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Abstract
Purpose of Review  Climate change has manifested itself in multiple environmental hazards to human health. Older adults 
and those living with cardiovascular diseases are particularly susceptible to poor outcomes due to unique social, economic, 
and physiologic vulnerabilities. This review aims to summarize those vulnerabilities and the resultant impacts of climate-
mediated disasters on the heart health of the aging population.
Recent Findings  Analyses incorporating a wide variety of environmental data sources have identified increases in cardio-
vascular risk factors, hospitalizations, and mortality from intensified air pollution, wildfires, heat waves, extreme weather 
events, rising sea levels, and pandemic disease. Older adults, especially those of low socioeconomic status or belonging to 
ethnic minority groups, bear a disproportionate health burden from these hazards.
Summary  The worldwide trends responsible for global warming continue to worsen climate change–mediated natural dis-
asters. As such, additional investigation will be necessary to develop personal and policy-level interventions to protect the 
cardiovascular wellbeing of our aging population.

Keywords  Environmental health · Climate change · Aging · Cardiovascular disease

Introduction

Our modern era, beginning with the Third Industrial Revo-
lution in the closing decades of the twentieth century, has 
been characterized by a global expansion of economic 
development and trade that has reached even the most 
remote corners of the world [1, 2]. Although the resultant 

demographic transition has been experienced by most socie-
ties as an impressive increase in life expectancy, it has also 
led to a surge in cardiovascular disease burden coupled with 
an acceleration of climate change-mediated environmental 
hazards [3–6, 7•, 8–10].

As of 2019, 703 million people in the world were over 
65 years of age, and that number is projected to grow to 
1.5 billion, or one in six people globally, by 2050 [11]. 
This phenomenon has taken place not just in rich nations 
but also in most low- and middle-income countries upon 
the background of an atherogenic, obesogenic milieu typi-
fied by the proliferation of cheap processed foods high in 
salt, sugar, and saturated fats; increased white-collar work 
and urban living leading to reduced physical activity; and 
higher per capita income incentivizing maladaptive behav-
ioral risk factors such as tobacco and alcohol consumption 
[12–15]. It is thus no surprise that global cardiovascular 
disease (CVD) prevalence has nearly doubled from 271 
to 523 million cases between 1990 and 2019, with the 
majority of this burden shouldered by people over 60 years 
old [16]. Meanwhile, Earth’s average surface temperature 
has risen 1.2 °C (approximately 2.2°F) in the past century 
due to man-made sources of greenhouse gases [17]. This 
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global warming has not only accelerated the unpredict-
ability of cyclic worldwide climate events like El Niño, but 
has also increased the frequency and severity of seasonal 
regional weather phenomena such as extreme heat waves, 
flash floods, and hurricanes [17, 18].

The growing global population of older adults finds 
itself particularly vulnerable to these climate consequences, 
as was tragically demonstrated in 2005 when nearly half of 
the 971 deaths from Hurricane Katrina in the USA befell 
individuals over the age of 75 [19]. Aside from the immedi-
ate casualties of the physical devastation imposed by these 
events, however, this group of people also experience a 
greater proportion of the health impacts of climate change, 
particularly CVD complications (Table 1). For example, 
nearly one in ten of the aforementioned Katrina mortalities 
was attributable to cardiovascular causes [19]. This surpris-
ing finding is due to a number of reasons, including both 
medical and societal factors: Older individuals have greater 
rates of pre-existing CVD and risk factors such as coronary 
artery disease, heart failure, stroke, obesity, and diabetes, 
leaving them at greater risk of decompensation from these 
conditions [20–22]. Additionally, aging is associated with 
changes in circulatory physiology, leaving older adults 
less able to adapt to sudden changes in their surroundings 
(Fig. 1). These include the inability to rapidly augment 
cardiac output in response to environmental stresses such 
as high temperatures and dehydration, vascular dysfunction 
leading to more sluggish heat dispersal at surface capillar-
ies, and diminished capacity to redirect central blood stores 
to peripheral organs during sudden fluid loss [23]. Further-
more, frailty, a well-known syndrome of aging defined as a 
lack of physiologic reserve, is not only hypothesized to be 
accelerated by environmental pollutants, but is also itself 
an independent determinant of poor health outcomes from 
both heart disease as well as response to noxious ambient 
exposures [24–27]. Lastly, the reduced mobility of older 
people, a result of both physical and cognitive limitations 
and greater social isolation, makes them less able (and 
sometimes, less willing) to evacuate in a timely manner 
during natural disasters, leaving them to experience the 
worst direct and indirect effects of these climate catastro-
phes [28–30].

Given the ongoing nature of global warming and eco-
nomic globalization, it is unlikely that we will see a rever-
sal in the above trends [3, 17, 18]. As such, policymakers, 
researchers, and clinicians should pay greater attention to 
the unique cardiovascular risks posed by climate change to 
our aging population. Thus, in this review, we will attempt to 
summarize the major manifestations of our unstable planet 
on the heart health of our elders, while briefly offering some 
suggestions for how key stakeholders can begin to address 
these challenges.

Air Pollution and Wildfires

Air pollution is responsible for 6.7 million global deaths 
each year, making it the greatest environmental determi-
nant of human morbidity and mortality [31–33]. Half of 
these deaths are from CVD and over half are in people 
over the age of 65 years [31, 32]. Airborne environmental 
exposures can be classified as either chronic (from both 
outdoor and indoor ambient sources) or acute (from sin-
gular personal and population-level exposures). Due to 
the immense number of sources of air pollution, there 
are thousands of distinct inhalable compounds that can 
be found in poor air. Briefly, the solid components are 
classified by particulate matter under 10 μm in diameter 
(PM10), 2.5 μm in diameter (PM2.5), and < 0.1 μm in 
diameter (ultrafine particles) [34]. These contaminants 
are often measured in conjunction with the most common 
gaseous pollutants, which include sulfur dioxide (SO2), 
carbon monoxide (CO), nitrogen dioxide (NO2), and 
ozone (O3). Encounters with all of these substances have 
been reported to affect human CVD outcomes to vary-
ing degrees. Short-term inhalation injury has been tied 
to escalations in cardiovascular hospitalization rates for 
acute complications such as myocardial infarction, stroke, 
and heart failure exacerbations [34, 35]. Simultaneously, 
long-term airborne exposures have been correlated with 
the progression of chronic heart diseases like coronary 
atherosclerosis and cardiometabolic risk factors such as 
hypertension and diabetes [33–36]. The pathophysiologic 
dynamics governing these phenomena differ considerably 
depending on the toxin combination, but they are believed 
to be complex processes involving varying degrees of 
autonomic imbalance, endothelial dysfunction, systemic 
inflammation, hypothalamus–pituitary–adrenal axis insta-
bility, and prothrombotic pathway activations [34].

Climate change has been linked to worsened air quality 
through several mechanisms. On the most global level, 
increased worldwide temperatures are predicted to lead to 
reduced wind speed and slower air circulation, concentrat-
ing existing urban air pollution locally [37, 38]. Next, it is 
believed that global warming has contributed to elevated 
ground-level ozone levels, which have been noted to inter-
act with PM2.5 to worsen cardiovascular health status and 
mortality [31, 39–43]. Additionally, warmer weather and 
greater rainfall in certain regions have led to increased 
airborne pollen and mold spore counts, which have been 
linked to surges in emergency room visits for myocardial 
infarctions and strokes, as well as all-cause cardiovascular 
mortality [44–47].

The aging process is associated with impaired pulmo-
nary vascular epithelial barrier function, likely a multifac-
torial process that includes reduced regenerative capacity 
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of progenitor epithelial cells and poorer extracellular 
matrix recovery from acute inflammatory insults [48, 49]. 
The result is that older adults are less capable of protect-
ing the air-blood barrier and are thus more susceptible to 
inhaled toxins. As such, it is no surprise that longitudinal 
ecological studies of both acute and chronic exposures to 
a variety of inhaled airborne pollutants have consistently 
found an elevation in cardiovascular events and mortality 
specifically among older individuals [50–56]. Further-
more, frailty and dementia, conditions of physiological 
and cognitive decline that accompany aging, are not only 
themselves connected to poor cardiovascular outcome 
from air pollution exposure, but are believed to themselves 
be worsened by airborne particulate matter inhalation [24, 
26, 57–60].

Most noticeably, however, climate change has been linked 
to an acceleration in the frequency, intensity, and duration of 
seasonal extreme weather event–related deteriorations in air 

quality [17, 18, 61]. These include wildfires and dust storms, 
which can rapidly raise PM2.5 levels by orders of magni-
tude for hundreds of miles about their epicenters [10, 17, 
18, 61]. Statewide investigations of wildfire smoke plume 
exposure in California have shown that adults 65 years of 
age and older have over twofold higher odds of suffering a 
cardiac arrest and 15% higher risk of finding themselves in 
the emergency room from a wide array of cardiovascular 
complications [62•, 63]. Unfortunately, older people often 
lack the mobility, transportation resources, and technology 
proficiency to rapidly evacuate from natural disasters such 
as wildfires [28, 29, 64, 65]. This is because they are more 
likely to suffer from disability or dementia, or reside in insti-
tutional settings such as nursing homes. That said, indepen-
dently living elders are also more likely to live alone and 
less likely to be able to drive themselves [3, 29, 66]. Further-
more, even when older adults have in-home air conditioning, 
which can be used to help filter airborne particulate matter 

Fig. 1   Aging-associated physiological changes predisposing older adults to harm from climate change–mediated phenomena
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and mitigate some of its health risks, they are less likely to 
use it, frequently citing financial considerations as barriers to 
their use [67, 68]. Unfortunately, demographic trends do not 
favor a shift away from these concerns, as US census–based 
investigations suggest that aging populations may dispro-
portionately reside in regions at highest risk of wildfire [69].

Heat Waves

Similarly to its effect on wildfires, global warming has 
worsened the severity, frequency, and duration of heat wave 
events, with multiple continents recording their highest ever 
temperatures in the past decade [17, 18]. Heat waves directly 
claim thousands of lives each year, with nearly two thousand 
lost due to heat-related causes annually in the USA alone, 
making them deadlier than hurricanes, floods, blizzards, and 
tornadoes [70–73]. Older adults are by far the most vulner-
able group to extreme heat events, as the highest percentage 
of heat wave-attributable mortalities are in individuals over 
the age of 65 years [70, 72, 74, 75]. Tragically illustrative of 
this example was a historic heat wave that struck continental 
Europe in 2003, killing 30,000 people [23]. The vast major-
ity of the fatalities were in those over 75 years of age [76]. 
Again, the physical and socioeconomic limitations to the 
mobility of older adults prevent them from leaving regions 
of high heat in a prompt manner, relocating to air-conditioned 
spaces, or using air conditioning even when available [28, 29, 
64–68]. The growing proportion of the world’s older indi-
viduals living in urban centers and megacities are at further 
risk from “heat islands” that form from thermal trapping in 
manmade structures of concrete and steel [77, 78].

A number of physiological changes from the aging pro-
cess raise the predisposition of older people to heat-related 
circulatory collapse. First, aging is tied to reductions in 
evaporative cooling efficiency due to decreased overall sweat 
production, particularly from the core of the body [79, 80]. 
This problem is exacerbated by the fact that elders are less 
able to redirect blood flow away from the deep splanchnic 
vasculature to the skin to facilitate cooling [81, 82]. Sec-
ond, aging is associated with weaker contractile force of the 
heart in response to heat, meaning that older hearts are less 
capable of maintaining sufficient cardiac output in response 
to drops in blood pressure and left ventricular preload (say, 
from dehydration) than younger hearts [81]. Lastly, there is 
a reduction in surface thermoreceptor density in older adults, 
meaning that the heat releasing autoregulatory mechanisms 
of the body are less likely to be triggered with advancing 
age [83, 84].

This sensitivity to heat and fluid loss is particularly inten-
sified in older adults with CVD. One reason is the effect of 
certain medications commonly used to treat these condi-
tions. Diuretics, frequently employed to maintain optimal 

cardiac preload in patients with heart failure and chronic 
kidney disease, increase vulnerability to dehydration by 
reducing total resting blood volume. Beta blockers, utilized 
for managing hypertension, coronary disease, cardiomyo-
pathies, and arrhythmias, further reduce the ability of the 
heart to augment its rate and stroke volume in response 
to increased circulatory demand [85, 86•]. Furthermore, 
patients living with disorders that limit myocardial contrac-
tility such as heart failure or obstructive coronary athero-
sclerosis, are more likely to develop cardiac ischemia at peak 
stress from heat exertion, increasing the risk of precipitating 
cardiogenic shock or myocardial infarction [23].

These factors make it understandable why the majority 
of deaths from heat waves are actually not due to the direct 
effects of heat (i.e., heat stroke, heat exhaustion) but rather 
from cardiovascular and cerebrovascular complications from 
the extreme strain placed upon the aging heart. For example, 
of the 692 excess deaths from the 1995 Chicago heat wave, 
only 4.7% were directly attributable to heat stroke, while 
93.7% of excess deaths listed underlying CVD as a con-
tributing factor [87]. Similarly, it is believed that over half 
(and possibly nearly two-thirds) of the mortalities from the 
1995 and 1997 Milwaukee heat waves were directly precipi-
tated by cardiovascular causes [88]. These findings are made 
mechanistically plausible by the fact that elevated cardiac 
troponin levels in blood samples of overheated patients are 
an independent prognostic marker of poor outcome from 
heat illness, particularly among the older individuals [89, 
90].

Extreme Weather Events and Rising Sea 
Levels

Among the most striking effects of climate change are the 
intensification of seasonal environmental phenomena, chief 
among them severe weather anomalies such as hurricanes, 
tornadoes, severe thunderstorms, and winter storms or bliz-
zards [17, 18]. These aberrant events carry the capacity 
for immense physical destruction to buildings, roads, and 
power lines, thus crippling healthcare delivery systems. 
Elders with CVD, who are particularly dependent on phar-
macies, clinics, and hospitals, can find themselves cut off 
from these resources during these crises [91]. Furthermore, 
the immense emotional trauma inflicted by such natural 
disasters has been associated with surges in acute CVD 
complications. New Orleans area hospitals experienced a 
nearly threefold increase in myocardial infarction admissions 
immediately following Hurricane Katrina, with the rise in 
cases persisting for years following the catastrophe [92–95].

Interestingly, although heat waves have been linked to 
increased cardiovascular sequelae among older people, so 
have extreme cold weather events, and in general, global 
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cooling patterns are correlated with a significant number 
of CVD mortalities [96, 97]. It has been long recognized 
that major snowstorms are followed by ischemic heart 
disease–attributable deaths and cardiac admissions [97, 
98]. Further investigation is necessary to understand the 
mechanism of these findings, although it is hypothesized 
that the reduced circulatory reserve of older adults ampli-
fies their susceptibility to the myocardial and metabolic 
demands imposed by physical activity in cold weather 
conditions and snow.

Another very prominent environmental concern stem-
ming from climate change is that of melting polar ice caps 
and subsequently elevated global sea levels [17, 18]. In con-
junction with the worsened storm seasons noted above, ris-
ing sea levels have augmented the severity and frequency of 
flooding in coastal zones, which again hold major implica-
tions for less-mobile elders [99]. Flooding not only physi-
cally disrupts cardiovascular care infrastructure, it also 
increases the risk of vector-borne diarrheal diseases, which 
will affect older populations, who are more vulnerable to 
cardiac stresses from dehydration and more likely to be on 
diuretic medications, more severely [100, 101].

Perhaps most insidiously, however, rising sea levels in 
these regions are encroaching on underground wells and 
other sources of groundwater for human consumption [102, 
103]. The resultant increase in drinking water salinity carries 
population-level implications for sodium ingestion–related 
hypertension [104, 105]. Additionally, the contaminated 
water is projected to reduce crop yield in the millions of 
acres of coastal farms (particularly for subsistence farmers 
in alluvial floodplains), jeopardizing the long-term availabil-
ity of fresh produce critical for good cardiovascular health 
[106–108].

Pandemic and Epidemic Infectious Diseases

The devastation caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and its resultant coronavirus 
disease 2019 (COVID-19) have made the consequences of 
human environmental impacts on global health stark, given 
the likely zoonotic origin of the contagion [109–111]. Nev-
ertheless, COVID-19 is not the first infectious pathogen 
to make the jump from animal to human, and will not be 
the last to do so. Indeed, the preceding decades have been 
characterized by potential pandemic warning signs posed 
not just by coronaviruses, but also by influenza viruses and 
paramyxoviruses with well-established animal vectors [109, 
112–115].

Climate change has elevated the risk of pandemic infec-
tions in a number of ways, including increased human-
animal contact (thus escalating the possibility of zoonotic 
disease transmission) by shifting wildlife habitats towards 

human settlements, and by the warming of tropics mak-
ing new regions suitable for inhabitation by disease vec-
tors such as arboviruses and their insect hosts [109, 110, 
116]. Furthermore, warm winters have been associated with 
“rebound” flu seasons of unusual severity, leading research-
ers to postulate that global warming may result in longer, 
harsher influenza seasons when they do occur [109, 117]. 
This is particularly concerning for older adults, as advanced 
age and pre-existing heart disease are both independent 
predictors for all-cause and cardiovascular mortality from 
influenza in this group [118–120]. Much of this may be due 
to immunosenescence, an age-related phenomenon consist-
ing of deterioration of both the innate and adaptive immune 
responses, which lead to increased susceptibility to infec-
tion, poor response to vaccination, and a pro-atherosclerotic 
autoinflammatory state [121, 122].

COVID-19, in particular, has laid bare the vulnerabilities 
of our healthcare system to pandemic-associated disruptions 
for both older individuals and patients living with chronic 
CVD. Nursing homes and long-term care facilities were 
among the first outbreak zones to record massive casualties 
from the coronavirus, and CVD treatment infrastructure such 
as cardiac catheterization laboratories were among the first 
to be shut down due to quarantine and exposure protocols 
[123]. Indeed, even critical emergency care for ST-elevation 
myocardial infarctions were compromised, with some insti-
tutions reporting significant delays in lifesaving procedural 
door-to-balloon time therapies [124]. Fears of contracting 
the disease have led to postponing of even important opera-
tions and cardiovascular screening studies, both during the 
initial pandemic outbreak as well as during subsequent 
surges, with major implications for the timely management 
of these debilitating conditions [125–127].

Vulnerable Populations

Although older adults living with heart disease are a gener-
ally vulnerable population, certain subgroups are likely to 
disproportionately suffer from the cardiovascular impacts of 
climate change. Multiple analyses have demonstrated both 
advanced age and low socioeconomic status to be independ-
ent determinants of poor cardiovascular outcome from air 
pollution, wildfires, heat waves, and natural disasters [20, 
27, 32, 69, 128]. This may be attributable to greater base-
line ambient pollution exposure, higher baseline prevalence 
of cardiovascular comorbidities and disease severity, and 
reduced financial access to specialty healthcare. Indeed, 
indigent elders are more likely to live near highways, and 
to have been engaged in jobs with occupational air pollu-
tion exposure [129–132]. Per US census data, both older 
individuals and the impoverished are more likely to live in 
regions vulnerable to wildfire [69].
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Additionally, epidemiologic analyses have revealed that 
the structural racism experienced by Black and Native 
American communities lead to higher risk of exposure to 
environmental pollutants, natural disasters, and their associ-
ated mortality [19, 69, 74, 87, 133, 134]. Indigenous popula-
tions globally, many of whom depend on subsistence agri-
culture and farming, will be further impacted by the loss 
of generational farmlands and fisheries needed for a heart-
healthy diet, while tribal elders suffer unduly during disaster 
evacuations due to the cultural shocks of displacement [133, 
135–137].

These factors are further intensified for older people liv-
ing in low- and middle-income countries, where rapid indus-
trialization has led to intensification of unhealthy average air 
quality, particularly in urban centers [34, 138]. The annual 
average PM2.5 exposure levels in China and Bangladesh 
are currently over 50 and 70 μg/m3, respectively, which well 
exceed the recently updated World Health Organization 
guideline recommended annual average concentration of 5 
μg/m3 [34, 139, 140••]. Many older women in poor coun-
tries are often tasked with cooking on traditional biomass-
burning stoves [32, 35, 138]. This source of household air 
pollution, especially in inadequately ventilated homes, is a 
potent and concentrated source of cardiotoxic particulate 
matter linked to significant CVD morbidity [16, 31, 32, 35]. 
By 2050, it is estimated that 80% of people over the age of 
60 in the world will live in low- and middle-income coun-
tries, nations whose health systems are still emerging from 
overcoming infectious epidemic diseases, and are having to 
fight both these transmissible illnesses and the rising tide of 
cardiovascular disorders simultaneously [3, 141].

Future Directions

Although the ongoing threat of further climate change 
leaves the future uncertain, there are measures that poli-
cymakers, researchers, and healthcare providers can take 
to mitigate the risks that our warming globe poses to the 
heart health of our elders. First, we must be steadfast in 
our advocacy for carbon emission reductions and environ-
mentally sustainable practices from governments and cor-
porations. On a more individual level, though yet sparse, 
there is emerging data that personal protective tools such 
as facemasks, portable air purifiers, and air condition-
ers can reduce the burden of airborne pollutants and heat 
stress [34, 36, 142]. Healthcare providers should thus 
screen older patients, particularly the frail, indigent, and 
those with multiple pre-existing cardiac comorbidities, for 
harmful environmental exposures such as chronic air pol-
lution and acute heat/fire risks. If present (or for those liv-
ing in regions of the world with seasonal wildfires and heat 
waves), clinicians should advise such patients on personal 

risk mitigation strategies as noted above. Emergency pre-
paredness authorities and clinicians should also counsel 
high-risk older adults on disaster contingency planning 
preceding storm, heat, and fire seasons, including having 
medications and critical personal belongings prepared 
for evacuation. Indeed, both the US Centers for Disease 
Control and Environmental Protection Agency recom-
mend that older individuals and those living with chronic 
cardiovascular conditions should have an emergency plan 
with medications and personal protective equipment ready, 
while avoiding excessive activity during such events [143, 
144]. Currently, two-thirds of Americans over the age of 
65 report having no such plan in the event of a disaster 
[66].

Researchers in the fields of Earth systems studies, pub-
lic health, and cardiovascular science should also focus 
further investigations on the unique physiologic aspects of 
the aging process that increase the susceptibility of older 
adults to environmental insults. These should be paired with 
examinations of the socioeconomic and demographic trends 
that synergistically amplify this relationship. Additionally, 
high-quality randomized clinical trials are needed to deter-
mine the efficacy of personal-level protective equipment 
and policy-level risk mitigation strategies on reducing acute 
cardiovascular decompensation risk among elders during 
extreme weather events.

That said, it is critical that older individuals be involved 
in the development of strategies to mitigate these challenges. 
Despite the physical limitations imposed by age, many have 
developed mental resiliency that society can leverage. These 
include community leadership, family cohesiveness, the abil-
ity to mobilize social capital, and longitudinal perspective 
from living through previous disasters [66, 140••]. Indeed, 
older survivors of Hurricane Katrina cited having withstood 
prior hurricanes (in addition to the full extent of life’s hard-
ships) as sources of strength during their most trying times 
[145]. Most importantly, many older adults espouse the 
phenomenon of “legacy thinking”, where they are able to 
utilize their transgenerational knowledge to campaign for 
and prioritize the needs of their children and grandchildren 
during times of crisis [146]. Future directions in policy and 
clinical decision-making can incorporate these foundations 
of resilience into creating a socio-medical-environmental 
culture that better protects the cardiovascular wellbeing of 
our elders as well as the planet they live in.
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