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2008), Drosophila (Simonsen et al., 2008) and yeast (Alvers et al., 
2009) have shown that lifespan in these organisms was extended 
when autophagy was upregulated, which could improve cellular 
ability to eliminate dysfunctional mitochondria (i.e. stimulate 
mitophagy). Alternatively/additionally, mitochondrial dysfunction 
increases generation of oxygen free-radicals and related reactive 
oxygen species (collectively termed ROS) which in turn damage 
proteins to such an extent that cross-linked polypeptides are gener-
ated which not only resist proteolytic attack, but also inhibit protea-
somal activity, thereby establishing a deleterious cycle which would 
be likely to eventually result in the cell’s demise. However, when 
lifespan was extended by calorie restriction, proteolysis (autophagic 
and proteasomal) was found to be stimulated, which again could 
help to eliminate dysfunctional organelles and altered proteins 
(Cuervo, 2008). It is also possible that excessive autophagy may 
be deleterious as increased autophagic activity accompanies aging 
in progeroid mice (Marino and Lopez-Otin, 2008). Additionally 
that the β- amyloid peptide (1–42), commonly associated with 
Alzheimer’s disease, can bind to mitochondrial complex-1 NADH 
dehydrogenase (Munguia et al., 2005), while defi ciency in fatty acid 
beta-oxidation pathway may also be associated with neurodegen-
eration, possibly due to binding of β-amyloid peptide to hydroxya-
cyl-CoA dehydrogenase (Oppermann et al., 1999), further illustrate 
the possible relationships between altered proteins, mitochondrial 
dysfunction and age-related pathology.

INCREASED MITOCHONDRIAL DYSFUNCTION AND ALTERED 
PROTEIN ACCUMULATION – ASSOCIATION WITH AGING
Two strong correlates of aging are mitochondrial dysfunction (Sastre 
et al., 2003; Sedensky and Morgan, 2006; Figueiredo et al., 2008; Wei 
et al., 2009) and accumulation of altered proteins (Hipkiss, 2006a; 
Soskic et al., 2007; Lindner and Demarez, 2009). It is possible that 
both these apparent effects of aging may also be causal to aging 
and much age-related pathology. Although many experiments 
have shown that mitochondrial dysfunction frequently accom-
panies aging, whether aging causes mitochondrial dysfunction, 
or whether mitochondrial dysfunction causes aging, is debated. 
For example, while aging is accompanied by the accumulation of 
altered proteins, possibly due to a decreased ability of the intracel-
lular proteases (lysosomal and proteasomal) to degrade aberrant 
polypeptide chains (Carrard et al., 2002; Bergamini et al., 2007; 
Chondrogianni and Gonos, 2007; Hanson et al., 2008; Kurz et al., 
2008a; Yun et al., 2008), it has also been shown that altered proteins 
can bind to mitochondria and compromise their function (Hansson 
Petersen et al., 2008; Devi and Anandatheerthavarada, 2009; Rhein 
et al., 2009; Sun et al., 2009). Furthermore there is strong evidence 
for the proposal that decreased autophagy and lysosomal activity 
compromises elimination of dysfunctional mitochondria (Brunk 
and Terman, 2002; Terman et al., 2003; Kim et al., 2007; Kurz et al., 
2008b), thereby promoting their accumulation. Conversely, studies 
in nematode Caenorhabditis elegans (Hanson et al., 2008; Toth et al., 
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AGING, NAD+ AND METHYLGLYOXAL
Whatever the cause of mitochondrial dysfunction, one consequence 
of lowered mitochondrial activity will be decreased  mitochondrially-
mediated regeneration of NAD+ from NADH. Oxidation of 
the glycolytic intermediate glyceraldehyde-3-phosphate (G3P) 
by glyceraldehyde-3-phosphate dehydrogenase requires NAD+ 
(which is converted to NADH). As a continuous supply of NAD+ 
is required for triose phosphate metabolism to procede, both G3P 
and  dihydroxyacetone-phosphate (DHAP) will accumulate should 
NAD+ availability be restricted. Accumulation of these trioses is del-
eterious because both can spontaneously decompose into methylgly-
oxal (MG) (Turk, 2009), a highly toxic glycating agent which readily 
damages proteins by reacting with amino and guanidino groups of 
lysine and arginine residues, respectively (Rabbani and Thornalley, 
2008a). Indeed, a number of experiments have demonstrated the 
damaging effects of MG on mitochondrial activity (Johans et al., 
2005; SinhaRoy et al., 2005; Rabbani and Thornalley, 2008b; Wang 
et al., 2009), including increased ROS formation in mitochon-
dria as well as in the cytoplasm (Desai and Wu, 2008). Increased 
MG formation is also a likely explanation for many molecular 
events accompanying cell senescence (Sejersen and Rattan, 2009), 
ischemia, hyperglycemia and associated pathology (Nicolay et al., 
2006; Rabbani and Thornalley, 2008a). Signifi cantly, experiments in 
C. elegans have shown that increased expression of the MG detoxi-
fi cation enzyme, glyoxalase-1, increases organism lifespan, most 
likely by lowering MG levels and thereby decreasing MG-mediated 
protein damage and mitochondrial dysfunction (Morcos et al., 2008; 
Schlotterer et al., 2009). Furthermore, increasing dietary intake of 
MG-glycated protein can eliminate the benefi cial effects on mouse 
lifespan induced by dietary restriction (Cai et al., 2007). As every-
other-day feeding without any overall reduction in calorie intake 
can also increase organism lifespan (Masternak et al., 2005; Mattson 
and Wan, 2005; Martin et al., 2006), it is possible that periods of 
fasting, during which MG formation from glycolytic trioses will be 
suppressed, may provide an explanation for the observed benefi cial 
effects of dietary restriction on organism lifespan (Hipkiss, 2006b, 
2008). Collectively, these observations suggest that factors which 
regulate either MG formation or its elimination can exert critical 
roles in aging (Hipkiss, 2009a).

MECHANISMS CONTROLLING MG-MEDIATED 
MACROMOLECULAR DAMAGE
As noted above, a major infl uence on intracellular MG formation 
from the glycolytic trioses G3P and DHAP is the availability of 
NAD+. Mitochondria provide a major aerobic route for the regen-
eration of NAD+ from NADH which occurs via the operation of 
the oxaloacetate-malate shuttle and the glycerol-phosphate cycle. 
An anaerobic mechanism whereby NAD+ is regenerated from 
NADH is carried out in yeast by the reduction of acetaldehyde to 
ethyl alcohol, whereas in animal tissues, due to the absence of the 
enzyme pyruvate decarboxylase, the conversion of pyruvic acid to 
lactic acid is the analogous reaction. The latter process, however, 
imposes the additional metabolic stress of acidosis by increasing 
the number of hydrogen ions in the cytoplasm. In tissues where 
this process is particularly important, such as fast-twitch glycolytic 
muscle, additional buffering capacity is provided by the dipeptide 
carnosine (β-alanyl-L-histidine) and related imidazole dipeptides 

(Abe, 2000). Interestingly, it appears that carnosine, which is also 
found in brain, especially the olfactory lobe, can react with MG and 
other metabolic aldehydes and may be generally protective against 
aldehyde-mediated macromolecular damage (Hipkiss, 2009b,c). 
Other experiments have demonstrated that carnosine can suppress 
the deleterious effects of ischemia in brain (Dobrota et al., 2005), 
liver (Fouad et al., 2007) and kidney (Fujii et al., 2005), possibly 
mediated by the dipeptide’s reaction with MG (Hipkiss and Chana, 
1998; Aldini et al., 2005) generated as a consequence of hypoxia-
induced failure to regenerate NAD+ from NADH. These anti-
ischemic effects of the dipeptide are consistent with the proposal 
that, by reacting directly with MG, carnosine suppresses dicarbo-
nyl toxicity. That ischemia-related ROS formation and consequent 
proteotoxicity are prevented by upregulation of glyoxalase-1 in C. 
elegans (Morcos et al., 2008; Schlotterer et al., 2009), reinforces the 
idea that raised MG levels are signifi cant in ischemia. The obser-
vation that defects in triose phosphate isomerase activity, which 
promotes DHAP accumulation, induces many of the deleterious 
effects associated with hyperglycemia and aging (Orosz et al., 2009), 
further supports the proposal that MG plays a causal role in much 
age-related proteotoxicity (Hipkiss, 2008, 2009a). Signifi cantly, 
experiments have shown that carnosine delays aging in cultured 
human fi broblasts (McFarland and Holliday, 1994) and senescence-
accelerated mice (Yuneva et al., 1999, 2002). The fact that carnosine 
has also been reported to (i) possess anti-oxidant activity (Kohen 
et al., 1988; Bogardus and Boissonneault, 2000; Calabrese et al., 
2005), (ii) induce stress-protein expression (when complexed with 
zinc ions) (Odashima et al., 2006; Ohkawara et al., 2006; Wada et al., 
2006) and (iii) decrease telomere shortening (Shao et al., 2004), 
reinforces the idea that this essentially non-toxic dipeptide is sup-
portive of longevity (Hipkiss, 2009b,c).

NAD+ AND PROTEOTOXICITY
The observations outlined above reinforce the likely impor-
tance, to aging and related disorders, of MG, whose generation 
is affected by NAD+ availability. Additionally, NAD+ is important 
for stress- protein synthesis (Westerheide et al., 2009), autophagic 
activity (Lee et al., 2008; Salminen and Kaamiranta, 2009), sir-
tuin- mediated protein deacetylation (Bordone and Guarente, 
2005; Rodgers et al., 2008) and increased mitogenesis (Bonawitz 
et al., 2007; Cunningham et al., 2007), all of which impact upon 
the processes infl uencing proteostasis and aging. Thus the benefi -
cial effects of this virtuous cycle could help suppress the onset of 
cellular aging by decreasing the potential for MG generation, as 
well as improving protein quality control. It follows that putative 
pluripotent protective agents such as carnosine could also help 
suppress the deleterious effects of age-related disorders such as 
Alzheimer’s disease (Hipkiss, 2007) and type-2 diabetes (Hipkiss, 
1998, 2009d), both of which seem to possess a number of over-
lapping phenotypic characteristics, including increased protein 
glycoxidation (Maher and Schubert, 2009).

IF ROS ARE CAUSAL TO AGING, WHY IS AGING SUPPRESSED 
BY INCREASED AEROBIC ACTIVITY? A PARADOX RESOLVED?
Despite the detection of increased levels of oxidatively-damaged 
macromolecules in aging cells and tissues, it is surely paradoxi-
cal that aging and much related pathology can be delayed by 
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 mitochondria, perhaps stimulated by increased ROS generation 
in inactive organelles. Indeed ROS-mediated protein modifi ca-
tion increases proteolytic susceptibility, both intramitochondrially 
and in the cytosol, creates a precedent for ROS-induced damage 
increasing the potential for catabolic attack. These observations 
can be interpreted as suggesting that excess inactive mitochondria 
are indeed deleterious.

Regulation of mitochondrial numbers is undoubtably complex, 
as illustrated in a recent study in C. elegans which revealed that 
the protein prohibitin is important in this process (Artal-Sanz 
and Tavernarakis, 2009). Signifi cantly, the results showed that the 
benefi cial effect of increased mitogenesis (induced by prohibitin 
defi ciency) upon longevity was strongly infl uenced by organism 
metabolism. It was found that raised mitochondrial synthesis 
promoted an increase in organism lifespan at 25 degrees, and 
at 35 degrees the organisms were also strongly thermotolerant. 
While at a lower temperature (20 degrees) decreased longevity 
was observed in prohibitin-defi cient nematodes. These complex 
and seemingly paradoxical fi ndings can be successfully explained 
if one assumes that inactive mitochondria produce more ROS 
than mitochondria actively generating ATP (as proposed above). 
Hence it can be suggested that many mitochondria are inactive 
at the lower temperature due to low energy demands and conse-
quently ROS formation is increased and longevity compromised. 
Whereas, the increased ATP demand at the higher temperature 
results in increased mitochondrial activity, which, correspondingly, 
decreases ROS generation and increases lifespan. Additionally, how-
ever,  temperature-dependent differences in oxygen solubility could 
infl uence ROS formation and thereby affect the organism longev-
ity; as oxygen solubility is inversely related to temperature, raising 
the temperature could decrease mitochondrial oxygen supply and 
which could decrease the amounts of ROS generated.

CONCLUSION
It is suggested that maintenance of mitochondrial activity helps 
to suppress aging by ensuring NAD+ availability which decreases 
MG generation from glycolytic trioses and subsequent formation 
of toxic MG-modifi ed (glycated) proteins. Furthermore, increased 
mitogenesis will divert glucose metabolites through the pentose 
phosphate cycle for ribose and deoxyribose synthesis, which addi-
tionally will increase glutathione synthesis, via increased NADPH 
formation. It is likely that lowering the potential for MG formation 
will be additionally benefi cial by helping to maintain proteos-
tasis and delaying proteostatic collapse, because highly glycated 
(cross-linked) proteins can compromise protein quality control 
by inhibiting proteasome activity. Furthermore it is possible that 
continuous mitogenesis and growth in the young suppress onset 
of aging phenomena, even when the organism possesses a genetic 
predisposition for age-related pathology. However, once growth 
ceases, the potential for MG formation increases, with the inevi-
table fi nitude of life pressaged by proteostatic collapse in which 
altered proteins damage mitochondria, induce ROS formation 
which then damage more proteins, eventually promoting apop-
tosis. This would suggest that any process (e.g. increased ROS 
generation, increased protein glycation, decreased altered protein 
elimination, increased synthesis of erroneous proteins etc.) that 
causes intracellular accumulation of altered proteins could provide 

increased mitochondrial activity and aerobic exercise. It is possible 
to resolve this paradox however. It is suggested that mitochon-
dria, by ensuring NAD+ regeneration from NADH, suppress MG 
formation (and hence its deleterious effects) and thereby partly 
explains the benefi cial effects of increased aerobic activity towards 
much age-related dysfunction. Lowered MG generation may also 
result from the increased synthesis of nucleic acid precursors. 
This would divert glucose metabolism via the pentose phosphate 
pathway, which would not only increase glutathione synthesis via 
increased NADPH generation, but also decrease synthesis of MG 
precursors, triose phosphates. Furthermore the upregulation in 
synthesis of mitochondrial proteins may also be accompanied by 
increased synthesis of the necessary proteases and chaperone pro-
teins to help maintain protein quality (Hipkiss, 2009e). However, 
it should be pointed out that ROS may also provide a necessary 
signal for increased mitogenesis in exercised muscle.

It has been shown that limb immobilisation promotes an increase 
in mitochondrial ROS generation (Pesce et al., 2002; Miller et al., 
2007; Bar-Shai et al., 2008), observations consistent with the sug-
gestion that inactive mitochondria generate more ROS than those 
actively respiring (Van Voorhies, 2004; Barja, 2007; Burhans and 
Weinberger, 2007; Brooks et al., 2008; Holloszy, 2008; Hood, 2009). 
Experiments have demonstrated that uncoupling electron trans-
port from ATP synthesis suppresses aging and can extend lifespan 
(Speakman et al., 2004; Wolkow and Iser, 2006; Hood, 2009); this 
would increase NAD+ generation from NADH (Liu et al., 2008) 
and thereby decrease the potential for MG synthesis. Resveratrol 
and rapamycin, both of which have been shown to exert anti-aging 
effects, promote mitochondrial activity and mitogenesis, whilst also 
seeming to suppress glycolysis (Knutson and Leeuwenburgh, 2008; 
Orallo, 2008; Cox and Mattison, 2009; Harrison et al., 2009) thereby 
decreasing the potential for MG synthesis. There is also consid-
erable evidence showing that acetyl-L-carnitine, which facilitates 
entry of fatty acid acyl-units into mitochondria thereby increasing 
mitochondrial activity, has anti-aging effects and decreases ROS 
generation (Mollica et al., 2001; Liu et al., 2002; Virmani et al., 2002; 
Poon et al., 2006). It should also be noted, however, that it is still 
uncertain whether all age-related increases in ROS formation is 
intramitochondrial in origin; ROS can be generated outside mito-
chondria e.g. by MG, glycated proteins and cytoplasmic NAD(P)H 
oxidase and xanthine oxidase activities.

ARE TOO MANY MITOCHONDRIA DELETERIOUS?
The above proposal suggests that increased mitochondria activity, 
and in particular mitogenesis, may be considered as anti-aging 
processes. It is also possible that the presence of excess inactive 
mitochondria (i.e. those not carrying out electron transport) are 
actually deleterious. If oxygenated mitochondria are supplied with 
insuffi cient electrons, for example when ATP demand is low, this 
will increase the potential for creation of incompletely reduced oxy-
gen atoms i.e. superoxide O

2
−, an oxygen free-radical. As mentioned 

above, limb immobilization results in increased ROS generation 
(Pesce et al., 2002; Miller et al., 2007; Bar-Shai et al., 2008) which 
may be an example of such a phenomenon. Furthermore increased 
mitochondrial degradation, which occurs in response to decreased 
muscle activity in animal and human studies (Hood, 2009), 
could be a metabolic response to the presence of excess  inactive 
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the initiating causal event which promotes aging onset. Whilst 
increased mitogenesis may be benefi cial in some circumstances, 
it is also suggested that excess numbers of inactive  mitochondria 

could be an additional source of ROS and, by overwhelming 
cytosolic anti-oxidant  activity, have adverse effects on stress 
 resistance,  cellular viability and  organism longevity.
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