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Single-particle tracking offers detailed information about the motion of molecules in complex
environments such as those encountered in live cells, but the interpretation of experimental data
is challenging. One of the most powerful tools in the characterization of random processes is the
power spectral density. However, because anomalous diffusion processes in complex systems are
usually not stationary, the traditional Wiener-Khinchin theorem for the analysis of power spectral
densities is invalid. Here, we employ a recently developed tool named aging Wiener-Khinchin
theorem to derive the power spectral density of fractional Brownian motion coexisting with a scale-
free continuous time random walk, the two most typical anomalous diffusion processes. Using this
analysis, we characterize the motion of voltage-gated sodium channels on the surface of hippocampal
neurons. Our results show aging where the power spectral density can either increase or decrease
with observation time depending on the specific parameters of both underlying processes.

I. INTRODUCTION10

The power spectral density (PSD) of a signal contains important information and it is one of the most widely used11

characterization tools of deterministic and random processes. Traditionally, the PSD of a time-dependent signal x(t)12

is defined in the limit of infinite time as13

〈S(ω,∞)〉 = lim
tm→∞

1

tm

〈

∣

∣

∣

∣

∫ tm

0

eiωtx(t)dt

∣

∣

∣

∣

2
〉

, (1)

where the angle brackets denote averaging over an infinitely large ensemble, i.e., the expected value. In practice, when14

analyzing either experiments or numerical simulations, one does not have access to infinite measurement time, nor15

to a large ensemble of trajectories, and the PSD is estimated by using the periodogram. Thus, for a signal observed16

over a finite measurement time tm, we deal with a PSD that can be a function of both frequency and measurement17

time, S(ω, tm). For stationary processes, the PSD can be directly calculated from the autocorrelation function,18

C(τ) = 〈x(t)x(t+ τ)〉, using the relation provided by the Wiener-Khinchin theorem [1]. Namely, this theorem states19

that the PSD is the Fourier transform of the autocorrelation function. However, there is growing interest in a wide20

class of non-stationary processes with scale invariant correlation functions. In these systems, the autocorrelation21

function explicitly depends on time, C(τ, t) = 〈x(t)x(t+ τ)〉 = tγφEA(τ/t), and hence they are considered to exhibit22

aging. The Wiener-Khinchin theorem is invalid for non-stationary processes, which led to the development of a new23

theoretical framework, termed the aging Wiener-Khinchin theorem [2–4]. The PSD that emerges in these cases is, in24

turn, directly related to one over f noise.25

Spectra of the one over f type are often found for low frequencies and many of its aspects are universal [5–8]. More26

generally, it is found that the PSD behaves like 1/ωβ , where the exponent 0 < β < 2 contains information about27

the statistical properties of the process [9–13]. These spectra have been observed in systems as diverse as quantum28

dots [14, 15] and other low dimensional devices [16], nanopores [17], superconducting devices [18], nanoelectrodes [19],29

network traffic [20], earthquakes [21], DNA base sequences [22], and ecology [23]. In some of these examples, e.g.30

quantum dots [15], growing interfaces of the Kardar-Parisi-Zhang universality class [13], and vertical-cavity surface-31

emitting lasers [24], aging effects are also observed and the PSD depends on the measurement time, even when the32

measurement time is long. Thus, it is critical to understand how to analyze the PSD in aging processes. The PSD33

is currently emerging as a key tool in the characterization of random trajectories in biological systems because it34
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informs on features that are difficult to infer using other traditional statistics. The main interest is in the study of the35

diffusive motion of individual molecules, taking advantage of developments in single-particle tracking [25–29]. With36

the goal of understanding the properties of individual trajectories, the PSD of stochastic processes gained renewed37

interest, for example with respect to the fluctuations of PSD estimator from a single trajectory [12, 30–34].38

In the context of living cells, an open question remains whether we can observe aging effects in the PSD of relevant39

experiments. The dynamics of proteins (described by their position as a function of time) are broadly observed40

to exhibit antipersistent motion while also interacting with heterogeneous partners leading to immobilization times.41

Often, the immobilization times display heavy-tailed distributions leading to aging and ergodicity breaking. A useful42

way to model such diffusive transport is via the combination of two well-known stochastic processes [35, 36]: the43

continuous time random walk (CTRW) and fractional Brownian motion (fBM). Technically the marriage of these44

widely observed models is made possible with a subordination technique [37–39]. Briefly, in a subordination scheme,45

the steps of a random walk take place at operational times ti defined by a directing stochastic process. For example,46

antipersistent motions such as diffusion in a fractal environment or fractional Brownian motion (fBM) with heavy-47

tailed immobilization times have been observed in mammalian cells in the motion of ion channels [40], insulin granules48

[41], membrane receptors [42], and nanosized objects in the cytoplasm [43], as well as for tracer particles in actin49

networks in vitro [44]. Subordinated process are widespread beyond the dynamics in the cell [10, 13, 24, 45]. Systems50

with a heavy-tailed distribution of immobilization times exhibit aging in the sense that the observed statistical51

properties depend on how much time has passed since the preparation of the system. In practice, when the expected52

value of the immobilization times diverges, the only available characteristic time is the measurement time. As a53

consequence, quantities such as the autocorrelation function and the power spectral density depend on measurement54

time.55

Here, we address the spectral content of subordinated processes with scale free immobilization times. The essence56

of our work is that one over f noise is represented by the power law relation S(w) ∼ A/ωβ , but, unlike standard57

approaches, the amplitude A depends on the measurement time. Our work has two aspects: On one hand, we want58

to find how the exponent β depends on the properties of the scale free process. On the other hand, we study how59

the amplitude A depends on measurement time tm. If A(tm) is a decreasing function, the fluctuations effectively60

decrease with time, while if A(tm) is an increasing function, the noise level effectively increases with time. In the61

first part of our work, we analyze theoretically the power spectrum of subordinated processes using the aging Wiener-62

Khinchin theorem. We then focus on the analysis of the motion of voltage-gated sodium channels (Nav) on the somatic63

membrane of hippocampal neurons. Nav channels in the soma play important roles in the transfer of information64

to the rest of the neuron [46] and, therefore, their localization and dynamics have high physiological relevance. Our65

work not only validates the aging Wiener-Khinchin theorem as an emerging tool in spectral analysis, but it also sheds66

light on the exponents describing the aging and the frequency domain. The assumption that 1/fβ noise is described67

by a single exponent (β) is shown experimentally to be invalid. Furthermore, we show how the analysis of the PSD68

provides information on the exponents describing the time averaged mean square displacement, thus validating the69

model with independent measurements.70

This article is oranized as follows. After introducing the model, we use the aging Wiener-Khinchin theorem to71

obtain the PSD of subordinated random walks and gain a deeper understanding of the motion of ion channels on the72

plasma membrane of mammalian cells. We study the CTRW [47, 48], i.e., the classical subordination to Brownian73

motion, and fBM with heavy-tailed immobilization times, i.e., the combination of fBM and CTRW. These processes74

constitute the quintessential diffusion processes with heavy-tailed immobilization times. We first derive analytically75

the ensemble-averaged ACF, we then obtain the time-average ACF and, from it, we calculate exact results for the PSD.76

Analytical results for ACF and PSD are validated using numerical simulations. The trajectories of Nav1.6 channels77

in the cell membrane show the appropriate behavior for the PSD. Importantly, relations between the exponents78

that characterize the mean squared displacement and the power spectrum are derived. The experimental data show79

agreement with these relations and, in turn, the power spectrum provides information on the statistics of the protein80

motion. The detailed characterization of the motion of sodium channels exemplifies the usefulness of our approach to81

quantify properties of random trajectories.82

II. AGING WIENER-KHINCHIN THEOREM83

In any stationary process, the PSD is related to the autocorrelation function (ACF) CEA(τ) = 〈x(t)x(t + τ)〉 via84

the fundamental Wiener-Khinchin theorem. Throughout the manuscript we employ the subscripts EA and TA to85

denote ensemble averages and time averages, respectively. In stationary ergodic processes, the time and ensemble86

averaged correlation functions are identical in the long time limit (see definitions below), so CEA(τ) = CTA(τ). The87
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Wiener-Khinchin theorem can then be used to obtain the PSD, namely88

〈S(ω,∞)〉 = 2

∫ ∞

0

CEA(τ) cos(ωτ)dτ. (2)

However, diffusive processes are intrinsically non-stationary and thus the Wiener-Khinchin theorem is invalid. In89

recent years, power spectrum theory has been expanded with a tool called the aging Wiener-Khinchin theorem [2–4].90

This theorem covers a broad class of non-stationary processes that possess an autocorrelation function with the long-91

time asymptotic CEA(t, τ) = 〈x(t)x(t+ τ)〉 ∼ tγφEA(τ/t). Such correlation functions are common [4, 49, 50] and they92

are called scale invariant. An alternative analysis of the autocorrelation function is performed in terms of its time93

average CTA of individual trajectories, where94

CTA(tm, τ) =
1

tm − τ

∫ tm−τ

0

x(t)x(t+ τ)dt. (3)

with tm being the measurement time. As mentioned above, for ergodic processes, CTA converges to CEA in the95

long time limit. However, when the process is not ergodic, such as a scale-free CTRW, CTA of individual trajectories96

remain random variables even in the long time limit [51, 52]. Thus, one analyzes the ensemble-average of the TA-ACF,97

〈CTA(tm, τ)〉. Further, ergodicity breaking leads to a difference in the two averages, 〈CTA(tm = t, τ)〉 6= CEA(t, τ).98

Each of these formalisms (ensemble vs. time averages) has its own advantages and disadvantages. Nevertheless, when99

the number of trajectories is small and the measurement time is long, the time averages lead to better statistics and it100

is, thus, the more commonly used method in single-particle tracking. When CEA(t, τ) = tγφEA(τ/t), the time-average101

ACF has also the scaling form 〈CTA(tm, τ)〉 = tγmφTA(τ/tm) [2]. The scaling function φTA(τ/tm) is directly related102

to the ensemble average via the relation103

φTA(y) =
y1+γ

1− y

∫ ∞

y

1−y

φEA(z)

z2+γ
dz, (4)

where y = τ/tm, which implies 0 ≤ y ≤ 1.104

For a measurement time tm the power spectrum can be only obtained for the discrete set of frequencies ωktm = 2πk105

with k being a non-negative integer. That is, the frequencies can be resolved down to ∆ω = 2π/tm, which decays106

to zero in the limit of large measurement time tm. The aging Wiener-Khinchin theorem relates the average power107

spectrum for this set of frequencies to the time-averaged autocorrelation function [2, 4],108

〈S(ω, tm)〉 = 2t1+γ
m

∫ 1

0

(1− y)φTA(y) cos(ωtmy)dy. (5)

A relation between the PSD and the ensemble-averaged correlation function also exists, but we will employ the relation109

to the time average because of its more common use in single-particle tracking experiments.110

III. SUBORDINATED RANDOM WALKS: GENERAL CONSIDERATIONS111

We now present the subordination model that we evaluate. We consider a fBM-like process at discrete times,112

n = 0, 1, 2, 3, . . . , with Hurst exponent H, such that its autocorrelation function at the discrete times n is given by113

[53]114

〈xnxn+∆n〉 = D
[

n2H + (n+∆n)2H −∆n2H
]

, (6)

where the diffusion coefficient D is a scaling parameter with units of m2. Then we place this process under the115

operational time of a CTRW, so that the particle is immobilized during sojourn times with a heavy-tailed distribution.116

A CTRW describes, for example, energetic disorder where a particle has random waiting times at each trapping site117

[47, 54]. This energy landscape is such that the mean waiting-time diverges and it is, thus, scale free. A CTRW118

with scale-free waiting times has been initially applied successfully to model the electrical conduction in amorphous119

semiconductors [55] and, since then, it has reached a broad range of applications [29, 36, 56].120

The operational times are defined by a random process {tn} with non-negative independent increments τn =121

tn − tn−1. The time increments τn between renewals are, in the long time limit, asymptotically distributed according122

to a probability density function (PDF) [57]123

ψ(τn) ∼
α

Γ(1− α)

tα0
τ1+α
n

, (7)
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FIG. 1. Three representative trajectories for a process subordinated to fractional Brownian motion, such that the Hurst
exponent is H = 0.3 and the CTRW anomalous exponent is α = 0.8. Long immobilization times are observed within the
fractional Brownian motion.

where 0 < α < 1, t0 is a constant with units of time, and Γ(·) is the gamma function. At time t, the position of the
particle is x(t) = xn where n is the random number of renewals in the interval (0, t). Given n, xn is determined by
the discrete fBM process defined by Eq. 6. Three representative trajectories of such a process are shown in Fig. 1.
The ensemble-averaged autocorrelation function of x(t) is then

CEA(t, τ) = 〈x(t)x(t+ τ)〉

= E [E [x(t)x(t+ τ)|nt; (n+∆n)t+τ ]] , (8)

where E[g(x)] = 〈g(x)〉 represents the expected value of g(x) and E[g(x)|y] is the conditional expected value of g(x)124

given y. In particular, the last term indicates the iterated expectation of x(t)x(t+ τ), given that n steps have taken125

place up to time t and n+∆n steps have taken place up to time t+ τ . The first expectation is taken on xn and the126

second expectation on all possible values of n and ∆n. Let us define χn(t) as the probability of taking exactly n steps127

up to time t. Further, we define χn,∆n(t, τ) as the joint probability of taking n steps up to time t and ∆n steps in128

the interval (t, t+ τ).129

Combining Eq. 8 and Eq. 6, we obtain

CEA(t, τ) = E
[

D
(

n2H
t + (n+∆n)2Ht+τ −∆n2H

τ,t

)]

= D
∞
∑

n=0

∞
∑

∆n=0

(

n2H + (n+∆n)2H −∆n2H
)

χn,∆n(t, τ). (9)

Once the ensemble average autocorrelation function is found, we can obtain the time average CTA(tm, τ) via Eq. 4130

and, subsequently, the PSD using Eq. 5.131
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IV. CONTINUOUS TIME RANDOM WALK (2H = 1)132

The fBM reverts to Brownian motion when 2H = 1. In this case, the process is a traditional CTRW [47, 48]. The
ensemble-averaged autocorrelation function in Eq. 9 is

CEA(t, τ) = 2D
∞
∑

n=0

∞
∑

∆n=0

nχn,∆n(t, τ)

= 2D

∞
∑

n=0

nχn(t) = 2D〈n(t)〉

∼
2D

tα0Γ(1 + α)
tα, (10)

which, given the memoryless property of Brownian motion, boils down to the ensemble-averaged autocorrelation133

function being independent of lag time τ and equal to the mean squared displacement (MSD), CEA(t, τ) = 〈x2(t)〉.134

In Eq. 10 we used the well know expression for the mean number of jumps in the interval (0, t), 〈n(t)〉, valid at long135

times [57]. The MSD solution for the CTRW is 〈x2(t)〉 ∼ tα, that is, it exhibits subdiffusion with anomalous exponent136

α.137

The ensemble-averaged autocorrelation function in Eq. 10, for 2H = 1, implies that CEA = tαφEA with138

φEA =
2D

tα0Γ(1 + α)
, (11)

i.e., φEA is a constant. Following Leibovich et al. [4], the time-averaged autocorrelation function is 〈CTA〉 =139

tαmφTA(τ/tm) and, using Eq. 4, we can find the scaling function140

φTA(y) =
2D

tα0Γ(2 + α)
(1− y)α, (12)

where again we use y = τ/tm.141

Next, we can use the time-averaged autocorrelation function in conjunction with the aging Wiener-Khinchin theorem
to obtain the power spectral density of the CTRW. Given that the process time-averaged autocorrelation function has
the form 〈CTA(tm, τ)〉 = tαmφTA(τ/tm), we find the sample power spectral density by solving the integral in Eq. 5,

〈S2H=1(ω, tm)〉 =
4Dt1+α

m

tα0Γ(2 + α)

∫ 1

0

(1− y)1+α cos(ωtmy)dy

=
4Dt1+α

m

tα0Γ(3 + α)
1F2

[

1;
3 + α

2
,
4 + α

2
;−

(

ωtm
2

)2
]

, (13)

where 1F2 (a; b1, b2; z) refers to the generalized hypergeometric function. The PSD in Eq. 13 is, as expected, a142

function of both frequency ω and realization time tm. When α = 1 the mean waiting time exists and the CTRW143

statistics revert in the long time to those of Brownian motion. In particular replacing α = 1 and ωtm = 2πk we144

find 1F2

[

1; 2, 5/2;−(ωtm)2/4
]

= 6/(ωtm)2 and, thus, the PSD is that of standard Brownian motion, 〈S(ω)〉 ∼ ω−2,145

independent of tm. Expanding the hypergeometric function in Eq. 13 for ωtm ≫ 1, it is found that the leading term146

scales in frequency as ω−2 and in time as t
−(1−α)
m ,147

〈S2H=1(ω, tm)〉 ∼
4D

tα0Γ(1 + α)

1

t1−α
m ω2

, (14)

which is related to the MSD via the relation148

〈S2H=1(ω, tm)〉 ∼
2

αω2

∂

∂tm
〈x2(tm)〉. (15)

While Eq. 15 applies to the CTRW, we will see later that it is not universal for the scale free processes under study.149

Figure 2 shows a comparison of these analytical results to numerical simulations of 10, 000 realizations with α = 0.7.150

The MSD exhibits a power law, 〈x2(t)〉 ∼ tα (Fig. 2a). The power spectral density is presented in Fig. 2b for five151

different measurement times from tm = 28 to 216 and compared to both the exact result involving the hypergeometric152
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FIG. 2. Results from numerical simulation of the CTRW, i.e. Brownian motion with power-law waiting times. The simulations
were performed for α = 0.7 and 10, 000 realizations were obtained. (a) MSD indicates subdiffusive behavior. A linear regression
of log(MSD) vs log(t) indicates 〈x2(t)〉 ∼ t0.69 (b) PSD at five different time exhibits aging. The hypergeometric exact solution
is indicated with a dash dot line and the power law asymptotic ∼ ω−2 is indicated with a dashed line. These two theoretical
results are shifted down for clarity. (c) The amplitude A(tm) of the PSD, where 〈S〉 = A(tm)/ω2, shows A(tm) ∼ t−0.31

m , which
is the aging effect.

function 1F2 and the power law asymptotic ω−2. The two functions are very close when compared in a logarithmic153

scale and they agree with the numerical simulations. Specifically, at the smallest frequency, i.e., ωtm = 2π, the154

asymptotic form deviates from the exact result by a magnitude of 11% and when ωtm = 2π × 10, this deviation155

reduces to 2%. The spectra also exhibit aging with an amplitude that scales as t
−(1−α)
m (Fig. 2c). Intuitively, as156

the measurement time is made longer, we encounter longer stagnation periods and, hence, the PSD decays with157

measurement time. Physically, this effect is due to the broadly distributed trapping times in the system.158

V. PROCESS SUBORDINATED TO FBM (0 < H < 1)159

A. Autocorrelation function160

When 2H 6= 1, the process has positively correlated increments for H > 0.5 and negatively correlated increments161

when H < 0.5. The autocorrelation function CEA in Eq. 9 is162

CEA(t, τ) = D
[

〈n2H(t)〉+ 〈n2H(t+ τ)〉 − 〈∆n2H(τ ; t)〉
]

. (16)

where ∆n(τ ; t) is the number of steps between the aged time t and t+ τ . Using renewal theory and Eq. 7, the terms
in Eq. 16 are found to be (see Supplementary Material)

〈n2H(t)〉 =
Γ(1 + 2H)

tγ0Γ(1 + γ)
tγ , (17)

〈∆n2H(τ ; t)〉 =
Γ(1 + 2H)

tγ0Γ(1 + γ)
b 2F1

(

1, 1− α; 2− α+ γ;−
τ

t

)

tα−1τ1−α+γ , (18)

where 2F1 (a1, a2; b; z) is the Gaussian hypergeometric function. We have defined163

γ = 2αH, (19)

and the constant b is164

b =
sin(πα)

π

Γ(1− α)Γ(1 + γ)

Γ(2− α+ γ)
. (20)

Note that in the specific case that 2H = 1, these constants revert to b = γ = α. Using a different formalism,
〈∆nν(τ ; t)〉 has been previously derived [58, 59]. These previous results were expressed in terms of incomplete beta
functions but they are equivalent to ours. The ensemble-averaged autocorrelation function, Eq. 16, is thus given by

CEA(t, τ) = c1t
γ

[

1 +
(

1 +
τ

t

)γ

− b 2F1

(

1, 1− α; 2− α+ γ;−
τ

t

)(τ

t

)1−α+γ
]

, (21)
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FIG. 3. Numerical simulations agree with the time average-autocorrelation analytical results. (a) Subdiffusive fBM example,
with Hurst exponent H = 0.3 and sojourn times with power law distribution with α = 0.4. (b) Superdiffusive fBM example,
with Hurst exponent H = 0.7 and sojourn times with power law distribution with α = 0.4. In both datasets, the realization
time is tm = 216 and the number of realizations is 10, 000. The ACF is shown up to a lag time τ = 500. The solid lines show
analytical results given by Eq. 23, where 〈CTA(tm, τ)〉 = tγmφTA(τ/tm).

with165

c1 = D
Γ(1 + 2H)

tγ0Γ(1 + γ)
, (22)

which gives the MSD when τ = 0; 〈x2(t)〉 = 2D〈n2H(t)〉 = 2c1t
γ .166

The ensemble-averaged autocorrelation function in Eq. 21 has the form CEA(t, τ) = tγφEA(τ/t), which implies167

the time-averaged autocorrelation function is of the form 〈CTA(tm, τ)〉 = tγmφTA(τ/tm) [4]. Defining y = τ/tm and168

following Eq. 4, we can find the scaling function169

φTA(y) =
c1

1 + γ

[

(1− y)γ +
1

1− y
−

(1 + γ)b

α

y1+γ−α

(1− y)1−α 2F1

(

1,−α; 2− α+ γ;−
y

1− y

)]

. (23)

The analytical results for the time-averaged ACF (Eq. 23) were compared to numerical simulations. For this purpose,170

we performed simulations in MATLAB using the function wfbm to generate fBM. Subsequently the times between171

steps were drawn from a Pareto distribution ψ(t) = αt−(1+α) for t ≥ 1. A total number of 10, 000 realizations were172

obtained with tm = 216 and a sampling time of 1. The numerical simulations are observed to agree with analytical173

results for both H < 1/2 and H > 1/2 in Fig. 3a and Fig. 3b, respectively.174

B. Power spectral density175

We see that the process subordinated to a fBM shows that 〈CTA〉 = tγmφTA(τ/tm) with the time-average scaling
correlation function φTA(τ/tm) given by Eq. 23. The aging Wiener-Khinchin theorem, Eq. 5, then gives the average
power spectrum (see Supplementary Material),

〈S(ω, tm)〉 = 2c1t
1+γ
m

[

1

(1 + γ)(2 + γ)
1F2

(

1;
3 + γ

2
,
4 + γ

2
;−

(

ωtm
2

)2
)

+
b(1− α+ γ)Γ(1 + α)Γ(2− α+ γ)

αΓ(3 + γ)
2F3

(

2− α+ γ

2
,
3− α+ γ

2
;
3

2
,
3 + γ

2
,
4 + γ

2
;−

(

ωtm
2

)2
)

]

. (24)

By expanding these terms in the limit ωtm ≫ 1 and noting that the spectrum is evaluated at frequencies ωtm = 2πk,
we obtain the leading terms

〈S(ω, tm)〉 ≈ 2c1t
1+γ
m



(ωtm)−2 +
b cos

(

π(α−γ)
2

)

Γ(2− α+ γ)

α
(ωtm)−2+α−γ



 . (25)

Thus, the leading term for 〈S(ω, tm)〉 depends on the values of α and γ. In the case that α− γ > 0,176

〈S2H<1(ω, tm)〉 ≈ 2c2t
−(1−α)
m ω−2+α−γ , (26)
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FIG. 4. Power spectral density of numerical simulations of fBM with heavy-tailed immobilization times. (a) Simulations for
five different measurement times with α = 0.4 and H = 0.3. The number of realizations is N = 10, 000. Given that the

fBM is subdiffusive (H < 1/2), the PSD is predicted to scale as 〈S(ω, tm)〉 ∼ t
−(1−α)
m ω−2+α−γ as in Eq. 26. The dashed

line shows the scaling ω−2+α−γ . (Inset) When the PSD are multiplied by t1−α
m , the five spectra are observed to collapse to

a single master curve, validating the scaling prediction. (b) Simulations for five different measurement times with α = 0.4
and H = 0.7, N = 10, 000 realizations. The fBM is superdiffusive (H > 1/2) and the PSD is, thus, predicted to scale as

〈S(ω, tm)〉 ∼ t
−(1−γ)
m ω−2 (Eq. 28). The dashed line shows the scaling ω−2. (Inset) When the PSD are multiplied by t1−γ

m , the
spectra collapse to a single curve. (c) Simulations for five different measurement times with α = 0.8 and H = 0.75, N = 5, 000
realizations. Given that γ > 1, the power spectrum increases with measurement time. The dashed black line indicates ω−2.
(Inset) Each power spectrum 〈S(ω, tm)〉 is multiplied by t1−γ

m . The rescaled spectra converge to a universal curve at large tm,
but the convergence in this case is slow. (d) The shaded region (regime III) indicates the set of values for α and H that yields
a PSD 〈S(ω, tm)〉 that increases with measurement time. In the rest of the plane, the power spectrum decays with tm. Within

this part of the plane, regime I is characterized by 〈S(ω, tm)〉 ∼ t
−(1−α)
m ω−2+α−γ and regime II by 〈S(ω, tm)〉 ∼ t

−(1−γ)
m ω−2.

where177

c2 =
c1b

α
cos

(

π(α− γ)

2

)

Γ(2− α+ γ). (27)

Note that γ = 2αH and thus α− γ > 0 when 2H < 1, i.e., this is the leading term when the fBM has a subdiffusive178

nature. An example of this case is shown for numerical simulations with α = 0.4 and H = 0.3 in Fig. 4a. The scaling179

of the PSD both in tm and ω agrees with Eq. 26.180

When the underlying fBM is superdiffusive (i.e, 2H > 1), α− γ < 0 and the leading term is181

〈S2H>1(ω, tm)〉 ≈ 2c1t
−(1−γ)
m ω−2. (28)

This PSD is related to the mean square displacement in a similar way as the CTRW (Eq. 15), via the relation182

〈S2H>1(ω, tm)〉 ≈
1

γω2

∂

∂tm
〈x2(tm)〉. (29)

which is similar to Eq. 15, but with a factor 1/2. When 2H > 1, the power spectral density decreases with observation183

time for small α and H, namely when γ < 1, i.e., α < 1/(2H). However, the PSD increases with measurement time184

tm when α > 1/(2H) as shown in Fig. 4d (shaded regime III). Figure 4b shows the power spectra for numerical185

simulations where the underlying fBM is superdiffusive with H = 0.7 and α = 0.4 which falls in the regime that186
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〈S(ω, tm)〉 decays with tm (regime II Fig. 4d). Figure 4c shows simulations with H = 0.75 and α = 0.8 where187

〈S(ω, tm)〉 increases with tm. In this regime of increasing S, the convergence to Eq. 28 is very slow and appears to188

converge only for realization times tm > 105. The increase of S with time is directly related to the fBM. It is observed189

that in the usual superdiffusive fBM without immobilizations, the PSD increases with time [32]. As immobilizations190

with a heavy tail distribution are considered, the increase with time seen for superdiffusive fBM is reduced and, if the191

heavy tail distribution decays to zero slowly enough, the trend is inverted back to the more traditional aging behavior192

where the PSD decays with measurement time.193

The results in Fig. 4a-c are presented for the approximated asymptotic forms. Differences between the exact194

result (Eq. 24) and the asymptotic approximations (Eqs. 26 and 28) are substantial only at the lowest natural195

frequencies. At the natural frequency ωtm = 2π, the three specific analyzed cases, yield differences between the exact196

and approximated results of 23%, 20%, and 3% for Figs. 4a, b, and c, respectively and these differences reduce to197

7%, 6%, and 0.2% when ωtm = 2π × 10, as shown in Supplementary Fig. 1. On a log-log plot, which is the common198

representation of 1/f type of spectra, these deviations are hard to detect.199

What happens to the PSD in the limit α→ 1? In this limit, the subordinated process behaves as the usual fBM and200

the PSD has a known form (see, e.g., [32]) such that 〈S(ω, tm)〉 ∼ 1/ω1+2H when 2H < 1 and 〈S(ω, tm)〉 ∼ t2H−1
m /ω−2

201

when 2H > 1. The results shown in Eq. 26 and 28 approach these expressions when α → 1, given that γ → 2H.202

A second interesting limit occurs when 2H → 1 (for any 0 < α < 1). In this limit, we recover the CTRW with203

〈S2H=1(ω, tm)〉 = 2(c1+c2)/ω
2. This behavior is the same scaling presented in Eq. 14 because now b = α and c1 = c2.204

We note the factor 1/2 between Eq. 15 and 29 arises because when 2H = 1, the two leading terms converge to the205

same exponent.206

VI. EXPERIMENTAL RESULTS207

The derivation of the PSD of subordinated, correlated random walks enables us to characterize the motion of the208

voltage gated sodium channels Nav1.6 in the somatic plasma membrane of hippocampal neurons. Nav1.6 were tagged209

with an extracellular CF640R fluorophore via biotin-streptavidin and trajectories were obtained by single-molecule210

tracking. Experimental details have been published previously [60]. Live cells were imaged at 37 ◦C by total internal211

reflection fluorescence microscopy, and tracking of individual fluorophores was performed using the U-track algorithm212

[61]. We have previously found that somatic Nav1.6 channels transiently immobilized into cell surface nanodomains213

[60]. Further, we have found that the immobilization times were drawn from a heavy-tailed distribution, which214

caused the diffusion process to exhibit weak ergodicity breaking [62]. For this reason, we model the system using215

Eq. 7. An important property of heavy-tailed renewal processes is that they depend on the time that lapsed since216

the system started, and this time is denoted as the origin, t = 0 [63]. In the case of Nav channels, we start our217

measurements when the channel is delivered to the plasma membrane and, thus, the time t = 0 is well-defined.218

Besides immobilizations with a heavy-tailed distribution, Nav1.6 also show antipersistent fBM-like motion, leading to219

a non-linear time-averaged MSD. Here, we evaluate 87 Nav1.6 trajectories of 256 data points each, with a sampling220

time ∆t = 50 ms.221

Before digging into the PSD analysis of Nav channels, we consider their mean square displacement, which is a222

familiar statistical tool that helps us understand some basic properties of their motion. Figure 5a shows the ensemble-223

averaged MSD (EA-MSD, 〈x2(t)〉) of the molecule positions and the ensemble-average of the time-averaged MSD224

(EA-TA-MSD) for three different observation times, tm = 64∆t, 128∆t, and 256∆t. The EA-TA-MSD is defined in225

its usual way,226

〈δ2(τ, tm)〉 =
1

tm − τ

〈
∫ tm−τ

0

[x(t+ τ)− x(t)]
2
dt

〉

, (30)

where, using the same notation as in the autocorrelation function, τ denotes the lag time. The individual time traces227

of the time-averaged MSD δ2(τ, tm) scatter broadly [62] and, thus, we study the properties of their average rather228

individual trajectories. The large difference between the EA-TA-MSD and the EA-MSD (Fig. 5a) is a direct indication229

of ergodicity breaking in the motion of Nav channels [36, 62]. In the context of our model, the ergodic hypothesis230

breaks down since α < 1 and, hence, the measurement time is smaller than the characteristic immobilization time.231

Ergodicity breaking is also the core reason behind the scattering of the individual time-averaged MSDs. The EA-TA-232

MSD of the subordinated process scales as [64]233

〈δ2(τ, tm)〉 ∼
τ1−α+γ

t1−α
m

. (31)

Figure 5a shows that the EA-TA-MSD indeed scales as 〈δ2〉 ∼ τλ/t1−α
m with exponents estimated to be λ = 1−α+γ =234

0.82± 0.05 and α = 0.54± 0.02. If the PSD frequency exponent is smaller than 2 (regime I in Fig. 4d), Eq. 26 states235
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FIG. 5. Analysis of Nav1.6 experimental trajectories in the soma of hippocampal neurons. (a) The time-averaged MSD is
different from the ensemble-averaged MSD (grey upper line). The time-averaged MSD scales as τ0.82±0.05 (dashed lines). The
time averaged MSD decays with experimental time as 1/t1−α

m , from which α is estimated to be 0.54±0.02. (b) Average spectra
are presented for three measurement times. The dashed lines show a scaling 1/ω1.75. Besides the power-law scaling, the spectra
exhibit white noise evident at large frequencies, likely due to localization error. The inset shows the amplitude of the PSD as
a function of measurement time in a log-log plot. It shows that the spectrum exhibits aging with a power law scaling 1/t1−α

m ,
from which α is estimated to be 0.50± 0.02.

that the PSD is directly related to the MSD exponents, 〈S〉 ∼ 1/(t1−α
m ω1+λ). Otherwise, when H ≥ 1/2 (regimes II236

and III), 〈S〉 ∼ 1/(t1−γ
m ω2).237

The power spectrum of the Nav channel trajectories is shown in Fig. 5b. Performing measurements for the MSD238

and the PSD we obtain their exponents independently. Since these statistical tools scale, respectively, as τλ and either239

1/ω1+λ or 1/ω2, the comparison allows us to check the validity of the approach in the analysis of Nav channels. We240

find that the PSD of Nav channels scales as a power law and it exhibits aging. The PSD decays with observation241

time as predicted for a process with Hurst exponent H < 1/2 (see Eq. 26). Namely, 〈S(ω, tm)〉 ∼ A(tm)/ω1.75±0.05.242

This power law agrees with the predicted scaling of the PSD, 1/ω1+λ, where λ is independently obtained using the243

MSD. The PSD amplitude A(tm) as a function of measurement time tm is shown in the inset of Fig. 5b, indicating244

A(tm) ∼ 1/t0.50±0.02
m , also in agreement with the dependence of the time-averaged MSD on experimental time.245

According to Eq. 26, the PSD results imply α = 0.50± 0.02 and H = 0.25± 0.11. The spectral analysis confirms the246

predictions stating that the motion of Nav channels is a subordinated process and lets us obtain accurate estimates247

of the waiting time distribution and the Hurst exponent from the PSD dependence on frequency and measurement248

time. While the goal of this work pertained to the dynamics of proteins, it is directly applicable to any process where249

a correlated random walk coexists with a non-ergodic CTRW.250

VII. DISCUSSION AND CONCLUSIONS251

The PSD of subordinated processes is found to be described in terms of hypergeometric functions (Eqs. 13 and 24).252

However, it can be approximated to an excellent degree by simple power laws in the experimentally relevant frequency253

range. This is especially true when the spectrum is plotted in a log-log scale, as is typically done in experiments on254

1/f noise (see Suppl. Fig. S1, for a quantitative evaluation). We characterize subordinated random walks via two255

exponents, the Hurst exponent H and the exponent that describes the heavy-tailed waiting time distribution α. We256

observe that it is possible to obtain α and H from the exponents that describe both the MSD and the PSD. Obtaining257

equivalent results for these two vastly different metrics provides a strong validation of the subordinated process being258

a valid model for the experimetnal system under consideration. The PSD depends on H in a piecewise manner.259

When the parent process is a subdiffusive fBM, i.e., H < 1/2, the PSD scales in frequency as ω−2+α−2αH . On the260

other hand, when the parent process is Brownian motion or superdiffusive fBM, i.e., H ≥ 1/2 the scaling is ω−2.261

In the latter case, i.e., when 〈S〉 ∼ ω−2, the power spectrum is directly related to the time derivative of the MSD.262

However, when H < 1/2, this relation is different. In this case, the scaling exponents of the time-averaged MSD and263

the power spectrum are related via 〈δ2〉 ∼ τλ and 〈S〉 ∼ ω−(1+λ). The frequency scaling exponent is continuous in H264

in the whole range and, thus, distinguishing between Brownian motion and subdiffusive fBM with H close to 1/2 may265

be difficult. Further, the frequency dependence when H ≥ 1/2 is deceivingly the same as that of normal Brownian266

motion.267

The PSD is found to exhibit aging, namely it depends on the experimental time tm. This aging is observed in the268
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PSD scaling as t
−(1−α)
m for H ≤ 1/2 and t

−(1−2αH)
m for H > 1/2. Again, we note that the aging exponent is piecewise269

linear and continuous in H. The difference in aging exponent regimes has been previously observed for a traditional270

fBM (without immobilizations), with a scaling 〈S〉 ∼ t
−(1−2H)
m for H > 1/2 and no aging when H ≤ 1/2 [32]. The271

subordinated scheme we studied here converges to the traditional fBM when α = 1. In this particular case, α = 1272

implies the mean sojourn time during immobilizations exists and, as a consequence, the statistics of the subordinated273

process revert to those of the traditional fBM.274

A particularly interesting feature of subordinated random walks is that the power spectrum can both increase or275

decrease with experimental time. When H < 1/2, the PSD always decays with tm. However, when the fBM is276

superdiffusive, a competition is exerted between the two underlying stochastic processes: the PSD increases with tm277

when the exponent α and the Hurst index H are such that α > 1/(2H) and, otherwise, the PSD decays (see Fig. 4d278

for a phase diagram).279

In summary, we have derived the spectral content of a broad class of non-stationary diffusive processes using the280

aging Wiener-Khinchin theorem. This class of processes involves the coexistence of correlated fractional Brownian281

motion and power-law distributed sojourn immobilization times, which are encountered in vastly diverse scientific282

fields, such as hydrology [65, 66] and movement ecology [67]. The spectra exhibit 1/ωβ behavior with an exponent283

β that depends on the characteristics of both underlying processes. In addition, it is found that the spectra exhibit284

aging in the measurement time. This analysis proved useful in elucidating the statistical properties of experimental285

trajectories in live mammalian cells obtained by single-particle tracking, opening a new avenue in the analysis of286

protein trajectories, which are known to exhibit highly complex behavior that often proves difficult to decipher.287
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106, 12251 (2009).304

[9] B. Mandelbrot, Gaussian self-affinity and fractals: globality, the Earth, 1/f noise, and R/S, Vol. 8 (Springer Science &305

Business Media, 2002).306

[10] S. B. Lowen and M. C. Teich, Fractal renewal processes generate 1/f noise, Phys. Rev. E 47, 992 (1993).307

[11] N. W. Watkins, Mandelbrot’s 1/f fractional renewal models of 1963–67: The non-ergodic missing link between change308

points and long range dependence, in International Work-Conference on Time Series Analysis (Springer, 2016) pp. 197–309

208.310

[12] M. Niemann, H. Kantz, and E. Barkai, Fluctuations of 1/f noise and the low-frequency cutoff paradox, Phys. Rev. Lett.311

110, 140603 (2013).312

[13] K. A. Takeuchi, 1/fα power spectrum in the Kardar-Parisi-Zhang universality class, J. Phys. A 50, 264006 (2017).313

[14] M. Pelton, D. G. Grier, and P. Guyot-Sionnest, Characterizing quantum-dot blinking using noise power spectra, Appl.314

Phys. Lett. 85, 819 (2004).315

[15] S. Sadegh, E. Barkai, and D. Krapf, 1/f noise for intermittent quantum dots exhibits non-stationarity and critical expo-316

nents, New J. Phys. 16, 113054 (2014).317

[16] A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8, 549 (2013).318

[17] R. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker, Noise in solid-state nanopores, Proc. Natl. Acad. Sci. U.S.A.319

105, 417 (2008).320



12

[18] J. Burnett, L. Faoro, I. Wisby, V. Gurtovoi, A. Chernykh, G. Mikhailov, V. Tulin, R. Shaikhaidarov, V. Antonov, P. Meeson,321

et al., Evidence for interacting two-level systems from the 1/f noise of a superconducting resonator, Nat. Commun. 5, 1322

(2014).323

[19] D. Krapf, Nonergodicity in nanoscale electrodes, Phys. Chem. Chem. Phys. 15, 459 (2013).324

[20] I. Csabai, 1/f noise in computer network traffic, J. Phys. A 27, L417 (1994).325

[21] A. Sornette and D. Sornette, Self-organized criticality and earthquakes, EPL (Europhys. Lett.) 9, 197 (1989).326

[22] R. F. Voss, Evolution of long-range fractal correlations and 1/f noise in DNA base sequences, Phys. Rev. Lett. 68, 3805327

(1992).328

[23] J. M. Halley and P. Inchausti, The increasing importance of 1/f -noises as models of ecological variability, Fluct. Noise329

Lett. 4, R1 (2004).330

[24] M. A. Rodriguez, F. Denis-le Coarer, and A. Valle, 1/f noise in the intensity fluctuations of vertical-cavity surface-emitting331

lasers subject to parallel optical injection, Phys. Rev. E 97, 042105 (2018).332

[25] S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, High-density333

mapping of single-molecule trajectories with photoactivated localization microscopy, Nat. Methods 5, 155 (2008).334

[26] B. Biermann, S. Sokoll, J. Klueva, M. Missler, J. Wiegert, J.-B. Sibarita, and M. Heine, Imaging of molecular surface335

dynamics in brain slices using single-particle tracking, Nat. Commun. 5, 1 (2014).336

[27] C. Manzo and M. F. Garcia-Parajo, A review of progress in single particle tracking: from methods to biophysical insights,337

Rep. Prog. Phys. 78, 124601 (2015).338

[28] A. Huhle, D. Klaue, H. Brutzer, P. Daldrop, S. Joo, O. Otto, U. F. Keyser, and R. Seidel, Camera-based three-dimensional339
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[37] I. Sokolov, Lévy flights from a continuous-time process, Phys. Rev. E 63, 011104 (2000).356

[38] B. Dybiec and E. Gudowska-Nowak, Subordinated diffusion and continuous time random walk asymptotics, Chaos 20,357

043129 (2010).358

[39] D. Krapf, Mechanisms underlying anomalous diffusion in the plasma membrane, in Curr. Top. Membr., Vol. 75 (Elsevier,359

2015) pp. 167–207.360

[40] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Ergodic and nonergodic processes coexist in the plasma membrane361

as observed by single-molecule tracking, Proc. Natl. Acad. Sci. U.S.A. 108, 6438 (2011).362

[41] S. A. Tabei, S. Burov, H. Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer,363

Intracellular transport of insulin granules is a subordinated random walk, Proc. Natl. Acad. Sci. U.S.A. 110, 4911 (2013).364

[42] A. Mosqueira, P. A. Camino, and F. J. Barrantes, Cholesterol modulates acetylcholine receptor diffusion by tuning con-365

finement sojourns and nanocluster stability, Sci. Rep. 8, 1 (2018).366

[43] F. Etoc, E. Balloul, C. Vicario, D. Normanno, D. Liße, A. Sittner, J. Piehler, M. Dahan, and M. Coppey, Non-specific367

interactions govern cytosolic diffusion of nanosized objects in mammalian cells, Nat. Mater. 17, 740 (2018).368

[44] M. Levin, G. Bel, and Y. Roichman, Different anomalous diffusion regimes measured in the dynamics of tracer particles369

in actin networks, arXiv preprint, arXiv:2011.00539 (2020).370

[45] R. Roman-Ancheyta, O. de los Santos-Sánchez, L. Horvath, and H. M. Castro-Beltrán, Time-dependent spectra of a371

three-level atom in the presence of electron shelving, Phys. Rev. A 98, 013820 (2018).372

[46] M. H. Myoga, M. Beierlein, and W. G. Regehr, Somatic spikes regulate dendritic signaling in small neurons in the absence373

of backpropagating action potentials, J. Neurosci. 29, 7803 (2009).374

[47] E. W. Montroll and G. H. Weiss, Random walks on lattices. II, J. Math. Phys. 6, 167 (1965).375

[48] M. F. Shlesinger, Origins and applications of the Montroll-Weiss continuous time random walk, Eur. Phys. J. B 90, 93376

(2017).377

[49] J.-P. Bouchaud, Weak ergodicity breaking and aging in disordered systems, J. Physique I 2, 1705 (1992).378

[50] J. Vollmer, L. Rondoni, M. Tayyab, C. Giberti, and C. Mej́ıa-Monasterio, Displacement autocorrelation functions for strong379

anomalous diffusion: A scaling form, universal behavior, and corrections to scaling, Phys. Rev. Res. 3, 013067 (2021).380

[51] G. Margolin and E. Barkai, Nonergodicity of blinking nanocrystals and other Lévy-walk processes, Phys. Rev. Lett. 94,381
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Figures

Figure 1

Three representative trajectories for a process subordinated to fractional Brownian motion, such that the
Hurst exponent is H = 0.3 and the CTRW anomalous exponent is α = 0.8. Long immobilization times are
observed within the fractional Brownian motion.

Figure 2

Results from numerical simulation of the CTRW, i.e. Brownian motion with power-law waiting times. The
simulations were performed for α = 0.7 and 10, 000 realizations were obtained. [See Manuscript PDF �le
for full caption]



Figure 3

Numerical simulations agree with the time average-autocorrelation analytical results. [See Manuscript
PDF �le for full caption]

Figure 4

Power spectral density of numerical simulations of fBM with heavy-tailed immobilization times. [See
Manuscript PDF �le for full caption]



Figure 5

Analysis of Nav1.6 experimental trajectories in the soma of hippocampal neurons. [See Manuscript PDF
�le for full caption]
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