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Abstract 

Introduction 

Age is one of the most important risk factors for human malignancies, including breast cancer; in 

addition, age-at-diagnosis has been shown to be an independent indicator of breast cancer 

prognosis. However, except for inherited forms of breast cancer, there is little genetic or 

epigenetic understanding of the biological basis linking aging with sporadic breast cancer 

incidence and its clinical behavior.   

 

Methods 

DNA and RNA samples from matched estrogen receptor (ER)-positive sporadic breast cancers 

diagnosed in either younger (age 45 or younger) or older (age 70 or older) Caucasian women 

were analyzed by array comparative genomic hybridization (CGH) and expression microarrays.  

Array CGH data were analyzed using hierarchical clustering and supervised age cohort 

comparisons. Expression microarray data were analyzed using hierarchical clustering and Gene 

Set Enrichment Analysis (GSEA); as well, differential gene expression was determined by 

conditional permutation, and an age signature was derived using Prediction Analysis of 

Microarrays (PAM).   

 

Results 

Hierarchical clustering of genome-wide copy number changes in 71 ER-positive DNA samples 

(27 younger, 44 older) demonstrated two age-independent genotypes, one with few genomic 

changes other than 1q gain/16q loss, and another with amplifications and low level gains/losses. 

Age cohort comparisons showed no significant differences in total or site-specific genomic 
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breaks and amplicon frequencies. Hierarchical clustering of 5.1K genes variably expressed in 

101 ER-positive RNA samples (53 younger, 48 older) identified six transcriptome subtypes with 

an apparent age bias (p < 0.05). Samples with higher expression of a poor outcome-associated 

proliferation signature were predominantly (65%) younger cases. Supervised analysis identified 

cancer-associated genes differentially expressed between the cohorts, with younger cases 

expressing more cell cycle genes and >3-fold higher levels of the growth factor amphiregulin 

(AREG) and older cases expressing higher levels of four different homeobox (HOX) genes in 

addition to ER (ESR1). An age signature validated against two other independent breast cancer 

datasets proved to have >80% accuracy in discerning younger from older ER-positive breast 

cancer cases with characteristic differences in AREG and ESR1 expression.  

 

Conclusion 

These findings suggest that epigenetic transcriptome changes, more than genotypic variation, 

account for age-associated differences in sporadic breast cancer incidence and prognosis. 
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Introduction 

Age is the strongest demographic risk factor for most human malignancies including breast 

cancer [1]. About 80% of all breast cancers occur in women over age 50; the 10 year probability 

of developing invasive breast cancer rises from less than 1.5% at age 40, to about 3% at age 50 

and over 4% by age 70, resulting in a cumulative lifetime risk of 13.2% (1 in 8) and a near 9-fold 

higher incidence rate in women over age 50 as compared to their younger counterparts [2, 3]. 

Despite awareness that breast and other cancers are primarily age-related diseases, molecular and 

cellular hypotheses explaining the cancer-aging relationship have only recently emerged and 

remain clinically unproven [4]. At the subcellular level, normal human aging has been linked to 

increased genomic instability [5, 6], global and promoter-specific epigenetic changes [7, 8], and 

altered expression of genes involved in cell division and extracellular matrix remodeling [5, 6].  

These associations have led to the hypothesis that the cancer-prone phenotype of an older 

individual results from the combined effects of cumulative mutational load, increased epigenetic 

gene silencing, telomere dysfunction and altered stromal milieu [9]. Given the worrisome social, 

economic, and medical consequences of an aging worldwide population, proposed biological 

mechanisms linking cancer with aging must be established in order to develop effective 

interventions.   

As with normal organs and tissues, tumor biology can also change with aging [10, 11]. 

For sporadic breast cancer in particular, correlations between patient age-at-diagnosis, tumor 

biology and clinical prognosis have long been appreciated if not fully understood [12-16].  

Younger age-at-diagnosis (< 45 years) is associated with more aggressive breast cancer 

biomarkers including overexpression of ERBB2/HER2 and ERBB1/HER1 growth factor 

receptors [13], abnormal p53 expression [13, 15], estrogen receptor negativity [12-16], higher 
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nuclear grade and Ki-67 proliferation index [12-14, 16].  However, these breast cancer 

biomarkers are also interdependent; in particular, ER expression is inversely correlated with 

abnormal p53 [15], overexpression of ERBB2 [15], high Ki-67 and nuclear grade, and poor 

patient prognosis [17].  Thus, it remains unclear whether the age-specific biomarker features of 

breast cancer reflect the pleotropic background effects of aging on the normal mammary gland or 

age-specific differences in breast tumorigenesis; as well, since most age-specific biomarkers 

strongly associate with ER status, the effects of aging must be studied in histologically similar 

breast cancer phenotypes controlled for ER status.  

The molecular and cellular effects of aging on both normal and malignant breast tissue 

are superimposed on a continuum of developmental changes that normally occur between 

puberty and menopause, heavily influenced by menstrual history and parity. In general, normal 

mammary gland ER content (fmol receptor/g tissue) as well as the proportion of ER expressing 

(ER-positive) ductal epithelial cells increase with each decade of age and reach a plateau with 

menopause at about age 50 [18, 19].  In contrast, breast cancer ER expression continues to rise 

beyond menopause, reaching a near 25-fold differential between normal and malignant 

mammary gland ER expression in patients by age 70 [18]. Curiously, expression of some ER-

inducible gene markers like progesterone receptor (PR), pS2, Bcl2 and cathepsin D do not show 

any significant relationship with age-at-diagnosis [13, 18] while others show increased 

expression in breast cancers arising earlier in life [20], suggesting that the effects of aging may in 

part be attributed to age-related differences in estrogen (E)-inducible ER pathways. Important in 

this regard is the age-related change in PR co-expression within ER-positive breast cancers, since 

PR has long been used as a clinical indicator for a functioning ER pathway in tumors likely to 

respond to endocrine therapy [21]. Among all ethnic patient groups, ER-positive/PR-negative 
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breast cancers show the greatest age-related increase in incidence after age 40 [22]. Potentially 

relevant to this ER-positive/PR-negative phenotype is the fact that growth factor activated 

pathways down-regulate PR expression [22-25], and that the inverse correlation between 

overexpression of the ERBB2 growth factor receptor and PR positivity is only seen in breast 

cancers arising after age 40 [26]. Surprisingly, the natural perimenopausal decline in ovarian 

produced E serum levels do not fully account for age-related changes in ER-regulated mammary 

epithelial pathways, since the marked age-related increase in stromal and epithelial aromatase 

expression produces postmenopausal mammary gland E levels that are comparable to those 

measured in premenopausal women [27].  

To better understand the molecular and cellular influences of aging on breast cancer 

biology and clinical behavior, we performed a detailed study on phenotypically similar breast 

cancers arising in two disparate patient age groups.  DNA and RNA were prospectively extracted 

from cryobanked samples of stage- and histology-matched ER-positive breast cancers diagnosed 

in either younger (< age 45) or older (> age 70) Caucasian women. These samples were analyzed 

by array comparative genomic hybridization (CGH) and high-throughput expression microarrays 

to look for genetic and epigenetic differences between the age cohorts. Unsupervised hierarchical 

clustering of the combined data from both cohorts was used to look for age biases in clustered 

subsets, and this was followed by supervised comparisons between the two cohorts to delineate 

potential age-related genomic and transcriptome differences. Finally, a predictive analysis of 

microarrays (PAM) performed on the two age cohorts produced an age-specific expression 

signature which proved to have >80% predictive accuracy when validated against two other 

independent breast cancer datasets.     
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Materials and methods 

Breast cancer samples extracted for DNA and RNA 

Cryobanked breast cancer specimens excised from newly diagnosed Caucasian females were 

obtained from the University of California San Francisco (UCSF) Comprehensive Cancer Center 

Breast Oncology Program Tissue Core (n = 66) and from the National Cancer Institute (NCI)-

Bari (n = 71), following multi-institutional review board approvals. Tumor specimen selection 

criteria included sporadic incidence (no first degree relatives with breast cancer), >50% invasive 

cancer cellularity, frozen wet weight of at least 100 mg, ER-positivity (>10% nuclear 

immunohistochemical stain), and patient age at diagnosis either ≤ 45 (younger cases) or ≥ 70 

(older cases) years. The 66 UCSF cases were all node-negative and predominantly ductal 

histology (60/66); 54 were associated with outcome annotation. The 71 NCI-Bari cases were all 

ductal histology with mixed nodal status and without any outcome annotation.  The two age 

cohorts within both tumor sets showed no significant imbalances in stage, grade, PR or ERBB2 

status.  PR-positivity was defined as >10% nuclear immunohistochemical staining and ERBB2-

positivity as gene amplification.    

Cryobanked specimens were pulverized under liquid nitrogen prior to nucleic acid 

extraction. DNA was purified from frozen tumor powders using High Pure PCR Preparation Kit 

(Roche Diagnostics; Indianapolis, Indiana) and quality verified by gel electrophoresis. Total 

RNA was purified using Trizol reagent per manufacturer’s protocol (Invitrogen; Carlsbad, CA); 

some RNA samples initially stored in formamide were further purified through RNeasy columns 

according to manufacturer’s protocol (QIAGEN; Valencia, CA). All RNA samples were quality 

verified on a Bioanalyser (Agilent Technologies; Palo Alto, CA). DNA from all 71 NCI-Bari 

specimens were used for array-based CGH analysis; but only 35 of these specimens also yielded 
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sufficient RNA for expression microarray analysis. The 35 NCI-Bari RNA samples (RNA 

sample set 1) were therefore combined with 66 RNA samples prepared from the UCSF 

specimens (RNA sample set 2) to yield 101 total RNA samples (53 younger, 48 older) for 

expression microarray analysis.           

 

Array CGH and data processing 

Array CGH and data processing were carried out as described in [28].  Test and reference 

genomic DNA (500~1000 ng) were labeled with Cy3 and Cy5, respectively, in a random priming 

reaction using 25 to 50 µL reaction volumes. The two labeled DNAs together with Cot-1 DNA 

(100 µg) were hybridized for 48-72 hours at 37ºC onto arrays of 2,464 BAC clones, each printed 

in triplicate (HumArray1.14 and Hum-Array2.0, UCSF Comprehensive Cancer Center 

Microarray Core). Data from both array versions were combined only for the BAC clones 

present on both; duplicate clones were averaged and the final dataset contained 2,240 unique 

BACs. Images were acquired and data processed as previously described [28]. For each tumor, 

data were plotted in genome order as the mean log2 ratio of the replicate spots for each clone 

normalized to the genome median log2 ratio.  Array CGH data were deposited into the public 

Gene Expression Omnibus database (GSE8801).   

Array CGH data were analyzed using circular binary segmentation [29] with default 

parameters to translate intensity measurements into regions of equal copy number as 

implemented in the DNAcopy R/Bioconductor package. Missing values were imputed using the 

maximum value of two flanking segments, producing smoothed values. The gain and loss status 

for each probe was assigned using the mergeLevel procedure [30]. Tumor profiles were clustered 

using smoothed imputed data with outliers present; and agglomerative hierarchical clustering 
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was performed using Euclidean distance as a similarity measure and the Ward method to 

minimized sum of variances to produce compact spherical clusters. Clone-wise comparison of 

phenotypic groups was made by t-testing smoothed values and controlling for false discovery 

rate (FDR), with an FDR adjusted p-value < 0.05 for significance. Kruskal-Wallis rank sum test 

was used to analyze phenotypic associations with the following autosomal genomic parameters: 

number of break points and chromosomes with break points, number of amplifications and 

chromosomes with amplifications, number of whole chromosome changes and fraction of 

genome altered.  

The fractions of genome gained and lost were computed for each tumor, and the 

frequency of alterations at each clone was computed as the proportion of samples showing an 

alteration at that locus. The amplification status for a clone was determined by considering the 

width of the segment to which that clone belonged (0, if an outlier) and a minimum difference 

between the smoothed value of the clone and the segment means of the neighboring segments. A 

clone was declared amplified if it belonged to the segment spanning less than 20 Mb and the 

minimum difference was greater than exp(-x3) where x is the final smoothed value for the clone. 

This procedure allowed clones with small log2ratio values to be declared amplified if they were 

high relative to surrounding clones. To calculate the number of chromosomes with 

amplifications, a chromosome was said to be amplified if at least one of its clones was amplified.  

Whole chromosome changes were assigned to chromosomes without identified breakpoints if a 

chromosomal segment mapped to a gain or loss level. The number of chromosomal break points 

was calculated as the number of copy number levels within each chromosome across the genome 

minus the number of chromosomes. To calculate the number of chromosomes with break points, 

at least one break point per chromosome was necessary.     
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Microarray expression profiles and data processing 

Total RNA (3-5 µg per sample) was labeled and analyzed using Affymetrix (Santa Clara) HT-

HG_U133A Early Access Arrays with 22.9K probes representing ~13K unique Unigenes.  

Analyses were performed by standard Affymetrix procedures within the Lawrence Berkeley 

National Lab and Life Science Divison’s Molecular Profiling Laboratory 

(http://hta.lbl.gov/HTA/index.html).  Probe set measurements were generated from quantified 

Affymetrix image files (.CEL files) using the RMA algorithm in Bioconductor R.  Array data 

was deposited in the public Gene Expression Omnibus database (GSE7378 and GSE8193).   

Gene expression values were mean centered, with a low variation filter applied to exclude 

probe sets that did not have at least 10 observations exhibiting a two-fold change from the mean. 

Filtered probes were annotated (GeneTraffic annotation file, March 2006) and those with 

unknown UniGene symbols were omitted, yielding a final significant probe set of 6,632 

annotated probes representing 5,109 unique genes.  Unsupervised hierarchical clustering of the 

mean centered significant probe set was performed using Cluster [31], and visualized with Java 

TreeView [32].  Phenotypes (e.g. age cohort, PR and ERBB2 status) of the resulting clusters 

were compared by χ2 test.   

Gene Set Enrichment Analysis (GSEA) was performed using GSEA software v2.01 

(http://www.broad.mit.edu/gsea/)  [33] to assess tumor phenotypes (e.g. age cohort, PR or 

ERBB2 status) with respect to specific gene signatures including a MAPK regulated gene set 

[34], a luminal tumor subtype gene set [35], and a proliferation associated gene set [36]. The 

enrichment of all curated gene sets (c2) within the Molecular Signature Database (MSigDB) 

[33], satisfying the following gene set size filtering criteria (max = 500; min = 10), were also 

evaluated.  Ranking of Unigenes within each phenotype was based on a signal-to-noise metric; 



 11

and an enrichment score (ES) for each signature was derived as a function of the likelihood of 

that gene set being among the most highly ranked genes within the phenotype. For genes 

represented by more than one probe, the median expression level of all corresponding gene 

probes was used; and the significance of ES was estimated by 1000 random permutations of the 

sample labels in the tumor dataset.  For gene sets showing statistically significant enrichment 

with respect to age cohort (p<0.05), unsupervised clustering was performed on the entire set of 

RNA samples using those genes; as well, the outcome association of high versus low gene set 

expressors was tested by Kaplan-Meier analysis of the 54 cases with known recurrence events.  

A conditional permutation test was performed to identify differentially expressed genes 

with respect to age and conditional on the RNA sample sources (NCI-Bari and UCSF).  For each 

gene, a linear fit model of expression level versus age cohort was adjusted for the categorical 

sample source, and a p-value was based on the t-statistic on the slope of age.  However, the null 

distribution used was not the standard normal but based on permuting the age cohort distribution 

within each sample source, which provides an exact test of the conditional independence of age 

given sample source.  This was expected to control for possible different age effects within each 

sample source, and to adjust for potential spurious associations based on the different sample 

sources [37]. Reported associations between the differentially expressed genes and either cancer 

or aging were determined using the MEDGENE database 

(http://medgene.med.harvard.edu/MEDGENE/) [38], entering the following search terms: 

Neoplasm, Breast Neoplasms, Carcinomas, Breast Carcinomas, and Aging, Premature. 

Functional annotation of the differentially expressed genes was performed by Gene Ontology 

(GO) analysis [39]; and significant enrichment for specific biological functional categories (> 5 
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probes within a process class, EASE score < 0.05) was identified from the DAVID database 

(http://david.abcc.ncifcrf.gov/home.jsp) [39]. 

An age cohort gene signature was obtained by training Predictive Analysis of 

Microarrays (PAM) software (http://www-stat.stanford.edu/~tibs/PAM/) on RNA sample set 2 

(UCSF), minimizing cross-validation error for the individual age cohorts.  The resulting PAM 

classifier was used to predict the age cohort of RNA sample set 1(NCI-Bari). For external 

validation purposes, expression microarray data from Miller et al.[40] and Sotiriou et al. [41] 

were downloaded from the NCBI GEO database (GSE3494 and GSE2990).  ER-positive cases 

with age characteristics matching our age cohorts were selected, resulting in 102 cases from the 

Miller et al. study and 47 cases from the Sotiriou et al. study.  As the training set (RNA sample 

set 2) comprised only early stage tumors, PAM validation was also performed on the external 

datasets restricted to only ER-positive, node-negative cases (35 from Sotiriou et al., and 64 from 

Miller et al.). Since these microarray studies used Affymetrix U133A platforms, probe set 

measurements were generated using the RMA algorithm in Bioconductor R and the resulting 

data were mapped to our significant gene set by Affymetrix probe identifiers, to which the PAM 

classifier was applied.  The significance of the prediction accuracy was determined using Fisher 

Exact Test.    
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Results 

Age and ER-positive breast cancer genomic profiles 

Array CGH at 1 MB resolution was performed on 71 ER-positive primary breast cancer DNA 

samples from the two age cohorts: 27 younger and 44 older cases, matched for stage and 

histology (nodal status, grade, PR status). Unsupervised hierarchical clustering of the genome-

wide copy number changes (smoothed log2 ratios), as shown in Figure 1, revealed that these ER-

positive cancers comprise two basic genome aberration patterns that have been previously 

characterized from unselected breast cancer collections [28]: a simple genotype with few 

genomic copy number changes other than gain of 1q and loss of 16q, and a mixed amplifier 

genotype with recurrent amplifications and low level genomic gains and losses. Neither the two 

primary dendrogram clusters representing these two basic genotypes, nor any of the secondary 

dendrogram clusters, exhibit any bias (p > 0.3, Fisher Exact) with respect to age, nodal or PR 

status. Direct comparison of the two age cohorts for multiple array CGH parameters revealed no 

significant differences in the number of break points, chromosomes with break points, 

amplifications, chromosomes with amplifications, or whole chromosome changes; as well, the 

fraction of genome gained, lost or otherwise altered were not significantly different between the 

two age cohorts (Supplementary Figure 1). While non-significant trends suggested slightly fewer 

oncogene amplifications within the older cohort, overall amplification frequencies for the most 

common oncogene loci were as follows: MYC (8q24.2; 27%), CCND1 (11q13.3; 23%), ZNF217 

(20q32; 17%), AIB1 (20q13.12; 16%), MDM2 (12q15; 8%), ESR1 (6q25; 7%), ERBB2 (17q12; 

7%), and TOPO2A (17q21; 7%).   
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Unsupervised analysis of ER-positive breast cancer expression profiles 

RNA sample set 1 (35 NCI-Bari RNA samples) and RNA sample set 2 (66 age-matched UCSF 

samples) were combined to yield 101 RNA samples from ER-positive breast cancers, arising in 

the predefined younger (n = 53) and older (n = 48) age groups, well balanced for tumor size, 

nodal involvement, grade, PR and ERBB2 status.  Figure 2 shows the unsupervised hierarchical 

clustering of these 101 breast cancer cases, based on their gene expression similarity across 

nearly 5.1K variably expressed unique genes (6,632 probe sets), into six different transcriptome 

clusters of ER-positive breast cancer (groups 1A, 1B, 2A, 2B, 3A, 3B).  The four different ESR1 

probes on the array defined two primary ESR1-associated probe set clusters, including genes 

(e.g. GATA3, KRT8, KRT18) commonly used to define luminal-type breast cancers [35, 36, 42-

44]. There was an average 65-fold range in the ESR1 transcript levels across this entire collection 

of 101 breast cancers, with the ESR1-associated probes showing similar variations. The six 

different transcriptome clusters showed no significant bias with respect to tumor PR and ERBB2 

status; in contrast, two of the clusters were composed primarily of younger cases (64% of group 

1A, 81% of group 2B) and one was composed primarily of older cases (68% of group 2A). When 

cluster composition with respect to age, PR and ERBB2 status were statistically compared, only 

the age cohort distribution was found to be significantly different (χ2 test, p < 0.05). Patient 

outcome data were available on 54 (30 young, 24 old) of the 101 cases, scattered evenly among 

the six transcriptome clusters. Kaplan-Meier probability curves for recurrence-free survival 

(RFS) indicated that younger age and PR-negative status were associated with earlier relapse, but 

these outcome differences did not quite reach statistical significance (age: p = 0.09, PR: p = 0.08; 

log-rank analyses). However, Kaplan-Meier curves for cases representing each of the six 

transcriptome clusters did achieve significant separation (p = 0.025, log rank), with the 
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predominantly younger group 2B cases showing the shortest survival (median RFS = 2.5 y) and 

the predominantly older group 2A cases showing significantly more prolonged survival (median 

RFS = 6.2 y).           

 

Gene set enrichment analysis 

Probe sets for the variably expressed genes were subjected to Gene Set Enrichment Analysis 

(GSEA) with respect to each age cohort for MAPK regulated genes [34], luminal subtype 

markers [35], and a gene proliferation signature [36] (gene signatures in Supplement Table 1). 

As shown in Table 1, in addition to comparing the age cohorts, these gene signatures were used 

to compare PR-negative vs. PR-positive and ERBB2-negative vs. ERBB2-positive cases. There 

was no enrichment of any of the three gene signatures according to tumor PR status; and only the 

proliferation signature showed any significant relationship to ERBB2 status, with these 

proliferation genes more highly expressed in the ERBB2-positive breast cancer cases (nominal p 

= 0.01; adjusted for multiple comparisons, p = 0.02).  Neither MAPK up-regulated nor MAPK 

down-regulated genes showed any significant relationship with age cohort, PR or ERBB2 status 

when multiple gene set testing were taken into account. Luminal markers, commonly used as an 

expression array signature for ER-positive breast cancers, showed no significant relationship 

with age cohort, ERBB2 or PR status, although there was a non-significant trend for luminal 

gene expression to associate with PR-positive cases. Proliferation genes were significantly more 

highly expressed in the younger cohort (nominal p = 0.006; adjusted for multiple comparisons, p 

= 0.011).  Interestingly, of the other 1,176 c2:curated gene sets (passing through the size filter) 

similarly evaluated, none showed significant enrichment according to age, tumor PR or ERBB2 

status when multiple testing was accounted for although two notable trends were observed: cell 



 16

cycle genes, as annotated by GO (c2:500), were enriched in the younger age cohort (nominal 

p=0.006, FWER p=0.118); and early response genes downregulated by enforced expression of a 

naturally transforming chimeric HOX developmental gene,  NUP98-HOXA9 (c2:934) [45], were 

enriched in the older age cohort (nominal p=0.000, FWER p=0.112). As shown in Figure 3A, 

when the proliferation genes were used to perform unsupervised hierarchical clustering of the 

101 cases, two comparably sized subsets were identified. The subset with more highly expressed 

proliferation genes contained most of the younger age cases (34/52) and all but one of the 

ERBB2-positive cases (χ2, p < 0.05). These proliferation genes were also used to dichotomize 

the 54 cases with known clinical outcome; as shown in the Kaplan-Meier curves in Figure 3B, 

cases with more highly expressed proliferation genes exhibited significantly worse RFS survival 

(p = 0.002, log rank).   

 

Differential gene expression between age cohorts 

A conditional permutation strategy was used to identify 75 unique genes (84 probe sets) 

differentially expressed between younger and older cohorts (FDR p<0.05), listed in Table 2. Of 

these, 24 genes (28 probes) showed increased expression in the younger cohort relative to older 

cohort (including GREB1 and AREG), while 51 genes (56 probes) showed increased expression 

in the older cohort relative to younger cohort (including ESR1). Interestingly, the E- responsive 

genes, GREB1 and AREG, showed higher expression in the younger cohort which showed 

significantly lower ESR1 expression.  A MEDGENE database search (disease terms 

“neoplasms,” “breast neoplasms,” “carcinomas,” or “carcinoma, ductal, breast”) indicated that 

29 of the 74 differentially expressed genes had a published first degree association with cancer; 

in contrast, none of 74 genes had any published association with aging (disease terms “aging, 
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premature”). Gene ontology (GO) analysis was used to determine if the 74 genes differentially 

expressed between the age cohorts were enriched for specific biological processes. Several 

functional categories were significantly over-represented (EASE score < 0.05) in this gene set 

[39], including development, cell cycle, M-phase, morphogenesis and reproduction. As noted in 

Table 2, 17 of the genes were associated with development and 9 genes were associated with the 

cell cycle, including 5 specifically associated with M-phase.      

 

Defining and validating an age cohort signature in ER-positive breast cancers 

PAM was applied to RNA sample set 2 to derive an age cohort signature consisting of 128 

unique genes (145 probes), half of which were overexpressed in the younger cohort relative to 

the older cohort and half overexpressed in the older cohort relative to the younger cohort (Figure 

4A). This signature (Supplement Table 2) was first validated against RNA sample set 1 and then 

independently validated against two external breast cancer microarray datasets that included 102 

ER-positive from Miller et al. [40] and 47 ER-positive from Sotiriou et al. [41] fitting our age 

selection criteria. The PAM-derived age signature correctly identified older from younger ER-

positive cases in all three validation sample sets with comparable accuracy >80% (Figure 4B), 

and high statistical certainty (p = 1.3E-7 to 4.2E-12). Interestingly, the majority of errors were 

misclassifications of cases from the older cohorts as younger cases. Misclassification bias could 

not be associated with either nodal status or outcome differences in the Miller et al. and Sotiriou 

et al. datasets; in fact, when these external validation datasets were further restricted to node-

negative cases to match the training set, only a modest increase was observed in predictive 

accuracy at the expense of statistical certainty (90%, p = 1.7E-4 for Sotiriou et al.; 86%, p = 

1.6E-7 for Miller et al.). ESR1 and AREG were among the 44 genes in common between the age 
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signature gene set and the differentially expressed gene set; and, as shown in Figure 4C, age 

signature-defined subsets from all four sample dataset showed similar differences in mean 

expression levels (log2 intensity) for both ESR1 and AREG. Of note, a PR signature was 

similarly derived from RNA sample set 2 (103 probes; Supplement Table 3), but showed only 

67% accuracy (p = 0.1) in predicting the PR status of RNA sample set 1. 

 

Discussion   

Although there have been numerous studies of clinical factors addressing the relationship 

between age-at-diagnosis and breast cancer prognosis [12, 14, 16, 46-48], few studies have 

comprehensively investigated the age-dependency of the many well established prognostic breast 

cancer biomarkers and none using a prospective study design [13, 18]. Concerned about the 

established inverse relationship between ER status and poor-risk biomarker surrogates of breast 

cancer proliferation and genomic instability [13, 18],  the present study aimed to identify 

genomic and transcriptome changes associated with aging using DNA and RNA prospectively 

collected from stage- and histology-matched ER-positive breast cancers from younger (< age 45) 

and older (> age 70) women, analyzed by array CGH and high-throughput expression 

microarrays. Similar bioinformatics-based approaches have been used to characterize aging 

effects in human fibroblasts [5, 6], lymphocytes [5] and myoblasts [49]; however, comparable 

efforts to investigate aging influences on human cancer biology have not been reported. 

Moreover, while ER-positive breast cancers have been well studied as a subgroup within 

unselected breast cancer phenotypes using array CGH [28, 50] or expression profiling [35, 36, 

42-44], the present study represents the largest reported to date using these powerful techniques 
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to subset ER-positive breast cancers, while employing a statistical design powered to detect age-

specific differences.      

Array CGH analysis of 71 DNA samples confirmed that our ER-positive breast cancers 

were composed of two basic genotypes [28]: a simple subtype characterized by few genomic 

copy number changes other than gain of 1q and loss of 16q, and a mixed amplifier subtype 

characterized by recurrent amplifications but otherwise low levels of genomic gains and losses. 

A third genomic subtype of breast cancer, referred to as complex, known to be almost 

exclusively composed of ER-negative breast cancers [28], was not observed in either of the two 

age cohorts studied.   Neither the simple nor mixed amplifier genomic subtypes of ER-positive 

breast cancer showed any particular age bias. Direct comparison of the two age cohorts for 

multiple array CGH parameters also revealed no significant differences in: the fraction of 

genome altered, whole chromosome changes, total or site-specific amplicon frequencies.  

Although non-significant trends suggested slightly fewer oncogene amplifications within the 

older cohort, overall amplification frequencies for the most common oncogenes were as expected 

for ER-positive breast cancers [44, 51]: MYC (27%), CCND1 (23%), ZNF217 (17%), AIB1 

(16%), MDM2 (8%), ESR1 (7%), ERBB2 (7%), and TOPO2A (7%). Thus, at the level of 

genomic resolution (~1MB) achievable by BAC-based array CGH, there appeared to be few if 

any genetic differences between ER-positive breast cancers arising in women whose ages differ 

by more than 25 years. Future studies employing higher density genomic arrays are warranted to 

confirm this conclusion.  

Microarray profiling of 101 RNA samples showed an average 65-fold range in ESR1 

transcript levels across the entire collection of ER-positive breast cancers, with the older cohort 

showing significantly higher ESR1 levels as compared to the younger cohort, consistent with 
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earlier biomarker studies [13]. There was the expected close correlation between the ESR1 

transcript levels and commonly observed ESR1 co-expressed genes (e.g. GATA3) as well as other 

genes (e.g. KRT8, KRT18) that characteristically define luminal-type breast cancer, although this 

tumor collection also contained several ERBB2-positive cases (10/101) which are not 

characteristically found in microarray-defined clusters of luminal-type breast cancer [35, 36, 42-

44]. Hierarchical clustering of the ~5.1K variably expressed genes also identified six 

transcriptome subtypes of ER-positive breast cancer with significant age biases (p < 0.05) but not 

associated with differing PR status. Based on relapse-free survival analyses of the 54 cases with 

known clinical outcome (30 young, 24 old), there was a trend supporting less favorable 

prognosis for the younger age (p = 0.09) and PR-negative cases (p = 0.08). However, the six age-

biased transcriptome clusters showed significantly different relapse-free survival outcomes (p = 

0.025, log rank), suggesting that these transcriptome subtypes represent clinically relevant 

phenotypes of ER-positive breast cancer. Previous expression array studies analyzing fewer ER-

positive cases have identified no more than two or three subsets of luminal-type breast cancer 

[35, 36, 42-44].   

Reported gene signatures representing luminal, proliferation and MAPK markers were 

tested for their enrichment in one or the other of the age stratified cohorts, and only the 

proliferation gene signature showed any significant age bias when multiple testing was 

accounted for, being more highly expressed in the younger cohort. This finding is consistent with 

earlier studies showing higher tumor grade and proliferation markers (e.g. mitotic index and Ki-

67 positivity) in younger age breast cancer patients [13]. While none of the >1000 curated gene 

sets in MSigDB that were similarly evaluated demonstrated any significant age biases when 

multiple testing was account for, a trend was observed for enrichment of cell cycle genes in the 
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younger cohort cases. Nine genes common to both the GO biological process cell cycle set and 

the proliferation signature set (BUB1, CCNB1, CCNE2, CDC25A, CDC7, MAD2L1, MCM4, 

ORC6L, PTTG1) were also present in our significant probe set. Among these, four (BUB1, 

CCNE2, MAD2L1, ORC6L) have been previously associated with poor prognosis ER-positive 

breast cancers in a well-established 70-gene prognostic signature [51]; thus, these are likely 

important contributors to the more aggressive tumor characteristics of ER-positive breast cancers 

arising in younger patients.   

Using only the proliferation gene signature to perform unsupervised hierarchical 

clustering of the 101 cases generated two comparably sized ER-positive subsets, one with higher 

and another with lower expression of the proliferation genes; the higher expressing subset 

contained most of the younger age cases (34/52) and all but one of the ERBB2-positive cases. 

When this proliferation signature was also used to dichotomize the 54 cases with known clinical 

outcome, the higher expressing cases showed significantly worse disease-free survival as 

compared to the lower expressing cases, consistent with reports on the association of a similar 

proliferation signature with poor outcome in patients with ER-positive breast cancer [52].  

Interestingly, despite a presumed mechanistic link between activation of growth factor receptors, 

MAPK signaling and cell proliferation, there was minimal overlap between genes in the reported 

MAPK and proliferation signatures, and no significant association was observed between the 

MAPK signature, age and ERBB2 positivity.  

Despite the observed positive association between ESR1 expression level and older age, 

no age association was seen for the luminal gene signature which included ESR1, ESR1-

associated genes, and E-inducible genes. This finding is consistent with our previous report 

showing increased breast cancer ER protein with aging without comparably increased levels of 
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such E-inducible markers as PR, pS2, Bcl2 and cathepsin D [13], and suggesting reduced E 

signaling in breast tumors of older patients. In keeping with these protein biomarker 

observations, differential gene expression analysis in the present study did not identify any 

known E-inducible genes like TFF1, PGR, IRS1, IGFBP4, PCNA, MYC, CCNA2, or DLEU2 as 

being more highly expressed in the older cohort despite higher expression of ESR1 in this cohort. 

In contrast, two E-inducible growth-regulating genes, GREB1 and AREG, showed significantly 

higher expression levels in the younger cohort, in keeping with a recent study demonstrating a 

negative correlation between these E-inducible genes and age [20].  As GREB1 and AREG are 

known to induce cell proliferation upon E activation [53, 54], their increased expression in the 

younger cohort offers some mechanistic basis for increased proliferative activity and gene 

expression in the younger cohort.  

  Of the 75 unique genes differentially expressed between younger and older cohorts, 24 

showed increased expression in younger relative to older cases (including GREB1 and AREG) 

while 51 showed increased expression in older relative to younger cases (including ESR1). 

Comparison with a well studied E-inducible gene signature set [20] revealed that ~25% (19/75) 

of these differentially expressed genes overlapped with known early or late E responsive genes 

and thus potentially reflected hormonal changes associated with menopause rather than aging 

effects. While two-thirds (13/19) of these potential E responsive genes showed appropriate 

directional changes according to cohort menopausal status supporting this possibility, at least 

75% of the differentially expressed genes would appear to be independent of menopausal 

differences in circulating E levels and, therefore, potentially informative of age-related 

differences in ER-positive breast cancer biology.  A comprehensive database search confirmed 

that at least 40% of these differentially expressed genes have reported direct links with 
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malignancy; and while none have reported links with premature aging, one of the differentially 

expressed genes (KIF2C) has been previously implicated in aging studies of lymphocytes and 

fibroblasts [5], while six others (COBLL1, HPGD, HOXB2, PDE4A, SLC25A12, TP73L) were 

recently reported as differentially expressed with age in human skeletal muscle [55]. A search for 

annotated enrichment of the differentially expressed genes for specific biological processes (GO 

Biological Processes, EASE score < 0.05) indicated that “development” and “cell cycle/M-

phase” were the most overrepresented functional gene categories. In keeping with the GSEA 

observation indicating a trend for enrichment of cell cycle associated genes in the younger cohort 

cases, differentially expressed cell cycle/M-phase genes (including positive regulators like STK6, 

FGFR1, and DLG7) represented 20% (5/25) of all genes overexpressed in the younger cohort but 

only 8% (4/51) of those overexpressed in the older cohort. In contrast, the older cohort cases 

showed differentially increased expression of negative cell cycle regulators (like SASHI and 

RHOB) and four developmentally essential homeobox genes (HOXB2, HOXB5, HOXB6, 

HOXB7), the latter finding also in keeping with the GSEA observed trend showing enrichment in 

the older cohort of HOX-regulated (NUP90-HOXA9 repressed) genes. Two of the overexpressed 

HOXB genes (HOXB6, HOXB7) have been specifically linked to mammary gland development 

and are known to be expressed in ER-positive breast cancer cells [56]. HOXB7, in particular, is 

known to be dependent on stromal (extracellular matrix) signaling, is transcriptionally 

upregulated in breast cancers metastatic to bone (relative to primary tumors), and is thought to 

play a role in promoting angiogenesis, growth factor-independent proliferation, and DNA 

double-strand break repair, conferring breast cancer resistance to the genome destabilizing 

effects of DNA damage [57].   
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Predictive analysis of microarrays (PAM) was used to derive an age signature that 

consisted of 128 unique genes, including 44 of the 75 differentially expressed genes determined 

by our conditional permutation approach. The age signature was independently validated against 

two other age-matched ER-positive breast cancer microarray datasets and proved to have >80% 

accuracy in distinguishing younger from older ER-positive breast cancer cases. ESR1 and AREG 

were among the genes in common between the age signature and the differentially expressed 

gene sets; thus it is not surprising that the age signature-defined subsets from the two 

independent databases showed similar differences in the mean expression levels of these two 

genes as found in our age-defined cohorts. Only 28% of the age signature genes overlap with 

known early or late E responsive genes, suggesting that this age signature largely reflects age-

related differences in the phenotype of ER-positive breast cancer rather than differences in 

circulating E levels associated with menopausal status. The fact that a PAM-derived PR 

signature did not perform well upon validation implies substantial heterogeneity between ER-

positive breast cancers with the same PR status, and possibly indicates that confounding age-

related gene expression changes are of greater biological importance than PR-related gene 

expression differences. Misclassification errors using the age signature were more prevalent 

among the older cohort cases, also suggesting greater variation in expression of the age signature 

genes with aging. Of further interest, the 128 age signature gene set was unable to accurately 

subset ER-negative cases identified from the two independent breast cancer datasets [40, 41], 

consistent with expression array based conclusions that the biology of ER-positive and ER-

negative breast cancers are fundamentally distinct, and supporting the likelihood that the PAM-

derived age signature incorporates biological profiles specific to ER-positive but not ER-

negative breast cancers.  
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Conclusions 

This prospectively designed study addresses a pressing need to evaluate molecular and cellular 

hypotheses proposed to explain age-related differences in breast cancer incidence and clinical 

behavior. It is hard to reconcile the evidence gathered in this study of ER-positive breast cancers 

with the more general cancer-aging postulate that the breast cancer-prone phenotype of an older 

woman results from genomic instability and age-accumulated mutational loads secondary to 

telomeric dysfunction and/or progressive DNA damage [9]. More consistent with the present 

evidence is the likelihood that ER-positive breast cancers arising in older relative to younger 

women do so by a fundamentally different tumorigenic process, manifested more by epigenetic 

transcriptome differences such as those regulated by HOX genes, and less by genomic 

differences which were not detected using state-of-the-art BAC-based CGH analyses. More 

pronounced expression of cell cycle and  proliferation associated genes emerged as a strong 

defining feature of ER-positive breast cancers arising in younger women, perhaps even driving 

their earlier clinical appearance; this observation is certainly consistent with the more aggressive 

clinical nature of early age onset breast cancer. Age cohort study designs of this type are needed 

to not only confirm the specific transcriptome differences noted here but also to look for 

common age-associated differences in gene classes and functional pathways that may enable us 

to generalize about the age-related biological differences driving ER-negative breast 

tumorigenesis as well as the many other age-associated epithelial malignancies besides breast 

cancer.  
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Figure legends 

 

Figure 1. 

Unsupervised hierarchical clustering of 71 primary ER-positive breast cancers, diagnosed in 

younger (< age 45) or older (> age 70) women, based on genome-wide DNA copy number 

aberrations. As previously reported for BAC-based array CGH analyses of human breast cancer 

samples [5], columns represent individual tumor samples and rows represent individual genome 

probes (BAC clones), ordered by chromosome and genome position with 1pter at the top and 

22qter at the bottom. Chromosome p-arms and q-arms are shown as different shades of the same 

color (blue = odd numbered chromosomes, yellow = even numbered chromosomes). As 

indicated in the color scale below, genome copy number losses are indicated in red and copy 

number gains are indicated in green. Yellow dots represent high level genomic amplifications. 
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Colored and grey-toned upper bars identify the age cohort, PR, nodal and grade status of the ER-

positive samples in each column. The dendrogram shows unsupervised classification of the 71 

samples into two primary clusters and four secondary clusters, with no significant cluster bias 

according to age, PR, nodal or grade status (p > 0.3, Fisher Exact).  

 

Figure 2. 

Unsupervised hierarchical clustering of 101 primary ER-positive breast cancers, diagnosed in 

younger (< age 45) or older (> age 70) women, based on genome-wide microarray profiling of 

6,632 variably expressed probes (~5.1K unique genes). Cluster dendrogram defines six different 

transcriptome subtypes of ER-positive breast cancers (Group 1A, 1B, 2A, 2B, 3A, 3B), with 

significant age biases (p < 0.05) but not biased by PR or ERBB2 status; horizontal colored bars 

identify the age cohort, PR and ERBB2 status of the ER-positive samples in each column. 

Vertical red-green color scale shows log2 ratios from mean centered gene expression levels. 

Magnified views show ESR1-containing (ER-associated) probe sets within the entire cluster 

diagram.       

 

Figure 3. 

Assessment of ER-positive breast cancer subsets by Gene Set Enrichment Analysis (GSEA) for 

specific gene signatures.  A. Unsupervised clustering of the 101 primary ER-positive breast 

cancers shown in Figure 2 based only on expression of the 71-gene proliferation signature shown 

to be significant by GSEA, revealing two major clusters (high and low expressors of 

proliferation signature) with significant biases in age and ERBB2 status; horizontal colored bars 

identify the age cohort, PR and ERBB2 status of the samples in each column. B. Kaplan-Meier 
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plots of recurrence events among the 54 ER-positive cases with known clinical follow-up, 

dichotomized by high (red) or low (green) expression of the 71-gene proliferation signature, with 

significance determined by log rank analysis.        

 

Figure 4. 

Prediction Analysis of Microarrays (PAM)-derived age signature validated against independent 

ER-positive breast cancer datasets.  A. UCSF RNA sample set 2 (n = 66, younger and older) was 

used to train PAM and derive a 145-probe (128 gene) age cohort classifying signature, arranged 

in ascending order of the PAM score for cases in the older cohort. B. Actual and signature-

predicted age cohort designations for the validating UCSF RNA sample set 1 (n = 35) and two 

external validating datasets restricted to ER-positive cases with identical age cohort 

characteristics, Sotiriou et al. [41] and Miller et al. [40]. Prediction accuracies are indicated, with 

Fisher’s Exact Test p values for significance. C. Age signature-defined subsets from all four 

sample datasets show similar differences in log2 expression levels (mean, + SD) of AREG and 

ESR1.  
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Table 1. 

GSEA results for gene list tested 

old over young cohort PR- over PR+ tumors ERBB2- over ERBB2+ 
tumors 

          Comparison 

 

Gene Set ES Nominal 
P 

FWER 
P 

ES Nominal 
P 

FWER P ES Nominal 
P 

FWER P 

MAPK up-regulated 0.44 0.05 0.13 0.28 0.49 0.67 0.28 0.46 0.65 

MAPK down-regulated -0.36 0.17 0.4 -0.31 0.33 0.57 0.26 0.26 0.68 

Luminal Markers 0.31 0.72 0.79 -0.63 0.1 0.15 0.48 0.38 0.57 

Proliferation Markers -0.85 0.006 0.011 0.62 0.32 0.38 -0.83 0.01 0.02 

Note: Gene sets showing significant enrichment after adjustment for multiple gene set testing (FWER P <0.05) are 
highlighted in bold 
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Table 2.  

Differentially expressed genes between the young and old cohorts 

Genes with Higher Expression in the Young Cohort 

UniGene Symbol Fold Change 
(young/old) 

UniGene Name 

AREG* 3.12 amphiregulin (schwannoma-derived growth factor) 

PRSS2* 2.71 protease, serine, 2 (trypsin 2) 

GREB1* 2.34 GREB1 protein 

PTHLH* (†) 2.01 parathyroid hormone-like hormone 

HPGD** 1.98 hydroxyprostaglandin dehydrogenase 15-(NAD) 

SPANXA1 /// SPANXB1 /// 
SPANXA2 /// SPANXC** /// 
SPANXB2 1.91 

sperm protein associated with the nucleus, X-linked, family 
member A1 /// SPANX family, member B1 /// SPANX family, 
member A2 /// SPANX family, member C /// SPANX family, 
member B2 

LAMA3 (†) 1.87 laminin, alpha 3 

ATP6V1B1**  1.82 
ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B, 
isoform 1 (Renal tubular acidosis with deafness) 

S100A2* (†) 1.79 S100 calcium binding protein A2 

DIO2** 1.79 deiodinase, iodothyronine, type II 

PRSS1*/// PRSS2* /// PRSS3 /// 
TRY6 1.77 

protease, serine, 1 (trypsin 1) /// protease, serine, 2 (trypsin 2) 
/// protease, serine, 3 (mesotrypsin) /// trypsinogen C 

FGFR1* (†,§) 1.65 fibroblast growth factor receptor 1  

TP73L* (†) 1.60 tumor protein p73-like 

PRSS1* 1.59 protease, serine, 1 (trypsin 1) 

C20orf59 1.57 chromosome 20 open reading frame 59 

DLG7* (‡) 1.56 discs, large homolog 7 (Drosophila) 

ELOVL2**  1.52 
elongation of very long chain fatty acids (FEN1/Elo2, 
SUR4/Elo3, yeast)-like 2 

KIF2C* (‡)  1.50 kinesin family member 2C 

STK6* (‡) 1.49 serine/threonine kinase 6 

UST** 1.47 uronyl-2-sulfotransferase 

CDC14A(‡) 1.42 CDC14 cell division cycle 14 homolog A (S. cerevisiae) 

ELL3** 1.42 elongation factor RNA polymerase II-like 3 

RAD54B** (‡) 1.41 RAD54 homolog B (S. cerevisiae) 

ITGA2* (†,§) 1.33 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 

 
Genes with Higher Expression in the Old Cohort 

UniGene Symbol Fold Change 
(old/young) 

UniGene Name 

HOXB6* (†) 2.40 homeo box B6 

TMC5 2.36 transmembrane channel-like 5 

HOXB2** (†) 1.99 homeo box B2 

ST6GALNAC5 1.99 

ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 5 /// ST6 
(alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 5 
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KIAA1102 1.82 KIAA1102 protein 

PYGL** 1.82 
phosphorylase, glycogen; liver (Hers disease, glycogen 
storage disease type VI) 

TNFSF10* 1.82 
tumor necrosis factor (ligand) superfamily, member 10 /// 
tumor necrosis factor (ligand) superfamily, member 10 

GOLPH2** 1.78 golgi phosphoprotein 2 

DSPG3** 1.75 dermatan sulfate proteoglycan 3 

GLRX** 1.75 glutaredoxin (thioltransferase) 

FLJ20152 1.73 hypothetical protein FLJ20152 

GATM** 1.72 
glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) 

ENTPD5* 1.69 ectonucleoside triphosphate diphosphohydrolase 5 

SASH1* (‡)  1.69 SAM and SH3 domain containing 1 

ITPR1* 1.68 inositol 1,4,5-triphosphate receptor, type 1 

ANG** (†,§) ///RNASE4 1.66 
angiogenin, ribonuclease, RNase A family, 5 /// ribonuclease, 
RNase A family, 4 

IQGAP2* 1.63 IQ motif containing GTPase activating protein 2 

MANSC1 1.62 MANSC domain containing 1 

HOXB5** (†,§) 1.60 homeo box B5 

FAH* 1.60 fumarylacetoacetate hydrolase (fumarylacetoacetase) 

ARHGDIB** (†) 1.60 Rho GDP dissociation inhibitor (GDI) beta 

TAPBPL** 1.59 TAP binding protein-like 

CLMN** 1.56 calmin (calponin-like, transmembrane) 

ESR1* (†,§, ‡) 1.56 estrogen receptor 1 

EFNA1* 1.56 ephrin-A1 

COBLL1 1.56 COBL-like 1 

P8* (†, M) 1.55 p8 protein (candidate of metastasis 1) 

SC5DL 1.52 
sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, 
fungal)-like 

CLEC5A 1.52 C-type lectin domain family 5, member A 

SEPT6 (‡) 1.52 septin 6 

RHOB* (†,§, ‡) 1.52 ras homolog gene family, member B 

CYB5 1.51 cytochrome b-5 

PDE4A* 1.50 
phosphodiesterase 4A, cAMP-specific (phosphodiesterase E2 
dunce homolog, Drosophila) 

C21orf25 1.49 chromosome 21 open reading frame 25 

CCL3** /// CCL3L1 /// CCL3L3 1.49 
chemokine (C-C motif) ligand 3 /// chemokine (C-C motif) 
ligand 3-like 1 /// chemokine (C-C motif) ligand 3-like 3 

CCDC28A 1.46 coiled-coil domain containing 28A 

CALM3 1.46 calmodulin 3 (phosphorylase kinase, delta) 

PPFIBP2** 1.46 PTPRF interacting protein, binding protein 2 (liprin beta 2) 

DBI** 1.46 
diazepam binding inhibitor (GABA receptor modulator, acyl-
Coenzyme A binding protein) 

SLC25A12** 1.45 
solute carrier family 25 (mitochondrial carrier, Aralar), 
member 12 

CPM* (†,§) 1.44 carboxypeptidase M 

MARCH8 1.43 membrane-associated ring finger (C3HC4) 8 
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FLJ20298 1.41 FLJ20298 protein 

SLC12A8** 1.40 
solute carrier family 12 (potassium/chloride transporters), 
member 8 

FUCA1* 1.39 fucosidase, alpha-L- 1, tissue 

LOC57146 1.38 promethin 

RANBP2** 1.36 RAN binding protein 2 

HOXB7* (†) 1.36 homeo box B7 

PANX1** 1.33 pannexin 1 

TGOLN2* 1.31 trans-golgi network protein 2 

VWA1** 1.29 von Willebrand factor A domain containing 1 

 
Note 1:  * denotes genes showing first degree association with cancer.   ** denotes genes showing second 
degree association with cancer.  Associations were as determined through Medgene database searches 
with terms Carcinoma, Ductal Breast Carcinoma, Neoplasms and Breast Neoplasms. 
 
Note 2:  Marked in parenthesis are three major GO biological processes found to be enriched among the 
75 differentially expressed genes.  Enrichment was defined as EASE score < 0.05.  (†) denotes genes 
involved “development”; (§) denotes genes involved in morphogenesis and (‡) denotes genes involved 
in the cell cycle as functionally annotated by DAVID and contributed to the enrichment probability 
calculations.           
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Additional files 

 

Supplementary Table 1. 

Gene Sets used for GSEA.  All gene sets were mapped to corresponding Unigene symbols for 

input into GSEA software. 

 

Supplementary Table 2. 

PAM-derived age signature selected on the bases of minimizing individual cross-validation 

errors for both old and young cohorts.  The “o score” and “y score” represents a probe’s 

contribution to the classification into corresponding age cohorts. 

Supplementary Table 3:  PAM-derived PR signature selected on the bases of minimizing 

individual cross-validation errors for both PR- and PR+ groups.  The “neg score” and “pos 

score” for each probe denotes its contribution to the classification of the PR status of a particular 

tumor. 

 

Supplementary Figure 1. 

Comparison between the two age cohorts in array CGH parameters: Number of break points, 

Number of chromosomes with break points, Number of amplifications, Number of chromosomes 

with amplifications, whole chromosome changes, the fraction of genome gained,  fraction of 

genome lost and fraction of genome altered.  
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