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Abstract

In a stochastic environment, a degradation process, inspite of showing a mono-
tone trend, may contain stochastic variations which may camouflage the statistical
picture to a certain extent. There are, however, some other processes which may
not exhibit a degradation phenomenon. For some of these nondegradation stochas-
tic processes, associated aging perspectives are appraised, without being confined
to a semiparametric fashion, and their application in health related quality of life
assessment are considered.
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1. Introduction

An observed degradation process Y = {Yt, t ∈ R+} is a nonnegative stochas-
tic process characterized by a nonincreasing trend of the associated intensity process.
Bagdonavičius and Nikulin (2002) have considered some parametric as well as semipara-
metric degradation models for aging. Typically, it is assumed that

Yt = g(t,Z)Ut, t ∈ Z+, (1)

where Z = (Z1, . . . , Zr)′ is a (possibly) stochastic vector, representing auxiliary (ex-
planatory) or concomitant variables, g(t, .), in a parametric setup, is a given monotone
decreasing and continuously differentiable function of t, and

Ut = exp{σt−1/2W (t)}, t ∈ R+, (2)

where W = {W (t), t ∈ R+} assumed to be a standard Wiener process (independent of
Z), and σ a positive (unknown) scale parameter. It is also desired, in some cases, to allow
the covariates to be possibly time-dependent, so that in (1.1), Z needs to be replaced by
an auxiliary stochastic process Zt, t ≥ 0. In a semiparametric formulation, less stringent
assumptions have been made on the form of g(.), mostly along the lines of the classical
Cox (1972) proportional hazard model (PHM). If g(., .) is not monotone, the process Y
is not characterized as a degradation process; in real applications, a degradation model
may only be adopted under such a characteristic feature. If Yt is observable, under the
above setup, we have

log Yt = log g(t,Z) + σt−1/2W (t), (3)
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so that conventional stochastic partial differential equations (SPDE) can be incorpo-
rated to prescribe statistical resolutions. However, in a class of problems arising in the
context of health related quality of life (HRQoL) assessments, the survival time is not
the variable Yt in (1.1), and a somewhat different approach than the SPDE is needed.
The degradation phenomenan also needs to be appraised in those contexts.

There are some notable instances in survival analysis, as well as reliability theory,
where we may have a stochastic process of the type (1.1) though the degradation phe-
nomenon may not be apparent or even tenable. In the next section, we motivate such
a nondegradation process with a noteworthy hereditary disease, Thalassemia minor (or
Cooley’s anemia; also known as Mediterranean anemia), and appraise the plausibility
of a stochastic degradation model, paying due emphasis on HRQoL perspectives. In
such a case, the survival time and the QoL state during the survival both need to taken
into account in formulating the stochastic flow of the events of interest. Motivated by
this example, in Section 3, we proceed to formulate a class of nondegradation processes,
and in Section 4, we appraise their aging perspectives with an eye on the quality of life
adjusted (QAL) mean residual life (MRL) analysis. Some of these statistical analyses
are presented in Section 5. Some general statistical results and broad summaritative
remarks are made in the concluding section.

2. Thalassemia Minor

Anemia is a condition in which the number of red blood cells per cu mm, the
amount of hemoglobin in 100ml of blood, and the volume of packed red blood cells per
100 ml of blood are less than normal. Clinically, anemia generally pertains to the oxygen-
transporting material in a designated volume of blood, in contrast to total quantities
as in oligocythemia, oligochromemia and oligemia. Anemia is frequently manifested by
paller skin and mucous membrane, shortness of breath, palpitation of the heart, soft
systolic murmers, lethargy and fatigability. Among the varieties of anemia, we may
mention (i) hypochromic anemia and (ii) thalassemia, both being marked by deficient
hemoglobin and usually microcytic blood cells; microcyte relates to small red blood cell
present especially in some anemia. Splenomegaly, i.e., the enlargement of the spleen, is
also observed in some case.

Thalassemia or Thalassanemia: a group of inherited disorders of hemoglogin meta-
bolism in which there is a decrease in net synthesis of a particular globin chain without
change in the structure of that chain; several genetic types exist, and the corresponding
clinical picture may vary from barely detectable hematologic abnormality to severe and
fatal anemia. The Lepore thalassemia syndrome is due to production of abnormally
structured Lepore (a group of abnormal) hemoglobin which are clinically indistinguish-
able, but the non α-globin chains are structurally altered. β- Thalassemia relates to
heterozygous state. α-Thalassemia is due to one of two or more genes that depress
(partially to completely) synthesis of β-globin chains by the chromosome bearing the
abnormal gene. In a homozygous state, one may have a severe type with erythrob-
lastosis fetails and fatal death, only Hb Barts and Hb H present; a mild-type is not
clinically defined. In a heterozygous state, severe type, Thalassemia minor with 5 - 15
per cent of Hb Barts at birth and only traces of Hb Barts in adult; in mild-type, 1-2
per cent Hb Barts at birth, not detectable in adults. Thalassemia minor is thus the
heterozygous state of a Thalassemia gene or a hemoglobin Lepore gene, usually asymp-
tomatic, and mild hypochromic microcytosis; often slightly reduced hemoglobin level with
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slightly increased erythrocyte count. Types of hemoglobin are variable and depend on the
gene involved. There may be a production of about 10 per cent of the Hb Lepore, Hb F
moderately increased, and Hb A2 normal.

It is clear from the above description that the type of the disorder and degree of
severity can vary considerably, and as a result, the clinical picture may vary considerably;
we therefore need to focus on a specific case. In this study, we specifically keep the
Talassemia minor disorder (TMD) in mind, and proceed to assess its impact on HRQoL
as well as longivity (MRL), following a clinical detection of TMD. A particular measure
of the hemoglobin level is the primary variable, denoted by Yt, while the other recordable
characteristics are to be treated as covariates. Familial factors as well as other clinical
observations are also included in the set of covariates and explanatory variables, which
is denoted by Zt, t ∈ R+. Let us focus primarily on Yt, t ≥ 0 and note that there is
generally a normal hemoglobin level, N which, for people not afflicted with the disorder,
is a central value of the distribution, and for a person in the TMD group, Yt consistently
lies somewhat below this level. N is also subject to small interpersonal variation even
among the TMD-free people, and so also Yt among the TMD-identified people. There
is also a threshold level, denoted by L, such that as soon as Yt goes below L, there
is some clinical symptom which calls for a medical attention. Generally, following an
effective, brief treatment, Yt jumps to its preepisode level, and fluctuates around it until
the next episode when it dips again below L. This process continues and apart from
these possible episodes, the survival picture is not that much affected, albeit the anemic
condition may be reflected in some living characteristics, in the manner described before.
There is also a level C, the comatic state level, and a lower level D, the death state
level. If Yt plunges below C, it needs a serious medical attention and a comatic state
may evolve. Further, such a treatment may not be very effective in the longrun, and as
Yt approaches the level D, the individuals survival is at stake. In this way, the survival
time X is defined to be the time until a person with TMD enters the absorbing state
D, and the number of episodes occurring prior to entering the absorption state, denoted
by M , though stochastic in nature, may cast valuable information on the severity of
the TMD. Further, in this setup, generally one does not bother to record Yt as long
as Yt > L, so that essentially, the observable random element are the epoch times
τj , j ≥ 0 along with some little observations on the Yt in the clinical stage when it
dips below L. Also, the episodes are generally associated with high fever or some other
disease factors, and hence, that information being generally available, is an important
explanatory variable. From HRQoL perspectives, the events of interest are the inter-
episode times Tj = τj − τj−1, j ≥ 1, along with the clinical information for the sub-
threshold state and X itself. Simply the survival time itself may not capture the whole
picture. Figure 1 pertains to this phenomenon.

3. Aging Perspectives

In characterizing aging aspects of a life distribution, generally, the hazard rate is
more commonly used instead of the survival function itself. The celebrated Cox (1972)
model allows incorporation of explanatory and concomitant variables in a semiparamet-
ric way, though there is a need to check the validity of such a model in a specific case, as
may be the present one. We denote the survival time by X, and all other explanatory
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Figure 1: A TMD Process with its level crossings

or auxiliary variables (including the QoL states) by Z. Generally, Z is, at least partly,
time-dependent, and that needs to be taken into account too. The covariate vector by
Zt, and the conditional survival function, given Zt by S(t|Zt); we assume that it has a
continuous density function f(t|Zt). Then the conditional hazard function, given Zt, is
defined as

λ(t|Zt) =
f(t|Zt)
S(t|Zt)

, (4)

which is nonnegaive for all t ≥ 0 and all t. In a semiparametric modeling, we conceive of
a baseline hazard function λo(t), independent of Zt, possibly of nonparametric nature,
and a nonnegative regression function, possibly of a parametric form, g(Zt, β) involving
a parameter (popssibly a vector ) β, and write

λ(t|Zt) = λo(t).g(Zt,β), (5)

where the aging perspectives are then studied in terms of the intrinsic aging aspects
depending on the baseline hazard function alone, and the impact of extraneous factors,
through the regression function g(., .). In a degradation model, λo(t), though unspecified,
is taken to be nondecreasing in t. This is referred to as the increasing failure rate (IFR)
case. As has been illustrated in the preceding section, for a nondegradation process, this
IFR nature of the baseline hazard function may not be reasonable to assume.

The MRL µ(x) of a life time (nonnegative) r.v. X, at age x, is defined as E(X −
x|X > x). A less restrictive (than the IFR) characterization of aging is the (decreasing)
DMRL property which relates to µ(x) being nonincreasing in x. In the presence of
concomitant variables, the picture is more complex (Sen (1999)). If the concomitant
variable Zt is not time-varying (and we denote it by Z), the MRL with a concomitant
Z is defined as

µ(x|Z = z) = E(X − x|X > x;Z = z), x ≥ 0, z ∈ Rq, (6)

where q stands for the dimension of the concomitants. Since the coordinates of Z may
not all be continuous or count variables (some may even be binary or purely qualitative
ones), expressing µ(x|z) in a simple parametric form may not be very realistic Sen (1999),
and for that reason, nonparametric as well as semiparametric ones are usually advocated.
Corresponding to the hazard λo(t), we define the cumulative hazard function as

Λo(t) =
∫ t

0

λo(y)dy, t ≥ 0, (7)
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which is a monotone nondecreasing function of t with Λo(0) = 0 and Λo(∞) = ∞.
Incorporating the Cox (1972) PHM and using the equivalence of the negative logarithm
of the (conditional) survival function and the (conditional) cumulative hazard function,
we may write

P{X > t|Z} = exp{−eβ
′
ZΛo(t)}. (8)

As a result, we obtain that

µ(x|Z) =
∫ ∞

0

exp{−eβ
′
Z[Λo(x + u)− Λo(x)]}du. (9)

It follows from Sen (2003) that if Λo(.) is convex, i.e., the baseline distribution function
belongs to the IFR class, then adjusted by the concomitants, µ(x|Z) is nonincreasing
in x, so that the DMRL property remains in tact for the conditional survival function
as well. However, such a DMRL property may not hold when the basic IFR property
is replaced by DMRL property (on µ(x)). Sen (2003) also discussed the roadblocks for
the general case where the concomitants are possibly time-varying. In the most general
case where λ(x|Zx) = λo(x)eβ

′
Zx , the DMRL property of µ(x|Zx) may not follow. Sen

has actually considered an intermediate case wherein he lets

Λ(x|Zs, s ≤ x) = Λo(x).eβ
′
Zx , ∀x ≥ 0. (10)

Even so, as the conditional survival function S(x|Zs, s ≤ x) must be nonincreasing in x,
we need a compatibility condition that Λo(x) exp{β′Zx} is nondecreasing in x. Although
such a condition may hold for a degradation model, for nondegradation models this is
unlikely to be true. Hence, we need to explore alternative approaches.

4. HRQoL Perspectives

In a HRQoL study, typically, based on the vector Zt as well as Yt, a composite score,
termed a QAL score, is formulated. We denote this score by Qt, t ≥ 0. Keeping in mind
the TMD discussed in Section 2, we may gather that there may be a basic problem in
precisely formulating the QAL score. For example, when Yt > L, usually no observation
is available on it, albeit it is presumed that it lies somewhat below the normal level
N . Therefore, there has to be a QOLD (quality of life deficiency) factor associated
with this stage. Secondly, only after an episode time measurement of Yt, albeit below
the level L is available. The severity of TMD is perceived more with lower values of
Yt in this phase. Hence, here the actual measurement on Yt (not a dichotomization or
polychotomization) should be incorporated in Qt. More important is the factor that
an episode is generally triggered by some virus (e.g., flu) or sudden rise in the body
temperature. Such covariates are only sporadic over time, and their incorporation in Qt

may not be very easy in a statistical formulation. Further adjustment for Yt < C may
also be statistically complicated. A multi-state model for Qt, though ideal, may not be
easy to implement.

In a conventional setup, the (quality of life adjusted) QLAMRL at age x is defined
as

µQ(x) = {−
∫ ∞

0

Q(x + u)udSo(x + u)}/So(x)
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=
∫ ∞

0

Q(x + u)e−[Λo(x+u)−Λo(x)]du

+
∫ ∞

0

ue−[Λo(x+u)−Λo(x)]dQ(x + u) (11)

when Q(.) is nonstochastic [Sen (2003)]. However, generally Q(.) is stochastic, and
hence, as in Sen (2002), we need to replace it by its expectation counterpart. There is
still another complication we should keep in mind. The survival function So(x+u) needs
to be adjusted by the covariates at that time. If the covariates Z are not time-varying
and if a PHM formulation is deemed appropriate, this adjustment can be made in a
reasonably manageable way. For example, as in (3.5), we need to adjust So(x) by the
nonnegative factor g(Z), so that in (4.1), we need to bring this additional factor in the
exponent. For time-varying covariates, this simple prescription may not work out well
(Sen (1999)), and in general, a simplification would deem the knowledge of the process
{Zs, s < x+u}, and this is only known up to the present time x. Hence, we need to make
certain regularity assumptions regarding the covariates’ temporal variation. While this
can be done with reference to a PHM formulation for certain degradation processes when
Z is not time-varying, there may be genuine roadblocks for other processes, particularly
for nondegradation ones. The difficulty is that Q(x+u), u ≥ 0 involve the future course,
so that it may depend as well on the time-varying covariates, and hence, in order to
compute its expected quantity, certain restrictive assumptions may need to be made on
the sample space of Q(.) along with certain temporal-stationarity conditions (to facilitate
predictability over a long range of time).
To illustrate this point, suppose that Q(x) is nonnegative and time-varying while the rest
not. In this case, in a PHM setup, for the regression of the log-hazard on the covariates,
we have β0Q(x) + β′Z. Further, in such a context, we expect that with increasing QoL
the hazard should be decreasing, so that it may not be unreasonable to assume that
β0 ≤ 0, while the other regression parameter (vector) β may be unrestricted. As such,
we have for given Q(x) and Z,

µQ(x|Q(x),Z) = {−
∫ ∞

0

uQo(x + u)dS(x + u|Qo(x + u),Z)}/S(x|Q(x),Z)

=

∫∞
0

S(x + u|Qo(x + u),Z)[Qo(x + u)du + udQo(x + u)]
S(x|Q(x),Z)

, (12)

where we define Qo(x + u) as the solution of

Qo(x + u)eeβ0Qo(x+u)Λo(x+u) = E[Q(x + u)eeβ0Q(x+u)Λ0(x+u)|Q(x)], for u ≥ 0. (13)

If we had a degradation process, we would have Qo(x + u) nonincreasing in u ≥ 0,
leading to dQo(x + u) ≤ 0, ∀u ≥ 0, so that from (4.2) we obtain that

µQ(x|Q(x),Z)≤
∫∞
0

Qo(x + u)S(x + u|Qo(x + u),Z)du

S(x|Q(x),Z)

≤Q(x)
∫ ∞

0

exp{−eβ
′
Z[eβ0Qo(x+u)Λo(x + u)− eβ0Q(x)Λo(x)]}du.(14)

As such, if β0 in ≤ 0 and as for a degradation process, Qo(x + u) ≤ Q(x), ∀u ≥ 0, we
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would have β0Q(x) ≤ β0Q
o(x + u) ≤ 0, ∀u ≥ 0. Therefore, we would have

µQ(x|Q(x),Z) ≤ Q(x)
∫ ∞

0

exp{−[Λo(x + u)− Λo(x)]eβ
′
Z+β0Q(x)}du

= Q(x)E[Xo − x|Xo > x,Q(x),Z], (15)

where Xo stands for a r.v. whose survival function, given Z and Qo(x+u) = Q(x), ∀u ≥
0. This shows that by simply adjusting by the current QoL factor Q(x) for the re-
maining life, the QLAMRL µQ(x|Q(x),Z) may be well below the quantity by assuming
that for the rest of life, the QoL factor does not change (a contradiction to the degra-
dation assumption). Moreover, such a formulation is unlikely to be very realistic in
the present context of nondegradation processes arising in HRQoL studies. Hence, we
proceed to formulate statistical modeling and analysis protocols in an alternative way,
putting proper emphasis on the episode times and their interdependence (as explained
in earlier sections).

5. A Stopped Counting Process Approach

Consider a study plan involving n individual having the TMD and as in Sections
2 and 3, we define the episode times, and other events. Then, corresponding to a time
interval (0, t], t > 0, for the kth individual, the vector of episode times is denoted by
Tk = (τk0, . . . , τkjk(t))′, where τk0 = 0 and

jk(t) = max{j(≥ 0) : τkj ≤ t}, (16)

for k = 1, . . . ,K. In that way, jk(t) is the number of episode times (if any) for the kth
individual preceding the time point t, and as such,

[jk(t) ≥ m] ⇔ [τkm ≤ t], ∀t ≥ 0, m ≥ 0, k = 1, . . . ,K. (17)

Due to time-sequential nature of the outcome, censoring, due to competing causes,
possible withdrawal from the study, death due to the TMD, or due to other causes, is
expected, and we denote the possible censoring time of the kth individual by Ck. We
associate a random vector A = (A1, . . . , Aq)′ of causes of censoring with the nonnegative
r.v. Ck, the particular (stochastic) outcome being denoted by Ak. Let then

Xkjk(t) = min{τkjk(t), Ck}, δkjk(t) = I(Xkjk(t) = τkjk(t)), k = 1, . . . , K, t ≥ 0. (18)

Note that although (Xkjk(t), δkjk(t)), k = 1, . . . ,K capture most of the statistical infor-
mation, there is some contained in following vector valued counting processes

Nk(t) = (Nk0(t), Nk1(t), . . . , Nkjk
(t))′, k = 1, . . . ,K, (19)

where Nk0(t) = 1 for all t > 0, k ≥ 1, and

Nki(t) = I(τki ≤ t), t > 0, i ≥ 0, k ≥ 1. (20)

These observable random elements lead us to the following array of counting processes

N(t) = (N1(t), . . . ,NK(t))′, t ≥ 0. (21)
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Note that the jk(t) are not necessarily all equal, and each being stochastic, we have an
array with stochastic and heterogeneous number of elements in each column of N(t),
and these elements are all nondecreasing in t. In this way, there is a need for a sta-
tistical formulation of a manageable model for the entire picture, and hence, we shall
mainly confine ourselves to a partial set that seems to capture a good deal of statistical
information.
We are mainly interested in the following stopped counting processes:

(jk(t),Zk(t), Ak), t ≥ 0, k = 1, . . . , K. (22)

At this time, we denote the cumulative distribution function of τkj , given the explanatory
variables and the competing censoring factor, by F(kj)(x|Bkr) where Bkr stands for the
sigma-field generated by Zk(s), Ak, s ≤ τkr. Then, using (5.2), we obtain that

νk(t) = E{jk(t)} = E[E{jk(t)|Bk(t)}]
=

∑

r≥0

rE{P{jk(t) = r|Bkr}}

=
∑

r≥1

E{P{jk(t) ≥ r|Bkr}}

=
∑

r≥1

E{P{Tkr ≤ t|Bkr}}

=
∑

r≥1

E{F(kr)(t|Bkr)},

=
∑

r≥1

F o
(kr)(t), ∀t ≥ 0, k ≥ 1, (23)

where F o
(kr)(t) denotes the marginal distribution obtained by taking the expectation over

the conditioning factors. It is clear that νk(t) is nondecreasing in t ≥ 0. The analogy of
this result with the classical renewal theorem is quite clear from above, albeit the present
situation is quite complex due to the presence of the concomitant and competing risk
variables.
Let us refer back to the TMD problem discussed in Section 2. The severity of the
TMD syndrome may be judged with its threshold level crossing L, so that more frequent
dropping below this level is a significant QOLD indicator. This, in turn, makes the inter-
episode times stochastically smaller, so that for the episode times τkr, r ≥ 1, k ≥ 1,
the corresponding distributions F o

(kr)(t) becomes more left-tilted. As a result, the νk(t)
becomes larger. On the other hand, it is not at all unreasonable to assume that the
expected number of episodes (or short excursions below the level L) in a finite life time
is finite (i.e., exits) and therefore, the νk(t) have finite asymptotes νk(∞) that may
of course depend on other extraneous factors depending on the explanatory variables.
This feature makes it appealing to incorporate suitable semiparametric models for the
distributions F o

(kr)(t) (or their survival functions) and express the HRQoL perspectives
in terms of the auxiliary variables as much as possible.
Let us denote by

J̄K(t) = K−1
K∑

k=1

jk(t), t ≥ 0. (24)
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Side by side, we also, let

ν̄K(t) = K−1
K∑

k=1

∑

r≥1

F o
(kr)(t), t ≥ 0. (25)

As in Sen (1999), we consider then a stochastic process:

WK(t) = K1/2{J̄K(t)− ν̄K(t)}, t ≥ 0. (26)

Realising that the counting processes {jk(t)− νk(t), t ≥ 0} are independent, weak con-
vergence of WK(t), t ≥ 0 to a Gaussian process has been studied in detail in Sen (2003).
This enables us to darw statistical inference on the ν̄K(.) through the observed J̄K(.).
In this respect, a semiparametric modeling of ν̄K(.) provides great simplication of sta-
tistical formulation.

There are, however, some genuine roadblocks in adopting semiparametrics in this
context. First and foremost, the stopping numbers jk(t) are themselves highly stochastic,
and their incorporation in the QAL / QOLD measures requires pertinent information
on the concomitant as well as auxiliary variables which are more likely to be time-
varying. This alone can create impasses for routine use of PHM. Use of time-varying
concomitant variables and more generally, time-varying regression coefficients (Murphy
and Sen 1991), although theoretically advantageous, may encounter serious operational
setbacks due to sample size and other constraints. Moreover, the very appeal of a PHM
is lost if such a more general time-varying Cox-type model is adopted. Finally, genetic
as well as environmental factors are generally quite relevant and their incorporation in
a statistical modeling requires more delicate and nonstandard tools and techniques.

6. Concluding Remarks

Two distinct characteristics of the present approach are (i) its adaptability in
HRQoL studies without having necessarily a degradation feature, and (ii) deemphasizing
semiparametrics to a certain extent (resulting in greater model flexibility and robustness
perspectives). In HRQoL studies, the QoL feature may contain some qualitative factors
or traits which are difficult to quantify in a continuous scale, and even sometimes, in an
ordinal scale. For that reason, a formulation of a QoL score based on item analysis and
high-dimensional questionnaire is a primary statistical problem. Though there has been
significant developments in psychometry and theory of mental tests in the past forty
years, many of these tools and measures may not be suitable for high-dimensional data
models. Moreover, these measures may be highly sensitive to specific causes, and hence,
needs careful appraisal.

There is an additional feature that merits critical examination. For the TMD prob-
lem, as we can see from Figure 1, a failure due to this cause is typically accompanied by
a sudden drop of the hemoglobin level all the way to the absorbing stage, and therefore,
is likely to be preceded by the comatic stage where the QoL is very poor. Thus, if we
regress the (conditional) hazard function on the QoL score at the failure point it will fail
to capture the true dependence picture. It may be better to keep track of the passage
from the threshold level to the absorbing level (time and intensity both) and use that as
a measure of QoL at failure point. On the other hand, if the level is above the threshold
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value then generally no measurement of the hemoglobin level is made regularly, and
hence one may need to use some sort of truncation modeling for this feature, requiring
more specific formulation of QoL factors.

The competing risk factor comprising of drop-outs (withdrawal) and death due
to other causes also require serious consideration. A semiparametric modeling may
be unsuitable in this respect. For example, for the TMD problem, a withdrawal may
generally indicate a physically comfortable state so that the hemoglobin count should
be above the threshold level. A cause of failure other than TMD, may not necessarity
be accociated with a low level (in the comatic state), so that the causes of censoring
may not simply relate to the common hemoglobin count feature, and hence, a simple
regression model may not suffice.

Finally, the fact that the jk(t) are themselves stochastic suggests that if more infor-
mation is available on the sojourn times (below the threshold level), one could formulate
a model treating these sojourn times as concomitant variables, and thereby incorporate
semiparametrics more effectively in the modeling part. However, this requires delicate
considerations of the underlying biological as well as statistical undercurrents, and we
intend to pursue these aspects in greater detail in a subsequent communication.
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