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Abstract

Background: Human aging is associated with DNA methylation changes at specific sites in the genome. These

epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age.

Results: We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites

in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced

pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and

PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging

signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This

precision is higher than age predictions based on telomere length. Variation of age predictions correlates

moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes

are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic

anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe

telomere attrition - are predicted to be prematurely aged.

Conclusions: Our epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood.

Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of

chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool.

Thus, epigenetic changes upon aging seem to reflect biological aging of blood.

Background
Aging reflects accumulation of cellular changes, due to

either stochastic defects or a regulated developmental

process [1]. This process is usually measured chrono-

logically, although it does not perfectly correlate with

time: 'biological age' is influenced by additional parame-

ters such as genetic background, disease and lifestyle.

Biomarkers for biological aging are relevant for geriatric

assessment and may support the adaptation of habits to

assist healthy aging [2]. Leukocyte telomere length has

been suggested as a marker for biological age [3]. In fact,

telomere attrition seems to be enhanced by various

parameters, such as obesity and cigarette smoking [4].

Several other molecular methods can be used to esti-

mate human age, including analysis of age-dependent

deletions of mitochondrial DNA [5] or T-cell DNA rear-

rangements [6], and protein alterations such as racemi-

zation of aspartic acid [7] and advanced glycation end

products [8]. However, all of these biomarkers have rela-

tively low precision and practical limitations [9].

The epigenetic landscape provides new perspectives

for biomarkers. In particular, DNA methylation (DNAm)

is well known to change during aging [10]. Various

recent studies have demonstrated the presence of age-

related CpG sites (AR-CpGs), which are either hyper-

methylated or hypomethylated [11-14]. These DNAm

changes are significantly enriched in bivalent chromatin

domain promoters [15] and Polycomb group protein tar-

get genes [16-18], indicating that they might be gov-

erned by a developmental process. It is still not clear
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how epigenetic modifications are regulated during aging

or if they rather reflect an increased deviation of local

DNAm levels due to loss of control at specific loci [19].

Some CpG sites reveal almost linear DNAm changes

during aging and can therefore be used for age predic-

tion [19-21]. Bocklandt et al. [20] described a predictor

of age in saliva samples generated using DNAm profiles

from 34 twin pairs, indicating that age prediction based

on just a few CpG sites is feasible, although this has not

been validated in an independent set of samples. More

recently, Hannum et al. [19] built a quantitative model

of aging using DNAm values of 71 CpG sites that has

been validated on various independent datasets. How-

ever, these studies were based on Illumina BeadChip

technology, a method that requires complex bioinfor-

matic analysis. In this study, we address the question of

whether an assay based on bisulfite pyrosequencing of

just a few CpG sites might be a less costly, faster, and

user-friendly approach with similar accuracy to DNAm

profiling approaches. To this end, we pooled publicly

available DNAm profiles derived from blood samples to

identify AR-CpG sites that, when combined, best predict

donor age. Based on this analysis we developed an epi-

genetic aging signature that requires measurement of

DNAm levels at only three CpG sites by bisulfite se-

quencing to facilitate reliable age predictions. Notably,

these age predictions are influenced by clinical and life-

style parameters, indicating that they are more indicative

of biological age than chronological age.

Results
Age-related DNAm changes in blood samples

We combined 575 DNAm profiles derived from blood cells

from four different studies spanning an age range of 0 to

78 years (Table S1 in Additional file 1) [15,16,22,23]. All of

these DNAm profiles were generated with the Human-

Methylation27 BeadChip platform, which covers 27,578 in-

dividual CpG sites [24]. AR-CpGs with linear DNAm

changes during aging were selected by Pearson correlation

(either r > 0.85 or r < −0.85): 102 CpG sites passed these

stringent parameters, including 58 hypomethylated and 44

hypermethylated CpGs (Figure 1a; Additional file 2).

In particular, the hypomethylated AR-CpGs were associ-

ated with genes involved in 'hematopoietic regulation', indi-

cating that these age-related DNAm (AR-DNAm) changes

reveal some tissue specificity (Table S3 in Additional file 1).

Hypermethylated AR-CpGs were enriched within GC-rich

sequences (Figure S1a in Additional file 1) [13]. Predicted

transcription factor binding sites within 1 kb up- and

downstream of AR-CpG sites differed considerably for

hypo- and hypermethylated loci (Figure S1b in Additional

file 1). Furthermore, only hypermethylated CpGs were sig-

nificantly enriched in regions with bivalent histone modifi-

cations in embryonic stem cells (ESCs) and the H3K27me3

(trimethylation of lysine 27 of histone 3) marker in mono-

cytes and mononuclear cells (Figure S2 in Additional file 1)

[25,26], which has also been described before [15]. Overall,

age-associated hypermethylation occurred particularly in

regions with low DNAm levels, whereas age-related hypo-

methylation occurred at highly methylated regions. This

trend towards a moderate methylation level has recently

been described by other authors and may support the no-

tion that many AR-DNAm changes are due to epigenetic

drift evoked by increasing entropy of CpG markers, which

tends towards 50% (Figure S3 in Additional file 1) [19,27].

Either way, the underlying mechanism resulting in AR-

DNAm changes at specific genomic regions seems to differ

for hypo- and hyper-methylated CpGs.

We trained a multivariate linear model to predict donor

age based on the 102 AR-CpG sites selected by Pearson

correlation. The results correlated well with chronological

age with a mean absolute deviation (MAD) from chrono-

logical age of only 3.34 years (root mean square error

(RMSE) = 4.26 years; R2 = 0.98; Figure 1b). These AR-CpG

sites were further validated in three other publicly avail-

able datasets derived from blood samples [28-30] using

the same multivariate linear model: the MAD from

chronological age in these datasets was only slightly higher

(GSE49904, 5.79 years; GSE41037, 5.52 years; GSE37008,

4.02 years; Figure S4a in Additional file 1). Furthermore,

we considered the recently published dataset by Hannum

and co-workers [19] of 656 DNAm profiles derived from

blood samples (from donors aged 19 to 101 years). This

dataset has been analyzed on the HumanMethylation450

BeadChip, which assays 485,577 CpG sites, including 99

of the 102 AR-CpG sites [31]. When we applied our multi-

variate linear model to this dataset, there was a clear cor-

relation between age prediction and chronological age

(R2 = 0.71). However, the linear offset indicated a system-

atic bias that might be due to the three missing CpG sites

or to the different assay design of the two microarray plat-

forms [31]. Therefore, we adjusted the multivariate regres-

sion model to facilitate age predictions based on these 99

AR-CpG sites, similar to the above-mentioned model

(MAD, 4.12 years; RMSE, 5.34 years; R2 = 0.87; Figure

S4b,c in Additional file 1).

Age-related DNAm changes are counteracted in

pluripotent stem cells

We have recently demonstrated that senescence-associated

DNAm changes - which accumulate during long-term cul-

ture of cells in vitro - can be reversed by reprogramming

into induced pluripotent stem cells (iPSCs) [32,33]. Here,

we analyzed if AR-DNAm changes are also reversed in this

dataset upon reprogramming: although our aging model

had been trained on freshly isolated blood samples, it en-

abled moderate estimations of age in culture-expanded

mesenchymal stromal cells as well. Notably, AR-DNAm
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changes were hardly affected by replicative senescence dur-

ing culture expansion in vitro, indicating that AR-DNAm

changes are not identical to DNAm changes acquired dur-

ing in vitro culture (Figure 1c). Interestingly, CpG sites that

are hypermethylated during aging are hypomethylated in

pluripotent cells and vice versa. Using our multivariate

model, the ESCs and iPSCs were even predicted to be of

negative age (Figure 1d), which may reflect the reversal be-

yond the new-born state to the embryonic cell state. How-

ever, when we applied our multivariate model to a dataset

with 19 undifferentiated human ESC lines and 5 iPSC lines

(GSE34869) [34], they were predicted to have a mean

donor age of −0.06 and 5.20 years, respectively (Figure S5

in Additional file 1). Thus, the deviation of ESCs and

Figure 1 Age-associated DNAm is reversed by reprogramming into induced pluripotent stem cells. (a) A heatmap of 102 AR-CpG sites

from 575 DNAm profiles derived from blood cells from donors of different ages (HumanMethylation27 BeadChip platform). All of these loci

revealed relatively linear DNAm changes during aging (r < −0.85 or r > 0.85). (b) Based on these AR-CpGs, we generated a multivariate model to

predict donor age and these predictions were compared to the corresponding chronological age. A combination of all 102 AR-CpGs facilitated

reliable age predictions with a mean absolute deviation (MAD) of about 3.34 years. (c) Age-related-CpGs were subsequently analyzed in

mesenchymal stromal cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) (heatmap clustered by Euclidean

distance). Overall, AR-CpGs that are hypomethylated during aging are highly methylated in pluripotent stem cells and vice versa. (d) Subsequently,

we used a multivariate model to predict donor age in these cells (early passage, P2 or P3; late passage, P7 to P16). Notably, iPSCs generated from

these MSCs as well as ESCs were predicted to be of negative age, indicating that AR-DNAm changes are, overall, reversed by reprogramming into

pluripotent cells.
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especially of iPSCs from zero might also be due to culture

conditions or the comparison between different datasets.

Either way, the data clearly indicate that AR-DNAm

changes are, overall, reversed upon reprogramming. These

findings fit nicely with other recent observations that iPSCs

generated from senescent cells or centenarian donors reset

telomere length, gene expression profiles, and other

physiological features to those of young cells [35,36]. In

addition, our results indicate that iPSCs are rejuvenated

also on the epigenetic level.

Selection of the epigenetic aging signature

Analysis of DNAm in a small subset of AR-CpGs might

be sufficient for robust age predictions. Restriction to

the most relevant CpGs would facilitate site-specific ana-

lysis of DNAm instead of profiling approaches. There-

fore, we searched for subsets of AR-CpGs that, when

combined, yield the best age predictions. AR-CpGs with

the highest variation in DNAm levels were used for re-

cursive feature elimination to select subsets of five CpG

sites for testing in multivariate linear regression models.

Predictions for each of these subsets were made by itera-

tive divisions of the dataset into training and test sets

(split ratios; Figure 2a). For further analysis we consid-

ered only those subsets of five CpGs that performed bet-

ter than the average of models based on all 51 AR-CpG

sites (Figure S6 in Additional file 1). Five specific CpGs

occurred in more than 50% of the remaining subsets, in-

dicating that they complement each other for age predic-

tion (Figure 2b). These CpG sites are associated with

EDAR-associated death domain (EDARADD), which has

been associated with AR-DNAm changes before [20];

integrin, alpha 2b (ITGA2B); RAB36, a member of

the RAS oncogene family (RAB36); phosphodiesterase

4C, cAMP specific (PDE4C); and aspartoacylase (ASPA)

(Figure S7 in Additional file 1). Nevertheless, gene ex-

pression profiles indicated that expression of the five

corresponding genes is hardly affected by aging (Figure

S8 in Additional file 1) [37].

DNAm at these CpG sites was subsequently analyzed

by pyrosequencing after bisulfite conversion in an

independent training set derived from 82 blood samples.

The sequences in the vicinity of cg09809672 (EDAR-

ADD) and cg15379633 (RAB36) were not ideal for the

primer design and therefore we focused on the remaining

three AR-CpGs. As expected, we observed a clear age-

associated correlation for each of the three CpGs. In

fact, the upstream located CpG site cg17861230 (PDE4C),

which was covered by the same pyrosequencing assay,

revealed an even better age-association and was therefore

considered instead (Figure 2c,d). A multivariate linear

regression model based on these pyrosequencing results

facilitated age predictions with a MAD from chronologi-

cal age of 5.4 years (RMSE, 7.2 years; Figure 2e). The

corresponding equation is provided in the Material and

methods section. To further simplify application of the

epigenetic aging signature, we have compiled an online

calculator that implements this equation [38].

Subsequently, we used this method on an independent

validation set derived from 69 blood samples; this valid-

ation set was analyzed two months after the training set.

DNAm levels at the three relevant CpGs were integrated

into the above mentioned linear regression model estab-

lished with the training set. Notably, the predictions for

the validation set correlated even better with chrono-

logical age (MAD, 4.5 years; RMSE, 5.6 years; Figure 2f ),

indicating that pyrosequencing of these three CpG sites

enables reliable age prediction.

AR-DNAm changes are not due to changes in the cellular

composition of blood

Our epigenetic age predictions might also be influenced

by differences in the cellular composition in blood that

result from aging [30]. Between the second and seventh

decade a moderate decline in lymphocytes [39] and eryth-

rocytes [40] has been described. When we analyzed

DNAm of the three relevant CpG sites (cg02228185 in

ASPA, cg25809905 in ITGA2B, and cg17861230 in

PDE4C) in a publicly available dataset of cell type-specific

DNAm profiles [41] the results indicated that the age

predictions made using our epigenetic aging signature

were not evoked by myeloid skewing (Figure S9a in

Additional file 1). Furthermore, we made age predictions

based on the three AR-CpGs using publicly available

DNAm profiles of fractionated monocytes (CD14), T cells

(CD4), granulocytes (CD16), and hematopoietic stem

and progenitor cells (CD34) (GSE20242; E-MTAB-487)

[15,42]. The results demonstrated that age predictions

were feasible in purified cell populations, even though the

MAD from chronological age was higher (Figure S9b in

Additional file 1). Alternatively, we used another dataset

to determine if the percentage of monocytes, lymphocytes,

neutrophils, basophils, or eosinophils correlates with pre-

dicted age and there were no clear associations (GSE37008;

Figure S10 in Additional file 1) [30]. These results indicate

that AR-DNAm changes are due to intrinsic DNAm

changes rather than to changes in cellular composition.

Clinical and lifestyle parameters

In an exploratory analysis to determine whether devi-

ation of predicted age and chronological age correlated

with other co-variables - such as clinical or lifestyle

parameters - we focused on the 105 samples from the

population-based prospective Heinz Nixdorf Recall

(HNR) study [43]. Generally, age was estimated to be

higher in men and in obese people (body mass

index >30). These trends are in line with previous stud-

ies demonstrating an association with telomere length
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Figure 2 (See legend on next page.)
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[44-46], but our results were not significant, which may

be explained by the relatively small sample size (Figure

S11 in Additional file 1). High alcohol consumption was

also associated with overestimation of age (0.091 ± 0.045

years deviation per gram alcohol consumed per day;

P = 0.049). Notably, age was increasingly underestimated

according to increasing number of children in women

(categories, 0, 1, 2, ≥3 children; -2.52 ± 0.84 years devi-

ation per category; P = 0.0043), which has been associ-

ated with a longer lifespan before (Figure 3) [47].

Age predictions correlate with telomere length

Telomere length is well known to decline during aging -

an average of 39 bp per year in granulocytes [48] - and this

approach can also be used to estimate donor age. We ana-

lyzed telomere length in 104 blood samples (from donors

aged 18 to 84 years) by flow-FISH. Despite a clear inverse

correlation between telomere length and chronological

age, the precision of age predictions based on telomere

length was relatively low (MAD, 18.2 years; RMSE,

23.1 years; Figure 4a; Figure S12a in Additional file 1).

Extremely shortened telomeres have been reported in

severe acquired aplastic anemia (AA) and patients with

dyskeratosis congenita (DKC), both of which are associ-

ated with progressive bone marrow failure syndromes.

Telomere attrition in these patients might result either

from increased hematopoietic cell turnover due to

autoimmune-mediated depletion of the hematopoietic

stem cell pool, or, particularly in DKC, due to direct

functional impairment of the telomerase complex by

inactivating mutations [49,50]. We analyzed blood from

15 AA and 5 DKC patients, which revealed significantly

shorter telomeres than healthy controls (Figure S12b in

Additional file 1). Notably, these samples were pre-

dicted to be significantly older than their chronological

age using our epigenetic aging signature, which may re-

flect replicative exhaustion of the hematopoietic stem

cell pool (Figure 4b,c) [18,49].

Discussion

We describe a method to predict donor age using blood

samples based on DNAm at three specific CpG sites.

The model is based on locus-specific pyrosequencing

analysis of bisulfite-converted DNA, an approach that is

relatively cost effective and does not require complicated

bioinformatics. Most importantly, the precision of our

(See figure on previous page.)

Figure 2 Development of the epigenetic aging signature. (a) The most relevant AR-CpGs were selected by iterative division of 575 DNAm

profiles into training and testing sets (different split ratios). Age predictions were made for training sets using either 51 AR-CpGs or subsets of 5

CpGs. The results indicated that subsets with five CpGs (selected by recursive feature elimination) can enable age predictions with a mean

absolute deviation (MAD) from chronological age of less than 6 years. (b) The frequency of occurrence of individual AR-CpGs in the best

performing subsets of five CpGs. Five specific CpGs occurred in more than 50% of these filtered subsets and hence seemed to provide the best

complement for age predictions. (c) DNAm at relevant AR-CpG sites was subsequently analyzed by pyrosequencing after bisulfite conversion. The

sequences surrounding three of the five AR-CpGs were particularly suitable for this approach (CpG sites represented on the HumanMethylation27

BeadChip platform are indicated). (d) DNAm levels at these AR-CpGs were analyzed in a training set from 82 blood samples. The results were in

line with the microarray data and revealed a clear age-associated correlation for each of the three CpGs. For cg17861230 (PDE4C) this correlation

was even better at a neighboring CpG locus, which was therefore preferred for further analysis. (e) Based on the results with these three

AR-CpGs, we generated a multivariate model that enabled relatively precise age predictions (MAD of 5.4 years). (f) Notably, the precision was even

slightly higher when we validated this method in an independent set of 69 samples (MAD of 4.5 years).

Figure 3 Parameters with age-independent impacts on AR-CpGs. Age predictions with our epigenetic aging signature were associated with

various clinical and lifestyle parameters (105 samples from the HNR study). Deviations from chronological age revealed a moderate association

with (a) gender (P = 0.28), (b) body mass index (BMI; P = 0.67), (c) alcohol consumption (P = 0.049), and (d) number of children (P = 0.0043

for females).
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method is much better than that of alternative non-

epigenetic approaches such as measurement of telomere

length, DNA rearrangements or protein alterations [9].

This assay can be used for forensic analysis of blood

samples - theoretically, it can even be scaled down for

relatively small traces of blood. Furthermore, our method

may enable estimation of biological age using blood. Such

predictions may be useful for geriatric assessment and

may help tailor lifestyle to improve the odds of staying

healthy. We provide evidence that deviation of predicted

age and chronological age might be associated with spe-

cific lifestyle parameters - for example, gender, body mass

index, alcohol consumption and the number of children -

but most of these effects were not significant, which might

be attributed to the relatively small sample size. On the

other hand, aging may vary between tissues and therefore

risk factors for age-related diseases - for example, in the

cardiovascular system - are not necessarily reflected in the

hematopoietic system.

AR-DNAm changes were suggested to be a tissue-

specific phenomenon [17,51]. Yet, we and other authors

have demonstrated that similar - but not identical - DNAm

changes are acquired in different tissues [15,16,19,21]. The

epigenetic aging signature described here has been specific-

ally designed for use with blood, which is advantageous

for practical diagnostics. Isolation of specific subsets,

such as B cells, T cells, or neutrophils, would be diffi-

cult to implement in daily routine, even if it would

further increase the precision of the method. Another

advantage is that DNA is relatively stable and can be

shipped at room temperature. Notably, the method

even enabled age predictions using samples that had

been cryopreserved for more than 10 years.

It is still not clear if and how AR-DNAm changes are

controlled. Our data support the notion that epigenetic

drift - in terms of Shannon entropy - occurs in certain

regions that trend towards a DNAm level of 50% [19].

This may indicate that AR-DNAm changes are due to

loss of DNAm maintenance at specific regions; hyper-

methylation happens in regions associated with repres-

sive histone marks [15] and polycomb group protein

targets [16], whereas hypomethylation may be enriched

with other histone modifications, transcription factor

binding sites or chromatin organizations. Whether AR-

DNAm changes are the cause or consequence of aging

also remains to be elucidated. Even though many of

these AR-DNAm changes, including of the CpGs from

our epigenetic aging signature, are not reflected in gene

expression levels, it is well conceivable that the global

epigenetic shift that occurs during aging entails loss of

function in the elderly [52].

On the other hand, we provide evidence that AR-DNAm

changes can be reversed by reprogramming into iPSCs.

We have previously described that senescence-associated

DNAm changes, which are acquired during long-term

culture of mesenchymal stromal cells in vitro, are counter-

acted in iPSCs [33]. We have also demonstrated that

AR-DNAm changes and senescence-associated DNAm

changes differ considerably despite significant overlap [14].

This is in line with findings of this study as 102 AR-CpGs

could not separate mesenchymal stromal cells into those of

early and late passage. The observation that AR-DNAm

changes - as well as senescence-associated DNAm changes -

are reset to ground state supports the notion that pluri-

potency resets the aging clock: iPSCs generated from

senescent cells and cells from centenarian donors have re-

stored telomere length and their gene expression and

cellular physiology appear to be indistinguishable from

those of ESCs [35,36]. Notably, these cells can give rise

to new organisms that - at the beginning - do not reveal

any signs of aging. It is still not clear whether this 'epigen-

etic rejuvenation' can be disengaged from developmental

Figure 4 Age-related DNAm correlates with telomere length. (a) Telomere length of granulocytes was analyzed by flow-FISH in samples from

104 healthy donors (grey), patients with aplastic anemia (AA; red) and dyskeratosis congenita (DKC; blue). (b, c) Age predictions with our

epigenetic aging signature demonstrated that several patients with AA or DKC - particularly those with telomere attrition - were predicted to

be significantly older than their chronological age (in comparison to age predictions for the validation set in Figure 2f).
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reprogramming or whether it is inherently associated with

passing through the pluripotent state [53]. The observa-

tion that AR-DNAm changes can be reversed indicates

that, molecularly, their acquisition over a lifetime might

be avoided and this is compatible with the evolutionary

theories of aging [54]. In this regard, aging would not re-

semble inevitable accumulation of genetic aberrations, but

rather a continuous deviation from the epigenetic ground

state - a loss of control that is not counteracted in somatic

cells and might be species- and tissue-specific.

Bone marrow failure in acquired AA and DKC has been

suggested to be associated with extensive proliferation of

hematopoietic stem cells [49,55]. DKC resembles an her-

editary syndrome evoked by mutations in the telomerase

complex or telomere-associated proteins whereas AA is

acquired due to autoimmune processes, toxic compounds,

or unknown factors. The degree of telomere shortening in

AA is correlated with disease duration, stage and severity

as well as with response to disease-modifying treatment

strategies [49]. In this regard, it is striking that those sam-

ples with stark telomere attrition in particular are also pre-

dicted to be prematurely aged by our epigenetic aging

signature. This observation further substantiates our

method, which may provide a diagnostic measure for the

replicative exhaustion of the hematopoietic stem cell pool.

Conclusions

Our comprehensive analysis of DNAm profiles discerned

AR-CpGs in blood. DNAm at three of these CpGs - de-

termined, for example, by bisulfite pyrosequencing - can

be used as a biomarker to enable age predictions with a

MAD from chronological age of about 5 years. The no-

tion that bone marrow failure syndromes, which are as-

sociated with telomere attrition, reveal premature aging

also at the epigenetic level may indicate that AR-CpGs

depict exhaustion of the hematopoietic stem cell pool.

Although our exploratory analysis suggests some associ-

ation with clinical or lifestyle parameters, it is still not

known if this analysis reflects biological age of the or-

ganism or rather of the hematopoietic system. It is also

not yet clear how AR-DNAm changes, which seem to

occur in a coordinated and reversible manner, are gov-

erned and if they are functionally relevant. AR-DNAm

changes may impact on chromatin structure or non-

coding RNAs even without having an immediate impact

on gene expression. Our epigenetic aging signature pro-

vides a simple approach that can be used to track the

aging process, which may be useful when further trying

to detail the underlying molecular mechanisms.

Materials and methods

Blood samples

We used blood samples from the HNR study, which is a

prospective population-based cohort study (105 samples)

[43,56] from the Department of Obstetrics and Gynecology

of the University Hospital Aachen (GYN; 27 samples), and

from the Department of Oncology, Hematology and Stem

Cell Transplantation of the University Hospital Aachen

(HEM; 104 samples from healthy donors, 15 AA, 5 DKC).

All samples were taken after written consent and according

to the guidelines of the local ethics committees.

DNAm profiles and selection of AR-CpGs

We considered all DNAm profiles derived from blood

samples that were generated with the HumanMethyla-

tion27 BeadChip platform and available at the time

(Table S1 in Additional file 1). Beta values were com-

bined and 102 AR-CpG sites were selected by Pearson

correlation (r > 0.85 or r < −0.85). We trained a multi-

variate linear model for these AR-CpGs and applied

leave-one-out cross-validation to estimate the model's

performance. Age association of these CpGs was then

tested using datasets GSE49904 [28], GSE41037 [29],

GSE37008 [30], GSE34869 [34], and GSE20242 [15],

and E-MTAB-487 [42]. We also used dataset GSE40279

[19], although this was generated with the Human-

Methylation450 BeadChip (different assay design with

type II bead type and only 99 of 102 AR-CpGs) [31]

and we therefore trained an alternative model for use

with this platform.

Bioinformatics

Nucleotide sequences around each AR-CpG were re-

trieved from the human NCBI36/hg18 assembly. The

frequency of nucleotides in the flanking regions was

determined for 10 up- and downstream positions. FIMO

(Find Individual Motif Occurrences) from the MEME

Suite was utilized to scan for known transcription factor

binding motifs within 1 kb flanking each CpG sites. The

five most significantly enriched motifs in relation to all

CpG sites on the array were depicted (P-values were

estimated by Fisher’s exact test). The sequence logo plots

were generated by the R seqLogo packages. Histone

modifications at AR-CpG loci were analyzed using

chromatin immunoprecipitation data for ESCs [25]

(GSE8463 [26]; GSE29611, ENCODE project), CD14+

monocytes (GSE29611, ENCODE project), and MNCs

(GSE31755, ENCODE project). Enrichment of H3K4me3,

H3K27me3, the bivalent state or neither was estimated

in relation to all CpG sites (Fisher’s exact test). Gene

Ontology classification of genes associated with AR-CpGs

was performed with GoMiner software [57] in relation

to all CpGs on the BeadChip (Fisher’s exact test). For

the five most important AR-CpGs, we analyzed gene

expression data from the Leiden Longevity Study (150

samples; GSE16717) [37], which were generated with the

54 k CodeLink Human Whole Genome Bioarray. Methy-

lation profiles of our top three AR-CpGs in subsets of
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different blood cells were analyzed using another dataset

(GSE35069) [41].

Selection of CpGs for the epigenetic aging signature

To obtain a small set of AR-CpGs for age predictions

based on locus-specific DNAm levels, we narrowed 102

AR-CpGs down to those with above median variations in

beta values (above median level of interquartile ranges).

The dataset was then randomly divided into training

and validation sets by defined split ratios. Next we applied

recursive feature elimination implemented in the R caret

package [58] for a limited feature size of five CpGs using

a linear model on the training set. Relevant CpG sites

were then selected by their frequency in the best per-

forming models (Figure S6 in Additional file 1). The five

most relevant AR-CpGs were subsequently considered

for locus-specific DNAm analysis by pyrosequencing. The

sequences surrounding cg02228185 (ASPA), cg25809905

(ITGA2B), and cg17861230 (PDE4C) were best suited for

this approach.

Pyrosequencing and age predictions

Genomic DNA was isolated from GYN samples with

the QIAamp DNA Blood Midi Kit (QIAGEN, Hilden,

Germany; GYN), from HEM samples with the DNeasy

Mini Kit (QIAGEN), and from the HNR study samples

using the Chemagic Magnetic Separation Module I

(Chemagen, Baesweiler, Germany). Subsequently, 500 ng

DNA were bisulfite-converted using the EpiTect Bisulfite

Kit (QIAGEN). Converted DNA was amplified and 12 μl

(ASPA, ITGA2B) or 20 to 25 μl (PDE4C) of PCR product

was immobilized to 2 μl Streptavidin Sepharose™ HP

beads (GE Healthcare, Piscataway, NJ, USA) followed by

annealing to 1.0 μl sequencing primer (5 μM) for 2 mi-

nutes at 80°C. Primers for pyrosequencing analysis are

listed in Table S4 in Additional file 1. Analysis was per-

formed with PyroMark Q24 software. Initially, pyrose-

quencing was performed for 82 blood samples (27 GYN

and 55 HNR) at Varionostic GmbH (Ulm, Germany);

these samples were entirely independent from the DNAm

profiles that were used to identify the three genomic loca-

tions. Based on the pyrosequencing results of the initial 82

blood samples, we generated the multivariate model. Beta

values at the following three CpGs were used for age-

prediction: (α) = cg02228185; (β) = cg25809905, and (γ) = a

CpG site upstream of cg17861230 that revealed better cor-

relation with age (Figure 2c).

Predicted age in yearsð Þ ¼ 38:0‐26:4 α‐23:7 βþ 164:7 γ

This equation resembles also the underlying source

code for the freely available online calculator [38]. This

simple model was subsequently validated with an inde-

pendent set of 69 samples (19 HEM and 50 HNR).

Biostatistics on clinical parameters

To estimate the impact of co-variables (for example, life-

style or clinical parameters), we calculated univariate linear

regression models using the deviation of predicted age and

chronological age as dependent variable and the respective

co-variable as independent variable (SAS, version 9.2, Cary,

New Jersey, USA). Similar models were computed separ-

ately for males and females to assess gender differences.

Some 52 male and 53 female donors from different age cat-

egories (intervals of 6 years per age category) were selected

randomly from the HNR study (4,814 participants) [56].

Box-and-whisker plots (10 to 90 percentiles) were plotted

with GraphPad Prism 5 (GraphPad Software, La Jolla, CA,

USA). Statistical significance was assessed from statistical

significance of parameter estimates of the linear regression

model depicting the change in deviation per one unit in-

crease in the corresponding co-variable.

Analysis of telomere length and age prediction

Telomere length of granulocytes and lymphocytes was

analyzed in 104 samples from healthy donors aged 18

to 84 years, 15 patients with AA, and 5 with DKC (all

HEM) by flow-FISH as described before [59,60]. In brief,

samples were analyzed in triplicates with and without

FITC-(C3TA2)3 PNA or Alexa488-(C3TA2) PNA (for

healthy controls or AA and DKC, respectively; Panagene,

Daejeon, South Korea). Cow thymocytes with known telo-

mere length were used as an internal control to calculate

telomere length in kilobases. The cow thymocytes as well

as granulocytes and lymphocytes from human samples

were identified based on forward scatter and LDS 751

binding to double-stranded DNA. For flow-FISH, telo-

mere length was determined in absolute values. Age-

related telomere length was estimated by linear regression

on the 104 blood samples from healthy donors.
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Additional file 1: Tables S1. S3 and S4 and Figures S1 to S12.

Table S1. DNAm profiles for selection of AR-CpGs. Table S3. Gene

Ontology analysis of the 102 AR-CpG sites. Table S4. primers used for

pyrosequencing. Figure S1. nucleotides and motifs near AR-CpGs.

Figure S2. enrichment of histone modifications near AR-CpGs.

Figure S3. DNAm level in age-related hypo- or hypermethylation.

Figure S4. analysis of AR-CpG sites in an independent dataset.

Figure S5. age prediction in ESCs and iPSCs. Figure S6. flowchart for

selection of the epigenetic aging signature. Figure S7. DNAm level at

CpGs in the neighborhood of five AR-CpG sites. Figure S8. gene expression

of selected genes with age-related CpG sites. Figure S9. DNAm level in

different blood subsets. Figure S10. influence of blood cell composition on

age prediction. Figure S11. effect of clinical and lifestyle parameters on age

predictions. Figure S12. age predictions based on telomere length.

Additional file 2: Table S2. Beta values for 102 AR-GpGs from 575 samples.
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