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Abstract

Background: Several recent studies reported aging effects on DNA methylation levels of individual CpG

dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of

correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate

the understanding of aging effects on multiple tissues.

Results: We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays

from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module

preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological

evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG

island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related

consensus module comprises genes that are involved in nervous system development, neuron differentiation and

neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer’s

disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on

module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying

aging effects via consensus network analysis enhances the biological insights gained.

Conclusions: Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in

multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain

tissue when studying the effects of age on DNA methylation profiles.

Background
Gene expression (messenger RNA transcript abundance)

is modulated by epigenetic factors such as histone modifi-

cations, microRNAs, long noncoding RNAs, and DNA

methylation. A large body of literature has provided evi-

dence that age has a significant effect on cytosine-5

methylation within CpG dinucleotides [1-4]. A genome-

wide decrease in DNA methylation has been shown to

occur during in vitro aging [5] and in vivo aging [6,7].

Previous studies of aging effects on DNA methylation

involved typically adults but recent studies also involved

pediatric populations[8] Important insights have been

gained regarding what types of genes show promoter

hyper- or hypomethylation with age [9-11]. For example,

early-life-induced programming that relies on DNA

methylation appears to be at a considerable risk to become

disrupted during aging [12,13]. Age-associated hyper-

methylation has been found to preferentially affect loci

at CpG islands [14]. Important cancer related genes

become hypermethylated during aging, including those

encoding the estrogen receptor, insulin growth factor, and

E-cadherin, and key developmental genes [9,15,16].

Rakyan et al. [15] showed that aging-associated DNA

hypermethylation in blood occurs preferentially at bivalent

chromatin domain promoters that are associated with key

developmental genes. These genes are frequently hyper-

methylated in cancers, which points to a mechanistic link

between aberrant hypermethylation in cancer and aging.

Teschendorff et al. [16] identified a core DNA methylation

signature of 589 CpGs that were significantly related to

age. Further, the authors showed that Polycomb group

protein targets (PCGTs) are far more likely to become

* Correspondence: shorvath@mednet.ucla.edu
1Department of Human Genetics, David Geffen School of Medicine,

University of California Los Angeles, Los Angeles, CA 90095, USA

Full list of author information is available at the end of the article

Horvath et al. Genome Biology 2012, 13:R97

http://genomebiology.com/2012/13/10/R97

© 2012 Horvath et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:shorvath@mednet.ucla.edu
http://creativecommons.org/licenses/by/2.0


methylated with age than non-targets (odds ratio = 5.3,

P < 10-10), independently of sex, tissue type, disease state,

and methylation platform. The authors identified a subset

of 64 PCGTs exhibiting a clear trend toward hypermethy-

lation with age across multiple cell types (blood, ovarian

cancer, cervix, mesenchymal stem cells). This is a biologi-

cally important insight since gene repression by the PCG

protein complex via histone H3 lysine 27 trimethylation

(H3K27me3) is required for embryonic stem cell self-

renewal and pluripotency [17,18]. While Teschendorff

et al. evaluated the core aging signature in whole blood

(WB), solid tissues, lung tissue, and cervix tissue, they did

not include brain tissues.

In this study, we expand previous studies along multi-

ple directions. First, we study aging effects in brain by

evaluating aging effects in human tissue samples of the

frontal cortex (FCTX), temporal cortex (TCTX), cerebel-

lum (CRBLM), caudal pons (PONS) [19], prefrontal cor-

tex [20], and mesenchymal stromal cells (Table 1).

Second, we contrast aging effects on gene expression

levels (mRNA) and DNA methylation levels and in brain

and blood tissue. Third, we analyze four novel WB DNA

methylation data sets involving n = 752 Dutch subjects.

Fourth, we carry out a weighted correlation network

analysis (WGCNA) of multiple methylation data sets.

We apply the consensus module analysis to ten inde-

pendent methylation data sets and identify a consensus

co-methylation module (referred to as aging module)

that contains CpG sites that are hypermethylated with age

in multiple human tissues (WB, leukocytes, and different

brain regions, including cortex, pons, and cerebellum). We

then validate the presence of the aging co-methylation

module in six additional independent data sets. Fifth, we

demonstrate that the aging module found in adult popula-

tions can also be found in pediatric populations. Sixth, we

demonstrate that an age association measure (based on

membership to the aging module) leads to more pro-

nounced biological insights than a standard meta-analysis

measure that only considers marginal relationships

between CpG sites and age.

Results and discussion
Advantages of DNA methylation over gene expression

studies when it comes to studying aging effects

across tissues

Given the difficulty of procuring human brain tissue

versus the relative ease of measuring blood expression

levels, a question of great practical importance is to

Table 1 Description of DNA methylation data sets

Set Analysis n Tissue Description Mean
age

Age
range

Platform Reference Public
availability

1 Consensus 92 WB Dutch controls from ALS study 64 34-88 Infin 27 k Novel
data

GSE41037

2 Consensus 273 WB Dutch controls from SZ study 33 16-65 Infin 27 k Novel
data

GSE41037

3 Consensus 293 WB Dutch cases, SZ 34 17-86 Infin 27 k Novel
data

GSE41037

4 Consensus 190 WB Type 1 diabetics 44 24-74 Infin 27 k [15] GSE20067

5 Consensus 87 WB Healthy older women 63 49-74 Infin 27 k [14] GSE20236

6 Consensus 261 WB Healthy postmenopausal women from
UKOPS

65 52-78 Infin 27 k [15,33] GSE19711

7 Consensus 132 FCTX FCTX brain 48 16-101 Infin 27 k [18] GSE15745

8 Consensus 126 TCTX TCTX brain 48 15-101 Infin 27 k [18] GSE15745

9 Consensus 123 PONS PONS brain 46 15-101 Infin 27 k [18] GSE15745

10 Consensus 111 CRBLM CRBLM brain 47 16-96 Infin 27 k [18] GSE15745

11 Validation 94 WB 450 k Controls and SZ 32 18-65 Illumina
450 k

Novel
data

GSE41169

12 Validation 24 MSCs MSCs 50 21-85 Infin 27 k [34,35] GSE26519
+GSE17448

13 Validation 50 CD14+CD4+ CD4+ T-cells and CD14+ monocytes 36 16-69 Infin 27 k [14] GSE20242

14 Validation 398 Leukocyte Pediatric population 10 3-17 Infin 27 k [24] GSE27097

15 Validation 72 Leukocyte Healthy children 5 1-16 Illumina
450 k

[24] GSE36064

16 Validation 108 Prefrontal
cortex

Healthy controls 26 -0.5-84 Infin 27 k [19] BrainCloudMethyl

Data sets 1 to 10 were used in the consensus network analysis while data sets 11 to 16 were used in the module validation (preservation) analysis. Our novel WB

DNA methylation data sets (numbered 1 to 3 and 11) are composed of (n = 92 + 273 + 293 + 94) individuals. The study involved multiple tissues (blood, brain)

and different populations (adults and healthy children). Note that the mean age (and age ranges) differ greatly across the studies. ALS, amyotrophic lateral

sclerosis; CRBLM, cerebellum; FCTX, frontal cortex; MSC, mesenchymal stromal cell; PONS, caudal pons; SZ, schizophrenia; TCTX, temporal cortex; UKOPS, United

Kingdom Ovarian Cancer Population Study; WB, whole blood.
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determine to what extent blood tissue is a reasonable

surrogate for brain tissue.

For gene expression studies (mRNA) the relationships

are relatively weak. We and others have found that both

mean gene expression levels and co-expression relation-

ships are only weakly preserved between three brain

regions and blood [21]. This is also demonstrated in

Figure 1a-d, which presents scatterplots of mean gene

expression (mRNA abundance) in WB versus corre-

sponding mean brain expression values (y-axis) for fron-

tal cortex, temporal cortex, pons, and cerebellum,

respectively. Age effects on gene expression (mRNA)

levels are not preserved between blood and brain tissue

(Figures 1e-g). Given these negative results for mRNA, it

is perhaps surprising that the results are much more

encouraging for CpG methylation levels. Figure 2 shows

that both mean methylation levels and age correlation

test P-values are well preserved between blood and brain

tissue. Figure 2a-d show that strong correlations (around

r = 0.9) exist between the mean methylation levels in WB

and brain tissues. Figure 2e-g show that age correlations

of CpG methylation levels exhibit moderate preservation

(correlations around 0.33) between blood and brain

tissues.

Figures 1 and 2 suggest that gene expression (mRNA)

levels are much more fluctuating compared to CpG

methylation and therefore may be more ‘noisy’. DNA

methylation levels may be less variable and a better reflec-

tion of longer term environmental and genetic influences.

These results led us to the hypothesis that one can identify

co-methylation modules (clusters of CpG sites) that con-

sistently relate to age across multiple tissues (consensus

modules). To address this hypothesis, we collected both

novel and published data as described in the following.

DNA methylation data sets and clinical data description

Although many platforms exist for measuring methylation

levels [22], the 16 DNA methylation data sets considered

here were measured on the Illumina platform (Table 1).

Data sets 1 through 10 were used in a consensus network

analysis while the remaining data sets were used for vali-

dation. We analyzed 4 novel blood data sets (labeled 1 to

3, and 11) and 12 additional public data sets. While most

of the first ten data sets used in the consensus network

analysis involved healthy subjects, data set 3 involved

blood tissue from schizophrenic cases. The effect of dis-

ease status on aging effects is discussed below and in

Additional file 1. A more detailed description of the sub-

ject characteristics is provided in the Materials and meth-

ods section.

Correlating CpG sites with age and standard meta analysis

Each individual CpG marker on the array was correlated

to age in each of the ten data sets. We used a robust

correlation measure (the biweight mid-correlation) and

the Stouffer meta analysis approach (Materials and

methods) to calculate a meta analysis P-value for each

of the following data selections: i) the six WB data sets;

ii) the four brain data sets; and iii) the ten data sets

combined. Each P-value was log transformed (base 10)

and multiplied by minus the sign of the correlation coef-

ficients. For example, logPvalueWB takes on a large

positive (negative) number for CpG probes that have a

significant positive (negative) correlation with age across

the six WB data sets. Analogously, logPvalueBrain and

logPvalueAll measure age associations in the brain data

sets and in all ten data sets, respectively.

Additional file 1 shows a scatterplot involving correla-

tion test P-values for age effects in schizophrenia cases

and healthy controls based on the Dutch WB data sets

(data sets 2 and 3). Note that meta analysis P-values for

schizophrenics (cases) are highly correlated (r = 0.78)

with those of healthy controls (y-axis). Thus, Additional

file 1 shows that schizophrenia disease status has a neg-

ligible effect on aging-related changes for the vast

majority of CpG sites.

Additional file 2 shows scatterplots of correlation test

P-values for measuring aging effects on DNA methylation

profiles in the different brain regions (DNA methylation

data sets 7 to 10). Overall, these P-values are highly corre-

lated, which shows that age has a similar effect in all four

brain regions. Having said this, comparisons involving the

cerebellum (labeled CRBLM) show weaker correlations.

Future studies involving additional cerebellum samples

could address whether these systematic aging differences

reflect the histologically distinct composition of the cere-

bellum or rather reflect sample quality issues such as

degradation of DNA.

Consensus module analysis with WGCNA

We used WGCNA to construct consensus modules

across ten data sets (sets 1 to 10 in Table 1). Consensus

modules group together methylation probes that are

highly co-methylated across the ten input data sets

(Materials and methods). Since consensus modules are,

by definition, present in multiple independent data sets,

they represent common (perhaps universal) and robust

co-methylation relationships that reflect the underlying

biology rather than technical artifacts. Weighted network

methods are particularly useful for identifying consensus

modules since they allow one to calibrate the individual

networks. Further, they give rise to powerful module pre-

servation statistics that can be used to determine whether

modules can be validated in independent data sets

[23,24]. Figure 3 shows the hierarchical cluster tree that

results from consensus network analysis of sets 1 to 10.

Branches in the tree correspond to consensus modules.

The first color band underneath the tree indicates the
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(a)                                                                        (b)

(c)                                                                        (d)

(e)                                                                         (f)

(g)                                                                         (h)

Figure 1 Age effects on gene expression (mRNA) levels are not preserved between blood and brain tissue. (a-d) Scatterplots of mean

gene expression (mRNA abundance) in whole blood of the Dutch samples (x-axis) and corresponding mean brain expression values (y-axis) for

frontal cortex (FCTX) (a), temporal cortex (TCTX) (b), pons (c), and cerebellum (CRBLM) (d). Each dot corresponds to a gene. The brain mRNA data

(like the brain methylation data used in this article) were obtained from [19]. Note that only moderate correlations (around r = 0.6) exist

between the mean expression values of these distinct tissues. (e-g) Overall age correlations of gene expression levels (mRNA) are not preserved

between blood (x-axis) and brain tissues (y axes) as evidenced by the weak negative correlations reported in the title of each panel. The mRNA

levels of each gene (represented by a dot) were correlated with subject age and a linear regression model was used to calculate a correlation

test P-value. The x-axis of each scatterplot shows the (signed) logarithm (base 10) of the correlation test P-value in blood. Genes with a

significant positive (negative) correlation with age have a high positive (negative) log P-value. The y-axis shows the corresponding correlation

test P-values in the frontal cortex (e), temporal cortex (f), pons (g), and cerebellum (h).
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(a)      (b)

(c)      (d)

(e)      (f)

(g)      (h)

Figure 2 Age effects on DNA methylation levels are well preserved between blood and brain tissue. (a-d) Scatterplots of mean CpG

methylation levels in whole blood of the Dutch samples (x-axis) and corresponding mean brain methylation values (y-axis) for frontal cortex

(FCTX) (a), temporal cortex (TCTX) (b), pons (c), and cerebellum (CRBLM) (d). The brain methylation data used were obtained from [19]. Note that

strong correlations (around r = 0.9) exist between the mean methylation levels in whole blood and brain tissue. We hypothesize that the

relatively low correlation of r = 0.85 for cerebellum may reflect DNA quality. (e-g) Age correlations of CpG methylation levels show moderate

preservation (correlations around 0.33) between blood (x-axis) and brain tissues (y axes). Analogous to Figure 1, the methylation levels of each

gene (represented by a dot) were correlated with subject age and a linear regression model was used to calculate a correlation test P-value. The

x-axis of each scatterplot shows the (signed) logarithm (base 10) of the correlation test P-value in blood. Genes with a significant positive

(negative) correlation with age have a high positive (negative) log P-value. The y-axis shows the corresponding correlation test P-values in the

frontal cortex (e), temporal cortex (f), pons (g), and cerebellum (h).
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module color of each CpG site. Note that the very dis-

tinct red module corresponds to CpG sites located on the

X chromosome. Further, note that the green module is

composed of CpG sites that positively correlate with age

in all ten tissues, which is why we refer to it as the aging

module. Figure 3 also indicates that this aging module is

enriched with CpG sites that are close to PCGTs. The

green module exhibits significant positive association

with age in the ten reference data sets, as measured by

the correlation of its eigengene with age in each of the

ten data sets (Figure 4). The correlation is particularly

high (r = 0.7) in the four brain data sets, which is due, in

part, to the wide age range of the brain samples (Table 1).

Validating the existence of the aging module in

independent data sets

To assess the preservation of consensus modules (found in

the reference data sets 1 to 10) in the additional validation

data (data sets 11 to 16), we used the network module pre-

servation statistics described in [24] and implemented in

the R function modulePreservation in the WGCNA R

package. Unlike traditional cross-tabulation statistics that

rely on module matching between reference and test data

sets, network preservation statistics do not require that

modules be identified in the test data set, which has the

major advantage that module preservation analysis is inde-

pendent of the ambiguities associated with module identi-

fication in the test data set.

Results of the module preservation analysis in the vali-

dation data sets are reported in Additional file 3. Each

figure (page) corresponds to a validation data set. The

results show that the aging (green) module is highly pre-

served in the Illumina 450 K WB data set, which indi-

cates that the module is not an artifact of the Illumina

27 K array. The aging module is also highly preserved in

the blood cell type data (data set 13), the leukocyte data

from pediatric subjects (data set 14), and healthy children

(data set 15), and the prefrontal cortex (data set 16) but it

is not preserved in the mesenchymal stromal cell (MSC)

data set (data set 12). The lack of preservation in MSC
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Figure 3 Hierarchical cluster tree and consensus module structure. Hierarchical cluster tree (dendrogram) of the consensus network based on

ten independent methylation data sets. The first color band underneath the tree indicates the module color of each CpG site. The color grey is

reserved for ‘background’ CpG sites that are not clustered into any module. The remaining color bands represent each gene’s correlation with age

in the underlying data sets; high intensity red values represent a strong positive correlation whereas high intensity green values represent a strong

negative correlation. The remaining color bands indicate whether a gene was part of the core aging signature from Teschendorff et al. [16]. The

color bands ‘Tesch up’ and ‘Tesch down’ indicate that Teschendorff et al. determined that methylation levels of this CpG site correlated positively or

negatively with age, respectively. Other color bands indicate whether the CpG site is close to a known polycomb group target, is located on the X

chromosome, or located in a CpG island. The figure suggests that the green module is composed of CpG sites that positively correlate with age in

all ten tissues, which is why we refer to it as an aging module. Further, this aging related module is enriched with CpG sites that are close to

Polycomb group target genes. Also note the presence of a very distinct red module that corresponds to CpG sites located on the X chromosome.
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data may be due to one of the following reasons. First,

this was the smallest data set (n = 24). Second, it could

reflect the fact that the human bone marrow MSCs were

isolated from different locations (bone marrow aspirates

or from the caput femoris upon hip fracture of elderly

donors). Third, the MSC samples represent different cell

passages from long-term culture. Thus, it is possible that

the aging module will be observed in a larger MSC data

set involving MSCs from a single location and a single

cell passage.

Figure 5 reports the age correlations of all consensus

modules in six validation data sets (data sets 11 to 16 in

Table 1). The aging (green) module has a particularly

strong positive correlation with age in the Dutch 450 K

blood data (r = 0.56, P = 2E-8) and in the brain cloud

(pre-frontal cortex) data sets (r = 0.6, P = 2E-8). The age

correlations for the green module are positive in all of

the data sets (most of the marginally significant P-values

reflect the low sample size in the respective data sets or

the narrow age range). Note that a one-sided correlation

test P-value would be more appropriate in this validation

step since the alternative hypothesis is that the correla-

tion is less than zero. To arrive at one-sided P-values,

divide the reported two-sided P-value by 2.

Determinants of module membership in the (green)

aging module

A major advantage of WGCNA is that it provides quan-

titative measures of module membership (referred to as

module eigengene based connectivity, or kME; Materials

age relationships in 10 datasets

F
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K

B B B
B

b

b

y w

y

Figure 4 Correlating consensus modules with age in the ten reference data sets. Each row corresponds to a consensus co-methylation

module (defined in Figure 3). More precisely, each row corresponds to the first principal component of each module (referred to as eigengene).

The columns correspond to the age variable in each of the ten reference data sets. Each cell reports the correlation coefficient between the

eigengene and age (top) and the corresponding P-value (bottom). Cells in the table are color coded using correlation values according to color

scale on the right - that is, strong positive correlations are denoted by strong red color, and strong negative correlations by strong green color.
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and methods). Since kME.green(i) is defined as correla-

tion between the i-th methylation probe and the green

module eigengene, it takes on values between -1 and 1.

The closer kME.green is to 1, the stronger the evidence

that the probe is closely related to the green module.

A CpG probe with kME.green = -1 has methylation

levels that are perfectly anti-correlated with the module

eigengene, that is, its methylation level is low when

those of the module CpGs are highly methylated (and

vice versa). Since the CpGs in the aging (green) module

are positively correlated, CpGs with negative kME.green

values are not part of the module. Here we characterize

CpG probes (or genes) with high membership in the

green aging module as well as the top probes identified

in the meta-analysis of probe association with age (that

is, probes with highest logPvalueAll). Specifically, we

used marginal analysis as well as analysis of variance to

relate kME.green and logPvalueAll to the following vari-

ables describing gene or sequence properties.

First, we studied occupancy counts for PCGTs since

these targets are already known to have an increased

chance of becoming methylated with age compared to

non-targets [16]. Toward this end, we used the occupancy

counts of Suz12, Eed, and H3K27me3 published in [18].

To obtain the protein binding site occupancy throughout

the entire nonrepeat portion of the human genome, Lee

et al. [17] isolated DNA sequences bound to a particular

protein of interest (for example, Polycomb-group protein

V age relationships in 6 additional datasets

b b

T

h b

MEb

MEb

y ow

y

Figure 5 Correlating consensus modules with age in the six validation data sets. Each row corresponds to a consensus co-methylation

module eigengene (defined in Figure 3). The columns correspond to the age variable in each of the six validation data sets. Each cell reports

correlation coefficient between the eigengene and age (top) and the corresponding P-value (bottom). Cells in the table are color coded using

correlation values according to color scale on the right. All of the reported modules were significantly preserved in the Dutch WB data

measured on the Illumina 450 K array (Additional file 3). The green module has a particularly strong positive correlation with age in the Dutch

450 K blood data (r = 0.56, P = 2E-8) and in the brain cloud (pre-frontal cortex) data sets (r = 0.6, P = 2E-8). The age correlations for the green

module are positive in all of the data sets (most of the marginally significant P-values reflect the low sample size in the respective data sets or

the low age range).
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SUZ12) by immunoprecipitating that protein (chromatin

immunoprecipitation) and subsequently hybridizing the

resulting fragments to a DNA microarray. Figure 6 shows

that the higher PCG occupancy count, the higher the aver-

age kME.green (Kruskal Wallis test P = 2.1 × 10-266) and

the higher is the logPvalueAll (P = 9.5 × 10-250).

Second, we studied CpG island status (which is a dis-

crete variable with three possible values: island, shore,

outside of islands) since it has previously been reported

that methylation probes with positive age correlation

tend to be located inside CpG islands [14]. Figure 6

confirms this result: both average kME.green and logP-

valueAll are significantly higher for probes located in

CpG islands. For completeness, we note that PCG occu-

pancy count and CpG island status (coded as a numeric

variable) are weakly but significantly correlated (Spear-

man correlation = 0.14).

Third, we studied chromosomal location. Figure 6

reveals that the average kME.green is significantly lower

(P = 4.8 × 10-130) for probes located on the X chromo-

some, that is, probes inside the aging module tend to be

located on the autosomes. A similar (but less significant)

tendency can be observed for logPvalueAll: probes with

positive age correlations tend to be located on auto-

somes. We point out that this X chromosomal effect on

module membership and the logPvalueAll could only be

observed in data sets that contain both men and women

(for example, the Dutch blood data and the brain data).

A similar X chromosomal effect was observed in pedia-

tric patients [8].

To explain this X chromosomal effect, we propose the

following explanation: in data sets composed of both

sexes, most X chromosomal probes have a much higher

variance than autosomal probes due to the effect of X

inactivation. Analysis of variance reveals that gender has

typically a much stronger effect on the methylation

levels of X-chromosomal probes than does age: across

the 1,085 X chromosomal probes on the Illumina 27 K

array, gender explains, on average, 57% of the variation

while age explains only 0.9%. This dominant effect of

gender on the methylation level of X chromosomal

probes is also reflected by the presence of a very distinct

X chromosomal module in data sets composed of both

genders (Figure 3).

The above results demonstrate highly significant rela-

tionships between module membership and epigenetic

variables. In the following, we probe deeper and deter-

mine the proportion of variance in module membership

that can be explained by the epigenetic variables. Using

analysis of variance (ANOVA), we can determine what

proportion of the variation in eigengene-based connectiv-

ity kME can be explained by the different variables.

0 1 2 3

  p= 2.1e 266

PCG (Suz12+Eed+H3K27me3) Count

a
v
e
.k

M
E

.g
re

e
n

0
.0

0
0
.1

0
0
.2

0

Outside Shore Island

  p= 0

CPG_ISLANDnumeric

a
v
e
.k

M
E

.g
re

e
n

0
.0

0
0
.0

4
0
.0

8

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 X

  p= 4.8e 130

Chromosome

a
v
e
.k

M
E

.g
re

e
n

0
.0

4
0
.0

0
0
.0

4
0
.0

8

0 1 2 3

  p= 9.5e 250

PCG (Suz12+Eed+H3K27me3) Count

lo
g
P

v
a
lu

e

0
1

2
3

4
5

6
7

Outside Shore Island

  p= 3e 30

CPG_ISLANDnumeric

lo
g
P

v
a
lu

e

0
.5

0
.5

1
.5

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 X

  p= 4.8e 19

Chromosome

lo
g
P

v
a
lu

e

0
.5

0
.0

0
.5

1
.0

1
.5

Figure 6 Relating age relationships to chromosomal properties. The bar plots in the top row relate average module membership in the

aging module (average kME with respect to the green module) to Polycomb group (PCG) occupancy count, CpG island status, and

chromosomal location, respectively. The bottom row shows the corresponding bar plots involving the (signed) logarithm of the meta analysis P-

value. A positive (negative) log P-value indicates a positive (negative) age correlation of the CpG site. Both age association measures lead to the

following results. First, the higher the PCG occupancy count, the stronger the age association. Second, CpG sites in CpG islands tend to have

positive age correlations while those outside tend to have negative age correlations. Third, CpG sites on X chromosomes tend to have lower

age correlations than those on other chromosomes. While both age association measures lead to similar conclusions, the results are more

pronounced for the module membership measure (average kME), which suggests that this measure leads to more meaningful biological

conclusions. Error bars indicate one standard error.
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As detailed in Table 2, the variables explain only 15.8% of

the variation in kME.green. The two most significant

variables (P < 2.2E-16) are Polycomb group (Suz12 + Eed

+ H3K27me3) occupancy count (which explains 7.1% of

the variation) and CpG island status (7.3% of the varia-

tion). The proportion of variance explained (15.8%) is

high considering that the ANOVA considered all 27 k

probes on the Illumina 27 K platform while only 478

CpGs were part of the green consensus module. As a

reference point, Table 2 also reports the results of

ANOVA for explaining the variation in the signed log P

value All statistic (Stouffer’s meta-analysis statistic

described in our marginal analysis). In this case, the

variables explain only 6.7% of the variation, which is sub-

stantially less than the 15.8% observed for module mem-

bership. These findings illustrate yet again that the

module-based analysis in our study amplifies the biological

signal inherent in the data.

Functional enrichment of aging module genes based on

gene ontolgy categories

To understand the biological meaning of the aging

(green) module, we carried out several functional enrich-

ment analyses of the 1,000 CpG sites with the highest

average module membership value (kME) to the green

module. These top 1,000 CpG sites are reported in Addi-

tional file 4. Recall that these CpG sites are typically

located in promoters of corresponding genes whose gene

symbols are also located in Additional file 4. Additional

file 4 also allows the user to access information on the

CpGs that make up the aging (green) module. Specifi-

cally, this Excel file reports a) the Illumina CpG probe

identifier, b) the corresponding gene symbol, and c)

importantly, the average module membership with

respect to the green module. Thus, the reader can simply

choose the top 100, 500 or 1,000 genes with highest mod-

ule membership with respect to this aging module.

We find that the measure of module membership is

highly robust and largely unaffected by the branch cut-

ting procedure used to define the green module.

The gene symbols corresponding to the top 1,000

most connected green module CpGs were used as input

of the gene ontology (GO) enrichment analysis tool

DAVID (but our results are highly robust with respect

to the number of input genes).

Additional file 5 shows the results of a GO enrich-

ment analysis using the DAVID software when ‘GO

Chart’ output is selected. It shows that the most signifi-

cant enrichment is achieved for the Swiss Protein Inter-

action Resource keyword ‘developmental protein’

(P-value 8.9E-37).

Notable enrichment categories include neuron differ-

entiation (P = 8.5E-26), neuron development (P = 9.6E-

17), and DNA-binding (P = 2.3E-21).

Additional file 6 shows the results of a GO enrichment

analysis using the DAVID software when ‘GO Cluster’

output is selected. Notable enrichment categories include

DNA-binding region: Homeobox (P = 7.6E-29), neuron

differentiation (P = 8.5E-26), neuron development (P =

9.6E-17), cell fate commitment (P = 2.8E-19), embryonic

morphogenesis (P = 2.4E-15), and regulation of transcrip-

tion from RNA polymerase II promoter (P = 1.4E-11).

As a caveat, we mention that none of these GO cate-

gories are specific to aging.

Enrichment analysis with respect to cell markers

To study the properties of lists of genes whose promoters

contain CpG sites that are part of the aging (green) mod-

ule, we also used the userListEnrichment function [25]

(which is part of the WGCNA R package) since it contains

lists of known marker genes for blood, brain, and stem cell

types. This function was used to assess whether the top

1,000 module genes in the aging module (that is, genes

with highest average kMEgreen) are significantly enriched

Table 2 Analysis of variance of variance

Source of variation ave.kME.green, total proportion of variance
explained = 15.8%

logPvalue Stouffer, total proportion of
variance explained = 6.7%

Source Degrees of
freedom

Sums
of Sq

Proportion of total
variance

F
statistic

P-value
(F-test)

Sums of
Sq

Proportion of total
variance

P-value
(F-test)

PCG (Suz12+Eed+H3K27me3)
OccupancyCount

1 49.35 0.071 2013.0 < 2.2E-16 82,530 0.050 < 2.2E-16

CPG_Island 2 50.78 0.073 1035.7 < 2.2E-16 24,867 0.015 < 2.2E-16

X chromosome 1 9.74 0.014 397.4 < 2.2E-16 764 0.000 5.5E-04

Distance to TSS 1 3.50E-01 0.001 14.1 1.7E-04 1,827 0.001 9.3E-08

Residual error 23,903 586.02 0.842 1,529,855 0.933

Total variation 696.24 1,639,843

The first six columns detail the sources of variation on ave.kME with respect to the green (aging) module. Polycomb group occupancy count explains the highest

proportion of the total variance followed by CpG island status (inside, outside, and shore). Comparing the results from ANOVA applied to average kME with those

from applying it to the logP-value (significance measure resulting from Stouffer’s meta-analysis) reveals marked differences in the proportion of variance

explained (15.8% versus 6.7%), which suggests again that the average kME measure is biologically more meaningful than the meta-analysis P-value. TSS,

transcription start site.
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(hypergeometric test) in brain-, blood- and stem cell-

related lists curated from the literature.

As detailed in Additional file 7, the most significant

P-value (hypergeometric P-value 2.5E-113) was achieved

for lists of genes identified to play a role for polycomb

in human embryonic stem cells [18]. Highly significant

enrichment was found for genes bound by Suz12 (P =

5.3E-106; genes reported in Table S8 of [18]) and genes

known to be occupied by Suz12, Eed and H3K27me

(P = 2.5E-113; genes reported in Table S9 from Lee

et al. [17]).

Since the consensus modules were identified in brain

tissues (in addition to blood) it comes as no surprise

that the gene list was also enriched (P = 9.8E-09) for

neuronal cell type markers reported by Cahoy [26]. Age-

related DNA methylation changes in the human cerebral

cortex are known to involve differentiated neurons [27].

But future follow-up studies involving additional data

are clearly warranted to explore why neuronal-specific

enrichments can be found.

Strikingly, the analysis revealed significant (Bonferroni

corrected P = 0.0016) enrichment for genes (CDH13,

GDF10, NTRK3, PENK, RBP1, RBP4, UCHL1, WIF1)

whose expression values are known to be downregulated

in early Alzheimer’s disease [28]. Age is one of the biggest

risk factors for developing Alzheimer’s disease [29]. While

DNA methylation is known to play a role in age-related

neurodegenerative diseases such as Alzheimer’s disease

[30,31], our results indicate that a methylation footprint

may also be found in blood tissue.

Conclusions
A summary and overview of our consensus network ana-

lysis is presented in Additional file 8. The consensus net-

work analysis based on WGCNA reveals the existence of

a robustly defined co-methylation module that consis-

tently relates to age in human brain and blood tissue.

Our analysis indicates that this consensus module-based

analysis leads to biologically more meaningful results.

GO enrichment analysis reveals that the module is com-

posed of CpG sites in promoters of key development

genes and genes that are known to play a role in cellular

aging in brain and blood tissue. The good preservation

over tissues, consistent association with age and mean-

ingful biology shows that blood is a promising surrogate

for brain tissue when studying the effects on age on DNA

methylation profiles.

Materials and methods
DNA methylation data description

Table 1 describes the 16 human DNA methylation data

sets that were used in this study. The table reports the

sample size, mean age, age range, and tissue source

(mostly blood and brain tissue), citation and, where

available, the GSE identifier of the data set in the Gene

Expression Omnibus (GEO) database.

Our four novel data sets (labeled 1 to 3 and 11) mea-

sure methylation levels in WB containing polymorpho-

nuclear leukocytes, mononuclear cells, platelets and red

blood cells. It is worth mentioning that platelets and red

blood cells do not contain nuclear DNA.

Samples were collected between 1 January 2004 and 31

December 2007 at the University Medical Center Utrecht,

a referral clinic in the Netherlands. Specifically, data set 1

was composed of 92 healthy Dutch subjects who had been

collected as healthy controls for a case control study of

amyotrophic lateral sclerosis. To be clear, these were

healthy control samples, that is, amyotrophic lateral

sclerosis patients were not included in our study. Data sets

2 and 3 corresponded to 273 healthy controls and 293 dis-

eased individuals, respectively, from a case-control study

of schizophrenia. We found aging correlations were highly

preserved (0.78) between schizophrenia cases and controls

(Additional file 2). By separating the cases from controls

into distinct and separate data sets in our meta analysis,

we conditioned on disease status. Our novel validation

data set number 11 was measured on the Illumina Infi-

nium HumanMethylation450 BeadChip array and con-

tained WB measurements from both healthy control

subjects and schizophrenia samples (roughly half cases,

half controls). The new data presented in this article are

available from the GEO repository GSE41037. Also, they

can be downloaded from our webpage [32].

Data sets 4 to 10 and 12 to 16 were downloaded from

the GEO repository (see the GEO accession numbers in

Table 1).

Data set 4 (type 1 diabetes) consists of WB samples

from 190 individuals (93 women and 97 men) with a

mean age of 44 years (range 24 to 74 years) [16]. Since all

samples were type 1 diabetics (no controls), we were not

able to evaluate whether type 1 diabetes status has an

effect on aging relationships. Since it is likely that disease

status adds additional heterogeneity to studies of aging

effects on methylation levels, including this data set is

expected to bias the analysis towards the null hypothesis.

But we find that the reported age relationships can also

be observed in this data set, that is, the data set contains

a relevant biological signal.

Data set 5 (healthy older women) consists of 87 WB

samples from women whose mean age was 63 years

(range 49 to 74) [15]. The samples were collected from dif-

ferent healthy females (both twin pairs and singletons).

Data set 6 (healthy postmenopausal women) consists of

261 WB samples from women with a mean of 65 years

(range 52 to 78) [16,33]. While the data come from the

United Kingdom Ovarian Cancer Population Study

(UKOPS), it is important to emphasize we include only

the healthy controls in our study.
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Data sets 7 to 10 (different brain regions) consist of tis-

sue samples of the frontal cortex (FCTX), temporal cortex

(TCTX), cerebellum (CRBLM) and caudal pons (PONS)

obtained from 150 subjects whose mean age was 49 years

(range 15 to 101) [19]. These individuals, who had donated

their brains for research, were of non-Hispanic, Caucasian

ethnicity, and none had a clinical history of neurological

or cerebrovascular disease, or a diagnosis of cognitive

impairment during life. Demographics, tissue source and

cause of death for each subject are reported in [19].

Removal of potential outliers (as described in the following

section on sample pre-processing) reduced the number of

retained samples to between 111 and 132 (Table 1).

Data sets 1 to 10 were used to construct the consensus

networks while data sets 11 to 16 were used to validate

the existence of the module.

Data set 11 (WB on the Illumina 450 K array from

controls and schizophrenic cases) is described above. By

using a different Illumina version we were able to estab-

lish that our aging module can also be detected using a

different (newer) array.

Data set 12 (MSCs; also known as mesenchymal stem

cells) comprise a subpopulation of multipotent adult

stem cells that is able to differentiate into diverse meso-

dermal cell lineages. MSCs are concurrently tested in a

large number of clinical trials for a wide range of thera-

peutic applications surrounding regenerative medicine.

The MSCs from human bone marrow were either iso-

lated from bone marrow aspirates or from the caput

femoris upon hip fracture of elderly donors [34]. The

MSCs from adipose tissue were isolated from lipoaspi-

rates [35]. In our analysis, we ignored the fact that the

MSCs come from different tissues (bone marrow, adi-

pose) and that they represent different cell passages from

long-term culture. While Schellenberg et al. [35] showed

that MSCs from different tissues exhibit considerable dif-

ferences in their DNA methylation profiles, their growth

pattern, immunophenotype and in vitro differentiation

potential are quite similar. Hence, we ignored this sample

heterogeneity since our consensus analysis had shown

that the aging module could be detected in diverse tissues

(blood and brain). We expect that the module would

show even stronger age correlations and preservation if

the analysis was restricted to MSCs from a single tissue

origin. Further, cell passage status (related to cellular

senescence status) was ignored in our validation analysis

since senescence status did not affect the majority of

CpG cites: only 517 senescence-associated CpG sites

were identified in [35].

Data set 13 (CD14+ monocytes and CD4+ T cells) con-

sists of sorted CD4+ T cells and CD14+ monocytes from

blood of an independent cohort of 25 healthy subjects

[15]. CD14+ monocytes derive from the myeloid lineage

and can live several weeks. CD4+ T cells derive from the

lymphoid lineage and represent a variety of cell types

with longer life spans (from months to years).

Data set 14 (leukocytes from a pediatric population)

consists of peripheral blood leukocyte samples from 398

healthy males from the Simons Simplex Collection, who

are siblings of autism spectrum disorder individuals but

do not present a clinical diagnosis of this disorder [8].

To be clear, these individuals can be considered healthy

controls. At the time of collection, these individuals had

an age range from 3 to 17 years (mean 10 years).

Data set 15 (leukocytes from healthy children) is another

pediatric group from [8] (independent from data set 14

described above). This study involved 72 peripheral blood

leukocyte samples from healthy males collected from Chil-

dren’s Hospital Boston [8].

Data set 16 (prefrontal cortex from healthy controls)

consists of 108 samples (mean age 26 years ranging from

samples before birth up to age 84 years) [20]. These post-

mortem human brains from non-psychiatric controls were

collected at the Clinical Brain Disorders Branch (National

Institute of Mental Health). The DNA methylation data

are publicly available from the webpage of the standalone

package BrainCloudMethyl.

DNA methylation profiling and pre-processing steps

Full experimental methods and detailed descriptions of

these public data sets can be found in the original refer-

ences. Here we briefly summarize the main steps. Methy-

lation analysis was performed either using the Illumina

Infinium Human Methylation27 BeadChip [36] or the

Illumina Infinium HumanMethylation450 BeadChip. The

Illumina HumanMethylation27 BeadChips measures

bisulfite-conversion-based, single-CpG resolution DNA

methylation levels at 27,578 different CpG sites within 5’

promoter regions of 14,475 well-annotated genes in the

human genome. Data from the two platforms were

merged by focusing on the roughly 26 k CpG sites that

are present on both platforms. We followed the standard

protocol of Illumina methylation assays, which quantifies

methylation levels by the b value using the ratio of inten-

sities between methylated (signal A) and unmethylated

(signal B) alleles. Specifically, the b value was calculated

from the intensity of the methylated (M corresponding to

signal A) and unmethylated (U corresponding to signal

B) alleles, as the ratio of fluorescent signals b = Max

(M,0)/[Max(M,0) +Max(U,0) + 100]. Thus, b values

range from 0 (completely unmethylated) to 1 (completely

methylated) [37].

As an unbiased, high level outlier detection approach

we use the inter-array correlation and formed a measure

of sample network connectivity (based on the sum of

interarray correlations). Samples whose inter-array con-

nectivity was significantly lower (P < 0.01) than the aver-

age observed inter-array connectivity were removed from
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the data set. Specifically, outlier detection and removal

was performed using an iterative process of removing

outliers with average inter-array correlation ≤ 2 standard

deviations below the mean until visual inspection of the

cluster dendrogram and plot of the mean inter-array cor-

relation revealed no further outliers.

Dealing with polymorphic and non-specific CpGs

Some CpG probes are known to contain common SNPs,

which can affect the measure of methylation level [38].

To evaluate whether the green aging module contains

such polymorphic CpGs (that is, CpGs that are overlap-

ping SNPs), we used an updated table from Chen et al.

[38] composed of 875 CpGs that were found by down-

loading the entire dbSNP build 132 and then mapping it

against the Illumina 27 probes based on chromosomal

position. Fortunately, it turns out that our aging module

is significantly (P = 0.00020) under-enriched for these

polymorphic CpGs. Only 11 of the 1,000 most con-

nected green module CpGs are known to contain a SNP

as indicated in Additional file 4. The under-enrichment

makes sense since polymorphic CpGs are unlikely to

show a strong age relationship due to the affects of the

genetic variation.

We also evaluated whether CpGs in the aging module

are non-specific (that is, whether their sequences map to

highly homologous genomic sequences) since between

6% and 10% of probes on the Illumina 27 K array are

non-specific [38]. We found no significant relationship

between membership to the aging module and non-spe-

cificity (defined using a table from [38]). Additional file 4

also indicates which of the green module CpGs are non-

specific.

Dealing with batch effects

Batch effects are known to influence DNA methylation

levels. In our study, batches can arise due to Illumina

plate effects or due to the independent data sets gener-

ated by different labs. To protect against spurious arti-

facts due to batch effects, we used the following

approaches. First, our network analysis used a consensus

module approach which implicitly conditions on each

data set by aggregating the information of ten individual

networks (one for each of the ten data sets). Modules due

to plate effects (or other batch effects) in one data set

cannot be found in other data sets, that is, they will not

give rise to consensus modules. By definition, consensus

modules can be observed in the majority of the ten data

sets, that is, they are highly reproducible across multiple

data sets (generated by different labs). Second, we only

considered those consensus modules that could also be

found in data generated by the Illumina 450 K array

(which we generated in one batch). Thus, the reported

modules are highly reproducible in the Illumina 27 K and

450 K arrays. Third, we validate the presence and age

correlations of our green aging module in multiple inde-

pendent data sets. A module reflecting a spurious batch

effect or other technical artifact would not validate in

independent validation data sets.

Statistical analysis

Meta analysis relating methylation probes to age

We used the metaAnalysis R function from the

WGCNA library to carry out a meta-analysis of aging

effects across multiple data sets. Given methylation (or

other) data from multiple independent data sets, and

the corresponding ages, the function was used to calcu-

late Stouffer’s meta-analysis Z statistics (reviewed in

[39]), P-values, and corresponding q-values (local false

discovery rates) [40]. Briefly, Stouffer’s approach for

combining multiple correlation test statistics across the

data sets is based on calculating the following meta-ana-

lysis Z statistic:

metaZ =

no.dataSets
∑

s=1

wsZs

√

no.dataSets
∑

s=1

(ws)
2

where ws denotes a weight associated with the s-th

data set.

We found the results were similar irrespective of the

weights, which is why we focused on the equal weight

method (w_i = 1).

Consensus network analysis with WGCNA

An R software tutorial that describes these methods can

be found at the following webpage [32].

Co-expression methodology is typically used for study-

ing relationships between gene expression levels [41].

Here we use these techniques for studying relationships

between methylation levels. To describe the relationships

among methylation profiles, we used WGCNA. Compared

to unweighted network methods, WGCNA has the follow-

ing advantages: first, it preserves the continuous nature of

co-methylation information [42,43]; second, weighted net-

works are particularly useful for consensus module detec-

tion since they allow one to calibrate the individual

networks; third, they give rise to powerful module preser-

vation statistics (described below).

The consensus network analysis was applied to data

sets 1 to 10 described in Table 1. For each data set, a

signed weighted network adjacency matrix is defined as:

aij =

∣

∣

∣

∣

1 + cor(xi, xj)

2

∣

∣

∣

∣

b

where xi is the methylation profile of the i-th CpG site

(probe on the array), that is, xi is a numeric vector
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whose entries report the b values across the individuals.

Note that the adjacency aij is a number between 0 and

1 that is a monotonically increasing function of the cor-

relation coefficient. The power b is a soft-thresholding

parameter that can be used to emphasize high positive

correlations at the expense of low correlations. We

chose the default threshold of 12. A major advantage of

weighted correlation networks is that they are highly

robust with regard to the choice of b [42]. While

WGCNA can be applied to one data set at a time to

identify co-methylation modules, we aimed to define

shared ‘consensus’ modules that are present in the first

ten data sets described in Table 1. To address this chal-

lenge, we used a consensus network approach that iden-

tifies modules that are present in all data sets. The goal

of our consensus network analysis was i) to identify

modules shared across the ten independent data sets,

and ii) calculate representatives of each module (module

eigengenes), iii) correlate module eigengenes with age,

and iv) define a continuous measure of module mem-

bership in the consensus module (referred to as kME).

Briefly, each of the ten network adjacency matrices

were transformed into the topological overlap matrix

(TOM). TOM is a highly robust measure of intercon-

nectedness and is widely used for clustering network

nodes into modules [44,45]. The element TOMij of the

topological overlap matrix measures the direct connec-

tion between the network nodes (in this case, methyla-

tion profiles) i and j as well as the extent to which they

share common network neighbors. Studies of our group

[42,45-48] and of independent groups [49] provide

empirical evidence that the topological overlap measure

is a biologically meaningful network similarity measure.

To ensure comparability of the ten TOMs, we calibrated

them by raising the entries of each matrix to fixed power.

The power was chosen so that each TOM had the same

95% percentile (roughly the same maximum value). Note

that this calibration step only works for a weighted net-

work, which highlights the utility of weighted networks

for the purpose of consensus network analysis.

The consensus topological overlap measure (CTOM)

was defined as the lower quartile across the ten cali-

brated topological overlap measures, CTOMij = quartile

(TOMij
(1), TOMij

(2), ..., TOMij
(10)), where TOMij

(s) is the

calibrated topological overlap of nodes i and j in set s,

s = 1, 2, ... 10. The lower quartile is a conservative

choice, for example, a CTOM value of 0.5 indicates that

in 75% of the data sets the TOM connection strength

between the two CpGs is ≥ 0.5. Our robustness study

with respect to different quantile choices (from mini-

mum to median) shows that the green aging module

can be found irrespective of the quantile choice. The

reader can explore the effect of different consensus mod-

ule approaches using our posted R software tutorials.

Average linkage hierarchical clustering was applied to

the consensus dissimilarity measure DissCTOM defined

as DissCTOMij = 1 - CTOMij. Modules (branches of

the resulting clustering tree) were subsequently identi-

fied using the adaptive branch cutting approach imple-

mented in R package dynamicTreeCut [50].

Since each module groups together highly correlated

methylation profiles, it is useful to summarize the profiles

in each module using a single representative profile. Here

we use the module eigengene [47], defined as the first

principal component of the module methylation matrix.

For each module, its module eigengene can be used to

define a measure of module membership, denoted kME,

which quantifies how close a methylation profile is to the

module. Specifically, for each methylation profile and

each module, kME is defined as the correlation of the

methylation profile with the module eigengene. Defining

module membership as correlation allows one to easily

calculate the statistical significance (P-value) of each

module membership. In turn, this makes it possible to

use standard meta-analysis techniques (for example, the

aforementioned Stouffer method) to aggregate the mod-

ule memberships across the ten data sets. Here, we used

the average aggregation implemented in the WGCNA

function consensusKME. Module membership measures

allow one to efficiently annotate all methylation profiles

on the array [51].

Further details on the consensus module approach can

be found in [23,47].

Numerous network inference algorithms have been

developed, including ARACNE [52] and BANJO [53]. A

comparison of different network inference algorithms lies

beyond the scope of this biology paper. A recent review

article compares the performance of WGCNA to ARA-

CNE and other algorithms [49]. Advantages of WGCNA

include i) that it provides module preservation statistics

that are being used in this article, ii) powerful functions

for consensus module analysis, iii) the availability of

module membership measures, and iv) proven methods

for finding modules.

Module preservation analysis

Our module preservation analysis is based on the

approach described in [24] and implemented in the mod-

ulePreservation R function implemented in the WGCNA

R package. The modulePreservation R function imple-

ments several powerful network-based statistics for eval-

uating module preservation.

For each module in the reference data (for example, a

brain methylation data set) one observes a value of a

module preservation statistic in the test data (for exam-

ple, the MSC methylation data set). An advantage of

these network-based preservation statistics is that they

make few assumptions regarding module definition and

module properties. Traditional cross-tabulation-based
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statistics are inferior for the purposes of our study. While

cross-tabulation approaches are intuitive, they have sev-

eral disadvantages. To begin with, they are only applic-

able if the module assignment in the test data results

from applying a module detection procedure to the test

data. Even when modules are defined using a module

detection procedure, cross-tabulation-based approaches

face potential pitfalls. A module found in the reference

data set will be deemed non-reproducible in the test data

set if no matching module can be identified by the mod-

ule detection approach in the test data set. Such non-

preservation may be called weak non-preservation: ‘the

module cannot be found using the current parameter set-

tings of the module detection procedure’. On the other

hand, here we are interested in establishing strong non-

preservation: ‘the module cannot be found irrespective of

the parameter settings of the module detection proce-

dure’. Strong non-preservation is difficult to establish

using cross-tabulation approaches that rely on module

assignment in the test data set. A second disadvantage of

a cross-tabulation-based approach is that it requires that

for each reference module one finds a matching test

module. This may be difficult when a reference module

overlaps with several test modules or when the overlaps

are small. A third disadvantage is that cross-tabulating

module membership between two networks may miss

the fact that the patterns of density or connectivity

between module nodes are highly preserved between the

two networks. The correlation network-based statistics

implemented in the modulePreservation function do not

require the module assignment in the test network but

require the user to input DNA methylation data underly-

ing a reference data set and a test data set.

The specific nature of correlation networks allows us to

use a permutation test for calculating four density preser-

vation statistics (summarized by Zdensity), three connec-

tivity-based statistics (summarized by Zconnectivity), and

a composite summary preservation statistic Zsummary.

In our application, Zdensity worked well at showing that

the aging module was preserved while Zconnectivity (and

therefore Zsummary) did reveal evidence of preservation.

Thus, while the density (average adjacency) of the aging

module is preserved, hub gene status is much less

preserved.

Therefore, Additional file 3 presents the statistic

Zdensity that quantifies whether the density patterns

of modules defined in the ten reference data sets are

preserved in a given test data set. We adopted the sug-

gested significance thresholds described in [24]: Zdensity

< 2 implies no evidence for module preservation, 2 <

Zdensity < 10 implies weak to moderate evidence, and

Zdensity > 10 implies strong evidence for module pre-

servation. Thus, we report Zdensity for each consensus

module in each of the six validation data sets. The

module preservation statistics proposed in [24] are

defined for a single reference and a single test data set.

Since our consensus modules were identified in an ana-

lysis of ten data sets, for the purposes of module preser-

vation calculation we have ten reference data sets. To

arrive at a single preservation score for each test set, we

averaged the module preservation statistics across the

ten data sets. Thus, the calculation of the module pre-

servation statistic followed the following steps. The

module preservation function was applied to the k-th

(k = 1, ..., 10) reference set and the given test (valida-

tion) set to calculate Zdensity(k). Next, the ten module

preservation statistics Zdensity(k) values were averaged.

The permutation based Z statistics often depend on the

module size (that is, the number of CpGs in a module).

This fact reflects the intuition that it is more significant

to observe that the connectivity patterns among hun-

dreds of nodes are preserved than to observe the same

among say only five nodes. Having said this, there will be

many situations when the dependence on module size is

not desirable, such as when preservation statistics of

modules of different sizes are to be compared. In this

case, it is useful to use the composite module preserva-

tion statistic medianRank for comparing relative preser-

vation among multiple modules: a module with lower

median rank tends to exhibit stronger observed preserva-

tion statistics than a module with a higher median rank.

Since medianRank is based on the observed preservation

statistics (as opposed to Z statistics or other permutation

test statistics), we find that it is much less dependent on

module size.

A major step involved in testing whether consensus

modules that were defined with respect to the Illumina

27 K array (data sets 1 to 10) could also be detected

using the 450 K array (validation data set 11). It turned

out that roughly half of the modules did not show evi-

dence of module preservation (see the first panel in

Additional file 3).

The lack of module preservation for half of the mod-

ules is probably not due to sample size (since n = 92 is

moderately large) or due to batch effects (since the 450 K

data were generated in one batch). Instead, the following

reasons may explain the relatively low preservation. First,

it could reflect that half of the samples were schizophre-

nics. Since we find that schizophrenia status has only a

very minor effect, we think this explanation is unlikely.

Second, lack of preservation could reflect that there are

systematic differences due to the different platforms and

sample preparation steps. This is possible since unsuper-

vised hierarchical clustering analysis based on interarray

correlations reveals that samples measured on the 450 K

platform are globally distinct from those on the 27 K

platform even when only the roughly 26 K overlapping

probes are being used.
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To be safe, modules that did not show evidence of mod-

ule preservation in the Illumina 450 K data were removed

from the analysis. To avoid confusing the reader with two

module assignments (before and after carrying out the

module preservation analysis in data set 11), Figures 3 and

4 only depict those consensus modules that also showed

significant evidence of preservation in data set 11. Thus,

the resulting modules were identified using a very conser-

vative approach: not only are these modules present in ten

data sets involving different tissues but they also validated

across Illumina platforms. Notably, the aging related mod-

ule was highly preserved (Additional file 3).

WGCNA software

The freely available statistical analysis software

(WGCNA R package) and R tutorials for constructing a

weighted gene co-expression network are described in

[54]. Consensus network analysis was carried out with R

function ‘blockwiseConsensusModules’ in the WGCNA R

package [54].

Our online R software tutorial easily permits the user

to identify tissue-specific age related modules and CpGs.

Gene ontology enrichment analysis

The functional enrichment of gene lists was evaluated in

two ways. First, we used the on-line functional annotation

tool DAVID [55]. DAVID functionally categorizes gene

lists based on enrichment for GO, Kyoto Encyclopedia of

Genes and Genomes (KEGG), SwissProt terms, and other

biological knowledge databases. For each gene list, the

software returns P-values for assessing significance of

overlaps with known functional categories. We used

DAVID to characterize genes corresponding to modules

and to lists of genes that are positively (or negatively)

related to age.

Second, we used the function userListEnrichment from

the WGCNA library to find enrichment for cell type

markers and other brain-related categories [25].

Additional material

Additional file 1: Schizophrenia status has a negligible effect on

aging effects. A scatterplot of correlation test P-values for correlations

between age and methylation profiles in schizophrenia cases (x-axis) and

healthy controls (y-axis) based on the Dutch whole blood data sets (data

sets 2 and 3). Additional file 1 shows that schizophrenia disease status

has a negligible effect on aging-related changes for the vast majority of

CpG sites.

Additional file 2: Age effects in different brain regions. Scatterplots

of correlation test P-values for correlations between age and methylation

profiles in the four brain regions (data sets 7 to 10). Overall, these P-

values are highly correlated, which shows that age has a similar effect in

all four brain regions.

Additional file 3: Module preservation analysis. The figures report the

results of the module preservation analysis in the validation data sets. Each

figure (page) corresponds to one validation data set. The left and right

panels of each figure show the results for the Zdensity and medianRank

statistics, respectively. The higher the value of the Zdensity statistic (and

the lower the value of the median rank statistic), the stronger the

evidence that the consensus module (based on the ten reference data

sets) is preserved in the validation data set. The Zdensity statistic is based

on a permutation test that allows one to establish significance thresholds

(that are indicated by the horizontal lines at values 2 and 5 in the left

panel). Values of Zdensity larger than 5 indicate moderate preservation

while values below 2 indicate no evidence of preservation.

Additional file 4: 1,000 CpGs with highest average module

membership in the green aging module. The comma delimited file

reports the Illumina array probe identifiers of the 1,000 CpG sites with

highest average module membership (kME) with respect to the aging-

related (green) module. This table also reports the average kME value

and the gene symbols of neighboring genes. Further, it contains

additional probe annotations. Column

SNPpolymorphicCpGfromChen2011 indicates which of the CpGs is

known to contain a common SNP [38]. Column

NumberOfMatchingBasesToCrossReactiveTarget indicates which CpGs are

non-specific (NA means it is specific) according to [38].

Additional file 5: Gene ontology enrichment chart of the 1,000

aging module. The Excel table shows the results of a gene ontology

enrichment analysis using the DAVID software when ‘GO Chart’ output is

selected.

Additional file 6: Gene ontology enrichment cluster of the 1,000

aging module. The Excel table shows the results of a gene ontology

enrichment analysis using the DAVID software when ‘GO Cluster’ output

is selected.

Additional file 7: Enrichment analysis using the userListEnrichment

function. The comma delimited file shows the results of a gene list

enrichment analysis using the userListEnrichment function [25]. This

function was used to assess whether the top 1,000 aging-related module

genes (highest average kMEgreen) are significantly enriched

(hypergeometric test) with genes that are part of the brain-, blood- and

stem cell-related lists curated from the literature. The userListEnrichment

function was used to study the properties of lists of genes whose

promoters contain CpG sites that are part of the aging related (green)

module.

Additional file 8: Analysis overview. The figure shows the analysis

steps of the consensus network analysis and their rationale.
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