8, when the process is in state 1 at time t, and
state 2 at time t1t8,

Lt8P12~ t ,t1t8,n !

5 f̂ t~u ,1 !@ ĉ1~u !ĉ2~u !#~n21 !/2
12ĉ2~u !

u
, ~A1!

n is odd. The probability of finding n50 transition events in
time interval t ,t1t8, when the process is in state 2 at time t,
and state 2 at time t1t8,

P22~ t ,t1t8,0!5E
t8

`

f t~E ,2 !dE , ~A2!

with obvious notations, and for even n

Lt8P22~ t ,t1t8,n !

5 f̂ t~u ,2 !ĉ1~u !@ ĉ1~u !ĉ2~u !#~n/2!21
12ĉ2~u !

u
.

~A3!

Finally for odd n

Lt8P21~ t ,t1t8,n !

5 f̂ t~u ,2 !@ ĉ1~u !ĉ2~u !#~n21 !/2
12ĉ1~u !

u
. ~A4!
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The indices i j511 , i j522 , i j521 , and i j512 cor-
respond to trajectories which start in state i at time t and end
with state j at time t1t8. Obviously for P(t ,t1t8,n) we
have for even n.0

Lt8P~ t ,t1t8,n !5Lt8P11~ t ,t1t8,n !1Lt8P22~ t ,t1t8,n !,
~A5!

while for odd n

Lt8P~ t ,t1t8,n !5Lt8P12~ t ,t1t8,n !1Lt8P21~ t ,t1t8,n !.
~A6!

APPENDIX B: JUMPS BETWEEN 1 AND À1

We now consider a correlation function which slightly
differs than the one considered in the main text. We assume
that J(t)511 or J(t)521, the 1 @2# times are described
by c1(t) @c2(t)# , respectively. The easiest way of obtain-
ing the correlation function for this case is by relating it to
the previous situation via J(t)52I(t)21. The resulting ex-
pression is

Ĉ~ t ,u !5

12( i56 f̂ t~u ,i !

u
1

1

u@12ĉ2~u !ĉ1~u !#

3 (
i56

f̂ t~u ,i !@ ĉ i*~u !~22ĉ i~u !!21# , ~B1!

where i*51 if i52 and i*52 if i51 . If on and off
times are identically distributed, c1(t)5c2(t) we obtain
the result given by Godrèche and Luck.36

APPENDIX C: ASYMPTOTICS OF C„t,t8… FOR CASE 3
„a¿ÄaÀÆaË1…

If, in analogy to the cases 1 and 2, we wish to explore
the behavior of the correlation function in the limit of large t,
but for any time difference t8, it is easy to obtain the follow-
ing asymptotic result for small s from Eq. ~50!:

Ĉ~s ,u !'
1

u
P1H 1

s
2

12ĉ2~u !

~s2u !@12ĉ2~u !ĉ1~u !#
J . ~C1!

However, consistent with the demand t8!t we have u@s
and so have to remove s in the second term in the brackets of
Eq. ~C1!. It would be wrong to perform Laplace inversion of
this term with respect to s. Thus, we obtain

C~ t ,t8!t !'P1 ,

in agreement with Eq. ~60!. We see that the correlation func-
tion is virtually constant for any t8 ~even small! and for any
t large enough, as long as t8!t . This, of course, could be
expected based on the fact that asymptotic expression, Eq.
~58!, gives the exact value of P1 for t850 ~see also Fig. 3!.

Equation ~C1! can also be used to check the asymptotics
when t8 also becomes large. Using small u expansions for
ĉ6(u) yields

Ĉ~s ,u !'P1H 1

su
2

P2

u~s2u !J .

The double inverse Laplace transform of 1/u(s2u) is either
0 or 1 ~for positive t ,t8), depending on whether we assume
u.s or u,s ~i.e., do we first perform inversion with respect
to u or to s!. The choice u.s is appropriate when t8!t and
vice versa, hence we recover asymptotic limits shown in Eq.
~60!, up to the leading order.

To conclude, we have demonstrated that in case 3, in the
long t limit the correlation function does not depend on the
particular form of c6 but only on their asymptotics, for any
t8, as given by Eq. ~58!. This is in contrast to the long t
limiting behavior of C(t ,t8) in cases 1 and 2, where C(t ,t8)
does depend on the particular form of c6 for short t8.
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