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Aging is characterized by the functional decline of the immune system and constitutes
the primary risk factor for infectious diseases, cardiovascular disorders, cancer, and
neurodegenerative disorders. Blood vessels are immune-privileged sites and consist
of endothelial cells, vascular smooth muscle cells, macrophages, dendritic cells,
fibroblasts, and pericytes, among others. Aging also termed senescence inevitably
affects blood vessels, making them vulnerable to inflammation. Atherosclerosis causes
low-grade inflammation from the endothelial side; whereas giant cell arteritis (GCA)
causes intense inflammation from the adventitial side. GCA is the most common
autoimmune vasculitis in the elderly characterized by the formation of granulomas
composed of T cells and macrophages in medium- and large-sized vessels. Recent
studies explored the pathophysiology of GCA at unprecedented resolutions, and shed
new light on cellular signaling pathways and metabolic fitness in wall-destructive
T cells and macrophages. Moreover, recent reports have revealed that not only
can cerebrovascular disorders, such as stroke and ischemic optic neuropathy, be
initial or coexistent manifestations of GCA, but the same is true for dementia and
neurodegenerative disorders. In this review, we first outline how aging affects vascular
homeostasis. Subsequently, we review the updated pathophysiology of GCA and
explain the similarities and differences between vascular aging and GCA. Then, we
introduce the possible link between T cell aging, neurological aging, and GCA. Finally,
we discuss therapeutic strategies targeting both senescence and vascular inflammation.
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INTRODUCTION

Aging is a multifactorial phenomenon that affects virtually every organ system in the human
body and is characterized by the progressive functional decline of those organs (Borgoni et al.,
2021). Not only infectious diseases like COVID-19, shingles, and pneumonia, but also malignant
neoplasms and vascular diseases increase in frequency with aging. Atherosclerosis is a prototypical
form of vascular aging (Ungvari et al., 2018; Tyrrell and Goldstein, 2021), and recent studies have
revealed the involvement of immune cells and low-grade inflammation in atherosclerosis, known
as “inflammaging” (Ferrucci and Fabbri, 2018; Franceschi et al., 2018).

On the other hand, many autoimmune diseases are common in young to middle-aged
women, with an exception that is exclusively found in the elderly, giant cell arteritis (GCA)
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(Weyand and Goronzy, 2014). GCA is classified as large
vessel vasculitis (LVV) and affects the aorta and its major
branches (Pugh et al., 2022). Large vessel involvement can be
complicated by aortic dissection and aneurysm formation, while
inflammation of medium-sized arteries causes headache, jaw
claudication, loss of vision, and stroke. Moreover, extravascular
manifestations —such as fever, malaise, weight loss, polymyalgia
rheumatica—also frequently occur (Buttgereit et al., 2016;
Yamaguchi et al., 2022). The currently available treatments for
GCA include glucocorticoids and tocilizumab (TCZ), an IL-6
receptor inhibitor. TCZ reduces flare-up of GCA and has steroid-
sparing effect (Stone et al., 2017); however, discontinuation of
TCZ almost inevitably leads to flare-up of GCA, suggesting
that TCZ alleviates symptoms, but it does not cure the disease
(Quinn et al., 2021). Therefore, further elucidation of the
immunopathogenesis of GCA is essential.

This mini-review summarizes the pathological mechanism
of vascular aging. Then, the updated immunopathogenesis of
GCA is presented and the similarities and differences between
vascular aging and GCA are discussed. Then, we introduce the
link between T cell aging, neurological aging, and GCA. Finally,
possible therapeutic strategies targeting senescence and vascular
inflammation are discussed.

VASCULAR AGING AND GIANT CELL
ARTERITIS

Vascular Aging
Vascular aging refers to the cellular and functional changes
that occur in the vasculature during aging, and accounts
for most of the morbidity and mortality in the elderly
(Figure 1A). Aging-induced functional and structural alterations
of the vasculature contribute to not only cardiovascular
disease, but also a wide range of age-related diseases, such
as cognitive impairment, Alzheimer’s disease, sarcopenia, and
kidney dysfunction (Ungvari et al., 2018). A variety of
pathophysiological mechanisms drive vascular aging: reactive
oxygen species (ROS), mitochondrial dysfunction, inflammation,
cellular senescence, genomic instability, increased apoptosis,
epigenetic alterations, and clonal hematopoiesis of indeterminate
potential (CHIP) (Jaiswal et al., 2017; Ungvari et al., 2018).
Among these, mitochondrial dysfunction may play a pivotal role
in the vascular aging process (Ungvari et al., 2018; Tyrrell et al.,
2020). Impaired mitochondrial biogenesis associated with excess
ROS production promotes cellular senescence in endothelial cells
(ECs) and vascular smooth muscle cells (VSMCs). Senescent
ECs and VSMCs have an increased pro-inflammatory secretome
called senescence-associated secretory phenotype (SASP), and
this further enhances pathological remodeling of the extracellular
matrix and disrupts barrier function in ECs.

CHIP is a relatively new concept in atherosclerosis. With
aging, the risk of somatic mutations increases in hematopoietic
stem cells residing in bone marrow (Jaiswal et al., 2017). An
expansion of hematopoietic clones carrying somatic mutations —
most frequently loss-of-function alleles in the genes DNMT3A,
TET2, and ASXL1—in the absence of any other hematologic

abnormalities is defined as CHIP (Jaiswal et al., 2017). During
aging, monocytes that carry such mutations are recruited
from the lumen of the blood vessel to the atherosclerotic
plaque and there produce excess IL-6, IL-1β, and chemokines
(Tyrrell and Goldstein, 2021).

Metabolic reprogramming has also been shown to be involved
in vascular aging (Shirai et al., 2016). Macrophages from
patients with coronary artery disease (CAD) have an enhanced
glycolytic flux as well as increased activity of the tricarboxylic
acid cycle, leading to an overproduction of mitochondria-
derived ROS. This, in turn, promotes dimerization of the
glycolytic enzyme pyruvate kinase M2 and enables its nuclear
translocation, boosting IL-6 production (Shirai et al., 2016). At
the same time, such metabolically reprogrammed macrophages
from CAD patients show increased expression of PD-L1, an
immunoinhibitory checkpoint molecule, making CAD patients
vulnerable to herpes zoster (Watanabe et al., 2017b, 2018a).
PD-L1 expression is regulated by pyruvate, an intermediate
metabolite of glycolysis. Immunostaining performed in humans
demonstrated that PD-L1 is highly expressed in macrophages
infiltrating the vessel wall from the early stage of atherosclerosis
(Watanabe et al., 2017b). Thus, metabolic reprogramming in
CAD macrophages exacerbates vascular inflammation via IL-
6 production, while exerting an immunosuppressive function
through PD-L1 expression.

A recent single-cell analysis of human carotid atherosclerotic
plaque demonstrated multiple cellular activation—such as ECs,
VSMCs, T cells, B cells, and myeloid cells— and mutual activation
between cell types (Depuydt et al., 2020). This study not only
identified EC subsets with angiogenic capacity and endothelial
to mesenchymal transition, but also revealed 2 populations
of macrophages; pro-inflammatory macrophages with excess
production of IL-1β and tumor necrosis factor and fibrosis-
promoting macrophages. Thus, the complex interaction of a wide
variety of immune cells and vascular cells shapes the pathogenesis
of vascular aging.

Giant Cell Arteritis
In recent years, great progress has also been made in the
understanding of the pathophysiology of GCA. Research has
identified the pivotal roles of vascular dendritic cells (DCs) and
microvascular ECs in the adventitia in initiating and exacerbating
vascular inflammation (Watanabe et al., 2017c; Wen et al., 2017;
Zhang et al., 2017). Studies have also elucidated cellular signaling
pathways and metabolic fitness in vasculitogenic T cells and
macrophages (Watanabe et al., 2018a,b; Zhang et al., 2018, 2019).

The vasculitogenic response is initiated by vascular DCs
which reside in the media-adventitial border (Figure 1B). When
vascular DCs receive an external danger signal via Toll-like
receptor, they upregulate costimulatory molecules, such as CD80
and CD86, and release chemokines. This, in turn, recruits
monocytes and CD4+ T cells mainly from vasa vasorum located
in the adventitia (Ma-Krupa et al., 2004). The monocytes
differentiate into tissue macrophages, phagocyte cell debris, and
release cytokines, chemokines, and growth factors—such as
vascular endothelial growth factor (VEGF)—to further enhance
inflammation and neoangiogenesis (Kaiser et al., 1999). At the
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FIGURE 1 | Vascular aging and giant cell arteritis. (A) In aged vasculature, lipids accumulate between the intima and media, and macrophages and foam cells
phagocytose them. Vascular endothelial cells are multilayered, and blood clots composed of red blood cells and platelets adhere to the luminal surface of the intima.
Fibrosis and calcification are often observed. The arrangement of vascular smooth muscle cells becomes irregular and adipocytes accumulate in the adventitial layer.
(B) GCA-affected arteries are characterized by infiltration of macrophages and activated CD4+ T cells. NOTCH1 ligand (Jagged-1)-expressing endothelial cells
interact with NOTCH1 expressed on CD4+ T cells in the adventitia and polarize T cell differentiation toward Th1 and TH17. Macrophages and multinucleated giant
cells release excess proteolytic enzymes such as matrix metalloprotease-9 (MMP-9), disrupting the external elastic membrane, and infiltrated T cells also release
various cytokines. As a result, the media becomes thin and the inner elastic membrane collapses. In the intima, myofibroblasts overgrow and block the lumen of
blood vessels. Angiogenesis is prominent in the adventitia. Dendritic cells present at the border of the adventitia and media have decreased PD-L1 expression;
however, activated T cells highly express PD-1.

same time, they form multinucleated giant cells and digest
extracellular matrix by releasing proteolytic enzymes, such as
matrix metalloproteinase (MMP)-2 and MMP-9, disrupting the
elastic membranes (Rodriguez-Pla et al., 2005; Watanabe et al.,
2018b; Weyand et al., 2019). Such tissue-destructive macrophages
enable activated T cells to infiltrate into otherwise immune-
privileged sites and form granulomas. Activated CD4+ T cells
are dependent on an increased activity of Janus kinase-signal
transducer and activator of transcription (JAK-STAT) pathway
(Zhang et al., 2018; Vieira et al., 2022) and release multiple
cytokines, including IFN-γ, IL-17, IL-21, IL-9, and IL-22 (Deng
et al., 2010; Ciccia et al., 2015; Watanabe et al., 2017a; Zerbini
et al., 2018). Such a cytokine milieu transforms ECs, VSMCs, and
fibroblasts into myofibroblasts, which leads to the occlusion of
the blood vessels (Weyand and Goronzy, 2013; Parreau et al.,
2021).

The innermost ECs of vasa vasorum control the entry
of immune cells. VEGF, which is primarily derived from
macrophages and enriched in GCA plasma (Baldini et al., 2012),
not only promotes neoangiogenesis in the adventitial layer,
but also upregulates the expression of the NOTCH1 ligand on
microvascular ECs (Wen et al., 2017). The NOTCH1 ligand
stimulates NOTCH1 receptor, expressed on GCA CD4+ T cells,
and this shifts T cell differentiation toward Th1 and Th17 via
activation of mammalian target of rapamycin (mTOR). Thus,

microvascular ECs play an unexpected role in instructing T
cell differentiation in GCA. Therefore, inhibition of NOTCH
signaling or mTOR activation could be a new therapeutic strategy
for this disease. High mTOR activity in GCA CD4+ T cells is,
in part, regulated by CD28 signaling, a “second signal” from
antigen-presenting cells (Zhang et al., 2019). For this reason,
blocking CD28 signaling could serve as an alternative option to
suppress vasculitis.

The next noteworthy research revealed the lack of a system
that suppresses aberrant immune activation in vascular lesions.
Particularly, deficient expression of PD-L1 is a hallmark feature
of vascular DCs present in temporal arteries (Watanabe et al.,
2017c; Zhang et al., 2017). Surprisingly, vascular DCs residing
in the temporal arteries and monocyte-derived DCs share
the feature. PD-L1-deficient DCs have increased capacity for
activating CD4+ T cells as well as skew naïve CD4+ T cell
differentiation toward inflammatory phenotypes, such as Th1,
Th17, and IL-21-producing T cells. Inhibition of the PD-
1/PD-L1 interaction in a preclinical vasculitis mouse model
exacerbated the pathology of GCA and recapitulated the intimal
hyperplasia and neoangiogenesis in the adventitia, implicating
this inhibitory mechanism as an essential regulator of vascular
remodeling (Watanabe et al., 2017c; Zhang et al., 2017).
Another group confirmed the decreased PD-L1 expression on
vascular DCs during vascular inflammation using a mouse
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model (Sun et al., 2022). Further elucidation of the regulatory
mechanism of PD-L1 expression on DCs is necessary.

Recently, attention has been focused on the role of neutrophils
in GCA. Neutrophils phagocytose and subsequently kill
microorganisms efficiently (Burn et al., 2021). In addition, they
unleash their cellular contents into the extracellular space, even
post-mortem. In GCA, apoptosis-resistant immature neutrophils
produce high levels of ROS, disrupting the endothelial barrier
and increasing vascular permeability (Wang et al., 2020).

Similarities and Differences Between
Vascular Aging and Giant Cell Arteritis
Although the disease mechanisms of GCA and CAD may differ,
there are significant overlaps between the two. In both diseases,
increasing age is the strongest risk factor, and CD4+ T cells and
macrophages produce excessive cytokines and chemokines in the
vascular lesion, resulting in neoangiogenesis in the adventitia and
intimal hyperplasia (Figure 1). However, GCA is more tissue-
destructive, with macrophages and multinucleated giant cells
destroying vascular structures. As a result, the VSMCs undergo
cell death and the medial layer becomes thinner. In contrast, in
atherosclerosis, the VSMCs proliferate and become irregularly
arranged. Arterial stiffness increases due to the accompanied
calcification and fibrosis, and adipocyte accumulation is more
prominent in atherosclerosis (Tyrrell and Goldstein, 2021).

The direct link between these two diseases is missing.
Rather, epidemiological studies have demonstrated that the
incidence of GCA was inversely correlated with cardiovascular
risk factors, such as obesity, smoking, hyperglycemia, and
hypercholesterolemia (Tomasson et al., 2019; Wadstrom et al.,
2020). This is consistent with our clinical experience that GCA-
positive temporal artery biopsies show little atherosclerosis;
while GCA-negative temporal artery biopsies often show
atherosclerosis. The exact mechanism behind how vascular
aging protects against GCA development remains unclear. One
possibility is that, since high blood glucose upregulates PD-L1
expression on macrophages (Watanabe et al., 2018a), both tissue
macrophages in atherosclerotic plaque and monocyte-derived
macrophages from CAD patients overexpress PD-L1 and fail
to support clonal expansion of CD4+ T cells (Watanabe et al.,
2017b). Impaired T cell immunity due to hyperglycemia may
suppress the excess inflammatory response, as seen in GCA.

T Cell Aging and Giant Cell Arteritis
In contrast to vascular aging, T cell aging may participate
in the pathogenesis of GCA (Figure 2). With aging, thymic
involution accelerates homeostatic proliferation of naïve T cells
(Figure 2A); however, naïve T cells, particularly naïve CD8+

T cells, fail to maintain their absolute number (Figure 2B).
Variation of T cell receptors is also reduced, while clonal
sizes increase (Figure 2C). In addition, aging-related T cells—
such as senescent T cells, exhausted T cells, and T effector
memory CD45 RA (TEMRA) cells—accumulate (Figure 2D).
Senescent T cells show irreversible cell cycle arrest but have
SASP and release pro-inflammatory cytokines. Exhausted T cells
express programmed death-1 (PD-1), TIM3, and LAG-3, and

their effector functions are defective. TEMRA cells have short
telomeres and show cell cycle arrest while maintaining high
effector function (Goronzy and Weyand, 2017).

Although the direct evidence showing T cell aging in GCA
is lacking, some indirect evidence does exist. Firstly, the T cell
repertoire in GCA vascular lesions is restricted, while clonal
sizes are expanded (Weyand et al., 1994). Secondly, CD4+ T
cells have an increased capacity for cytokine production. Thirdly,
granulomatous inflammation in Takayasu arteritis—another type
of LVV seen in young women—is composed of macrophages,
CD4+ T cells, and CD8+ T cells; while CD8+ T cells are rarely
seen in GCA (Watanabe et al., 2020a,b). Further studies are
needed to determine whether T cell aging accelerates vascular
pathology in GCA.

NEUROLOGICAL AGING AND GIANT
CELL ARTERITIS

Neurological Aging
Dementia and neurodegenerative disorders are now a major
problem in public health. In 2018, nearly 50 million people
were affected by Alzheimer’s disease and other dementias
all over the world (Grande et al., 2020). Dementia and
neurodegenerative disorders are prototypes of neurological
aging, with aging being the strongest risk factor for these diseases
(Hou et al., 2019). Pathways implicated in the development and
progression of these disorders include brain resilience, vascular
damage, neuroinflammation, oxidative stress, dysfunctional
autophagy, apolipoprotein homeostasis, and cellular senescence
(Baker and Petersen, 2018; Grande et al., 2020; Montagne
et al., 2020). Evidence is accumulating that various cell types
in the neural network, including neurons, oligodendrocytes,
astrocytes, microglial cells, and endothelial cells show senescent
phenotypes with age. Commonly observed features of senescent
cells include cell cycle arrest, telomere shortening, resistance
to apoptosis, and the SASP, just like in peripheral tissues
(Baker and Petersen, 2018).

Neurological Aging and Giant Cell
Arteritis
Well-known neurological complications of GCA include
stroke, cerebral infarction, and ischemic optic neuropathy.
Cerebrovascular accident (CVA) is not specific to GCA, and
does not have high diagnostic accuracy in GCA (van der Geest
et al., 2020). However, patients with GCA are more likely to
develop CVAs than age- and sex-matched controls (Robson
et al., 2016; Tomasson et al., 2019), particularly within 1 year
from diagnosis. This may be explained by strong vascular
inflammation and high-dose glucocorticoids. The risk factors for
CVA include increasing age, male, and social deprivation in GCA
(Robson et al., 2016).

In addition, the evidence is accumulating that other forms of
neurological disorders, such as dementia and neurodegenerative
disorders, can be initial or coexistent manifestations of GCA
(Pascuzzi et al., 1989; Caselli, 1990; Caselli and Hunder, 1993;
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FIGURE 2 | T cell aging. (A) With age, thymic output drastically decreases and the naïve T cell compartment is maintained by homeostatic proliferation. (B) Naïve
CD4+ T cells slightly decrease in absolute number with age; while naïve CD8+ T cells drastically decrease with age. (C) The number of T cell receptors—also called
the T cell repertoire—declines with age, while clonal sizes increase with age. This process is called T cell receptor contraction. (D) T effector memory CD45 RA
(TEMRA) cells; exhausted T cells expressing PD-1, TIM-3, and LAG-3; and senescent T cells accumulating with age.

Ely, 1998; Incalzi et al., 2005; Alisky, 2008; Solans-Laqué et al.,
2008; Kushida et al., 2011; Lahaye et al., 2020). It is noteworthy
that some of these cases showed improvement after GCA
treatment, indicating that GCA could manifest as a “treatable”
neurological disorder. Blood sampling and imaging may be useful
in diagnosing GCA in patients with dementia, who have difficulty
in reporting symptoms (Kushida et al., 2011).

More recently, an epidemiological study has demonstrated
that neurodegenerative disorders accounted for 11% of deaths
in GCA patients (Chazal et al., 2018). This suggests that
the prevalence of neurodegenerative disorders in patients with
GCA could be much higher. Such manifestations had been
underestimated or considered rare, but this may be no longer the
case for patients with GCA. Glucocorticoids and other treatments
may not be sufficient to control neurological aging due to vascular
damage from GCA or that patients with GCA are able to
live longer than before and develop neurodegenerative diseases
during the disease process.

DISCUSSION

We have focused on the relationship between aging in various
organ systems and GCA. Is there a way to suppress both
senescence and vascular inflammation? As described earlier,
since vascular aging is characterized by low-grade inflammation,
several attempts have been made to prevent the recurrence of

cardiovascular events by controlling inflammation. A large
clinical study showed that controlling inflammation by
blocking IL-1β could suppress atherosclerosis and reduce
cardiovascular events (Ridker et al., 2017); however, subsequent
research revealed that IL-1β has atheroprotective effects
in mice (Gomez et al., 2018), which suspended further
clinical research.

Are there any ways to inhibit cellular senescence? Three
strategies for targeting cellular senescence have been proposed
(Ovadya and Krizhanovsky, 2018). The leading option is to
induce apoptosis selectively in senescent cells with senolytic
drugs. The second approach is to potentiate an immune
response against senescent cells, leading to apoptotic cell
death. The third one is selective blockade of SASP (Ovadya
and Krizhanovsky, 2018). Among those therapies, inhibitors
of JAK-STAT pathway are not only expected to be effective
against cellular senescence by suppressing excessive cytokine
signaling, but also expected for treating GCA (Zhang et al.,
2018; Rathore et al., 2022; Vieira et al., 2022). In addition,
recent research has shown that the complement C3a receptor,
expressed on ECs, promotes dysfunction of blood brain barrier
as well as vascular inflammation during aging, leading to
neurodegenerative disease (Propson et al., 2021). Targeting
complement activation could also be a novel therapeutic
approach for the treatment of brain aging, neurodegenerative
disorder, and vascular inflammation.
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In conclusion, GCA is not just vascular aging, but vascular
inflammation with the involvement of T-cell and neurological
aging. Drugs that could simultaneously inhibit cellular
senescence and vascular inflammation may be useful.
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