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We discuss a renewal process in which successive events are separated by scale-free waiting time

periods. Among other ubiquitous long-time properties, this process exhibits aging: events counted initially

in a time interval ½0; t� statistically strongly differ from those observed at later times ½ta; ta þ t�. The
versatility of renewal theory is owed to its abstract formulation. Renewals can be interpreted as steps of a

random walk, switching events in two-state models, domain crossings of a randommotion, etc. In complex,

disordered media, processes with scale-free waiting times play a particularly prominent role. We set up a

unified analytical foundation for such anomalous dynamics by discussing in detail the distribution of the

aging renewal process. We analyze its half-discrete, half-continuous nature and study its aging time

evolution. These results are readily used to discuss a scale-free anomalous diffusion process, the

continuous-time random walk. By this, we not only shed light on the profound origins of its characteristic

features, such as weak ergodicity breaking, along the way, we also add an extended discussion on aging

effects. In particular, we find that the aging behavior of time and ensemble averages is conceptually very

distinct, but their time scaling is identical at high ages. Finally, we show how more complex motion models

are readily constructed on the basis of aging renewal dynamics.
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I. INTRODUCTION

A stochastic process nðtÞ counting the number of some

sort of events occurring during a time interval ½0; t� is called
a renewal process, if the time spans between consecutive

events are independent, identically distributed random

variables [1]. Renewal theory does not specify the exact

meaning or effect of a single event. It could be interpreted

as the appearance of a head in a coin-tossing game or the

arrival of a bus or a new customer in a queue. In a

mathematical formulation, events remain abstract objects

characterized by the time of their occurrence. Thus, not

surprisingly, renewal processes are at the core of many

stochastic problems found throughout all fields of science.

Maybe the most obvious physical application is the

counting of decays from a radioactive substance. This is

an example of a Poissonian renewal process: the random

time passing between consecutive decay events, the waiting

time, has an exponential probability density function

ψðtÞ ¼ τ−1 expð−t=τÞ. In other words, events here are

observed at a constant rate τ−1 (that is, if the sample is

sufficiently large and the half-life of individual atoms is

sufficiently long).

A physical problem of more contemporary interest is

subrecoil laser cooling [2–4]. Two counterpropagating

electromagnetic waves can cool down individual atoms

to an extent where they randomly switch between a trapped

(i.e., almost zero momentum) state and a photon-emitting

state. Successive lifetimes of individual states are found to

be independent and stationary in distribution. Hence, the

transitions from the trapped to the light-emitting state form

the events of a renewal process. Similar in spirit, colloidal

quantum dots [5,6] switch between bright states and dark

states under continuous excitation. In contrast to the

Poissonian decay process, the latter two examples feature

a power-law distribution of occupation times t, whose long-
time asymptotics reads

ψðtÞ ∼ τα

jΓð−αÞjt1þα
; with 0 < α < 1: (1)

Such heavy-tailed distributions are not uncommon for

physically relevant renewal processes. To see this, consider

a simple unbounded, one-dimensional Brownian motion,

and let nðtÞ count the number of times the particle crosses

the origin. Then, the waiting time between two crossings is

of the form (1) with α ¼ 1=2. Indeed, a random walk of

electron-hole pairs either in physical space or in energy
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space was proposed as a mechanism leading to the power-

law statistics of quantum dot blinking [7]. In general,

whenever events are triggered by domain crossings of a

more complex, unbounded process, power-law distributed

waiting times are to be expected. In addition, the latter can

be interpreted as a superposition of exponential transition

times with a (infinitely) wide range of rate constants τ. The

power-law form (1) for the interevent statistics is a typical

ansatz to explain such renewal dynamics in highly dis-

ordered or heterogeneous media such as spin glasses [8],

amorphous semiconductors [9], or biological cells [10,11].

Note that distributions as in Eq. (1) imply a divergent

average waiting time, hti ¼
R

∞
0 tψðtÞdt ¼ ∞. Renewal

processes of this type are said to be scale free, since,

roughly speaking, statistically dominant waiting times are

always of the order of the observational time. Hence, their

outstanding characteristics play out most severely on long

time scales: while for t ≫ τ, Poissonian renewal processes

behave quasideterministically, nðtÞ ≈ t=τ, heavy-tailed dis-

tributions lead to nontrivial random properties at all times.

Stochastic processes of this type are known to exhibit weak

ergodicity breaking [12]; i.e., time averages and associated

ensemble averages of a physical observable are not

equivalent. Moreover, despite the renewal property, the

process nðtÞ is nonstationary [13]: events naðta; tÞ counted
after an unattended aging period ta > 0, i.e., within some

time window ½ta; ta þ t�, are found to be statistically very

distinct from countings during the initial period ½0; t�.
Fewer events are counted during late measurements, in a

statistical sense, and thus we also say the process exhibits

aging. Deeper analysis reveals that this slowing down of

dynamics is due to an increasingly large probability to

count no events at all during observation. Intuitively, in the

limit of long times t, ta ≫ τ, one would expect to see at

least some renewal activity na > 0. Instead, the probability

to have exactly na ¼ 0 increases steadily, and as ta → ∞,

the system becomes completely trapped.

The first part of our paper is devoted to an in-depth

discussion of the aging renewal process. We directly build

on the original work of Refs. [13–15], calculating and

extensively discussing the probability density function

(PDF) of the aged counting process na, with special

emphasis on aging mediated effects. We provide leading-

order approximations for slightly and strongly aged

systems and discuss their validity. We then derive the

consequences for related ensemble averages and discuss the

special impact of the uneventful realizations.

The second part of our paper addresses the question of

how these peculiar statistical effects translate to physical

applications of renewal theory. Our case study is the

celebrated continuous-time random walk (CTRW) [16].

Originally introduced to model charge-carrier transport in

amorphous semiconductors [9], it has been successfully

applied to many physical and geological problems [17,18],

and was identified as a diffusion process in living

cells [10,11]. It extends standard random walk models

due to the possibility of having random waiting times

between consecutive steps. Heavy-tailed waiting times (1)

are, of course, of special interest to us, and we review

several well-studied phenomena inherent to CTRW models

in the light of aging renewal theory. Indeed, the insights

gained from the first part of our discussion help us to

contribute several new aspects to the bigger picture,

especially with respect to aging phenomena (see also

Refs. [14,15,19,20]). Thus, we analyze the scatter of time

averages and their deviation from the corresponding

ensemble averages (the fingerprint of weak ergodicity

breaking [21–31]) under aging conditions. We report strong

conceptual differences between aging effects on time and

ensemble averages, yet they exhibit identical time scalings

at late ages. Furthermore, we discuss a novel population

splitting mechanism, which is a direct consequence of the

discrete, increasing probability to measure na ¼ 0 steps

during late observation: a certain fraction within an

ensemble of CTRW particles stands out statistically from

the rest as being fully immobilized. Finally, we use the

methods and formulas developed in the course of our

discussion to analyze a model combination of CTRW and

fractional Langevin equation (FLE) motion [32]. By this,

we include the effects of binding and friction forces and a

persistent memory component. We discuss the intricate

interplay of aging and relaxation modes and highlight the

essential features and pitfalls for aged ensemble and single-

trajectory measurements.

II. AGING RENEWAL THEORY

Here, we analyze in detail a renewal process with distinct

non-Markovian characteristics, focusing especially on

its aging properties. In that, we proceed as follows. In

Sec. II A, we define the aging renewal process and

introduce some basic notations and concepts to be used

throughout the rest of this work. We then turn to a long-

time scaling limit description of the renewal process in

Sec. II B. In the case of scale-free waiting times, we obtain

a continuous-time counting process with interesting non-

stationary random properties. Sections II A and II B have

review character, and we refer to the original works for

more detailed discussions on generalized limit theorems.

Here, we concentrate on the time evolution of the renewal

probability distribution, which we study extensively in

Sec. II C. In particular, we discuss the emergence of both a

discrete and a continuous contribution and contrast slightly

and highly aged systems in terms of the behavior around

the origin, around local maxima, and in the tails. The

implications for calculating and interpreting ensemble

averages are deduced in Sec. II D. With the probability

distribution separating into discrete and continuous con-

tributions, it is natural to consider conditional averages, an

issue we address in Sec. II E.
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A. Aging renewal process

Suppose we are interested in a series of events that occur

starting from time t ¼ 0. We may later choose to specifi-

cally identify these events with the arrival of a bus, the steps

of a random walk, or the blinking of a quantum dot—for

now, they remain abstract. Let nðtÞ count the number of

events that occur up to time t; we occasionally refer to it as

a counting process. The time spans between two consecu-

tive events are called waiting times. They are not neces-

sarily fixed. Instead, we take them to be independent,

identically distributed random variables. In such a case, it is

justified to refer to events as renewals: The process nðtÞ is
not necessarily Markovian, but any memory of the past

is erased with the occurrence of an event—the process is

renewed. The PDF of individual waiting times is denoted

by ψðtÞ. Obviously, the nature of this quantity heavily

influences the statistics of the overall renewal process.

Figure 1 shows realizations for deterministic periodic

renewals, ψðtÞ ¼ δðt − τÞ, for Poissonian waiting times,

ψðtÞ ¼ τ−1 expð−t=τÞ, and for heavy-tailed waiting times;

i.e., ψðtÞ has long-t asymptotics (1). In all cases, the scaling

parameter τ > 0 serves as a microscopic time scale for

individual waiting times.

First, study the inset of Fig. 1, which focuses on the

initial evolution of these processes at short time scales. The

complete regularity of the deterministic renewals is distinct,

but the two random counting processes are not clearly

discernible by study of such single, short-period observa-

tions. Now, compare this to the main figure, which depicts

realizations of the processes on much longer time scales.

Here, the realizations of the deterministic and Poissonian

renewal processes look almost identical. Recall that, for

independent exponential waiting times, the average time

elapsing until the nth step is made increases linearly with n,
while the fluctuations around this average grow like n1=2.
Thus, the relative deviation from the average decays to zero

on longer scales. Roughly speaking, on time scales that are

long as compared to the average waiting time hti ¼ τ, we

observe a quasideterministic relation nðtÞ ¼ t=τ.
For heavy-tailed waiting times as in Eq. (1), the picture is

inherently different. The above scaling arguments fail,

since the typical time scale to compare to, the average

hti of a single waiting time, is infinite. This is why these

types of dynamics are sometimes referred to as scale free

and they are studied in light of generalized central limit

theorems [33]. We sketch some of the analytical aspects in

the following section. Most importantly, it turns out that, in

the absence of a typical time scale, waiting time periods

persist and are statistically relevant on arbitrarily long time

scales. The effect is clearly visible in Fig. 1: The renewal

process nðtÞ remains a nontrivial random process, even

when t ≫ τ.

We also introduce at this point the concept of an aged

measurement: while the renewal process starts at time 0, an

observer might only be willing to or capable of counting

FIG. 1 (color online). Sample realizations for three

different types of renewal processes. Events are separated by

waiting times, which are independent, identically distributed

according to a probability density function (PDF) ψðtÞ. Here,
we depict the cases of deterministic periodic renewals,

ψðtÞ ¼ δðt − 1Þ, Poissonian waiting times, ψðtÞ ¼ e−t, and

heavy-tailed waiting times, ψðtÞ ¼ 4.5 × ð5tþ 1Þ−1.5 (see the

key). Inset: During an observation on short time scales, the

randomness of Poissonian and heavy-tailed waiting times

contrasts with the regular, steady progression of the determin-

istic renewal process. However, it is difficult to distinguish the

two random processes on this level of analysis. Main figure:

Observation on long time scales reveals the profound statistical

difference between the two random processes: The Poissonian

renewal process behaves almost deterministically on time scales

long as compared to hti ¼ 1. At the same time, the random

nature of heavy-tailed waiting times is visible on all time

scales, as hti ¼ ∞. On the one hand, this means that counting

the number of renewal events n up to time t yields different

results from one process realization to the next: nðtÞ remains a

nontrivial random counting process on all time scales. On the

other hand, for ensemble measurements, aging should be taken

into account: The statistics of the number of renewals nðtÞ
during observation time ½0; t� can turn out to be different from

the statistics of naðta; tÞ, the number of renewals in ½ta; ta þ t�.
The conceptual difference of the two counting processes lies

in the forward recurrence time t1, which measures the time

span between the start of observation at time ta and the

counting of the very first event (see graph). If the observation

starts simultaneously with the renewal process, i.e., ta ¼ 0 and

na ≡ n, then t1 has the PDF ψðt1Þ, just like any other waiting

time. But if ta > 0, then t1 represents only the observed

fraction of a regular waiting time, which possibly started

before ta. Therefore, t1 has its own distinct, age-dependent

PDF hðta; t1Þ.
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events starting from a later time ta > 0. In place of the total

number of renewals nðtÞ, he then studies the counted

fraction naðta; tÞ ¼ nðta þ tÞ − nðtaÞ. The fundamental

statistical difference between the renewal processes n
and na stems from the statistics of the time period t1 that

passes between the start of the measurement at ta and the

observation of the very first event. We refer to it as the

forward recurrence time [13] and denote its PDF by

hðta; t1Þ. If the observer counts starting at time ta ¼ 0,

the forward recurrence time is simply distributed like any

other waiting time, hð0; t1Þ ¼ ψðt1Þ. But for later, aged

measurements, ta > 0, the distribution is different, as

indicated in Fig. 1.

We call the dependence of the statistical properties of the

counted renewals na on the starting time of the measure-

ment ta an aging effect. Its impact crucially depends on the

waiting time distribution in use. For instance, a Poissonian

renewal process is a Markov process, meaning here that

events at all times occur at a constant rate. In this case,

hðta; tÞ≡ ψðtÞ, so there the process does not age. For any

other distribution, hðta; tÞ ≠ ψðtÞ; yet, if the average wait-
ing time is finite, then on time scales long in comparison to

the average waiting time hti, the renewal process behaves

quasideterministically (details below). Thus aging is in

effect, but becomes negligible at long times. But scale-free

waiting times as in Eq. (1) result in nontrivial renewal

dynamics, with distinct random properties, and aging

effects should be taken into careful consideration. In the

following section, we thus study and compare in detail the

statistics of the renewal processes nðtÞ and naðta; tÞ in

terms of their probability distributions and discuss the

consequences for calculating aged ensemble averages.

B. Long-time scaling limit

Several authors have studied the aging renewal process

as defined above and its long-time approximation; see

Refs. [13,16,34,35] and references therein. Here, we

demonstrate the basic concept of a scaling limit, focusing

on the calculation of the rescaled PDF.

The probability pðn; tÞ of the random number of events n
taking place up to time t takes a simple product form in

Laplace space [36],

pðn; sÞ ¼ Lt→sfpðn; tÞg ¼
Z

∞

0

e−stpðn; tÞdt

¼ ψðsÞn 1 − ψðsÞ
s

; (2)

which is a direct consequence of the renewal property of the

process. It can be read as the probability of counting exactly

n steps at some arbitrary intermediate points in time and not

seeing an event since then.

We also study measurements taken after some time

period ta during which the process evolves unattended.

With this intent, we consider naðta; tÞ ¼ nðta þ tÞ − nðtaÞ,

the number of events that happen during the time interval

½ta; ta þ t�. The corresponding probability paðna; ta; tÞ
reads in double Laplace space, ðta; tÞ → ðsa; sÞ [13],

paðna; sa; sÞ ¼
� ðsasÞ−1 − hðsa; sÞs−1 na ¼ 0

hðsa; sÞψna−1ðsÞ½1 − ψðsÞ�s−1 na ≥ 1;

(3)

where we introduce

hðsa; sÞ ¼
ψðsaÞ − ψðsÞ

s − sa

1

1 − ψðsaÞ
; (4)

the PDF of the forward recurrence time t1 as defined in the

preceding section. The interpretation of Eq. (3) is straight-

forward: The probability to see any events at all during the

period of observation equals the probability that t1 ≤ t.
Furthermore, the observer counts exactly na events if the

first event at time ta þ t1 is followed by (na − 1) events at

intermediate times ta þ ti and an uneventful time period

until the measurement ends at ta þ t.
We check that for Poissonian waiting times,

ψðtÞ ¼ τ−1 expð−t=τÞ, we have ψðsÞ ¼ 1=ðsτ þ 1Þ ¼
sahðsa; sÞ, and, hence, hðta; tÞ≡ ψðtÞ. The Poissonian

(i.e., Markovian) renewal process is unique in this respect.

Now assume that waiting times are heavy tailed, i.e.,

their PDF is of the form (1). Waiting times of this type have

a diverging mean value, which has severe consequences for

the resulting renewal process, even in the scaling limit of

long times. To see this, introduce a scaling constant c > 0

and rescale time as t ↦ t=c. Then, write the following

approximation in Laplace space, where, by virtue of

Tauberian theorems [16], small Laplace variables corre-

spond to long times:

Lt→sfcψðctÞg ¼ ψðs=cÞ ≈ 1 − ðsτ=cÞα: (5)

If we rescale the counting process accordingly, meaning

here n ↦ n=cα, we can take the limit c → ∞ to arrive at a

long-time limiting version of the renewal process. For

instance, the probability distribution in Eq. (2) takes the

following form:

pðn; sÞ ↦ Lt→sfcαpðncα; ctÞg ¼ cα−1pðncα; s=cÞ

≈ ταsα−1
�

1 −
nðsτÞα
ncα

�

ncα

→ ταsα−1 exp½−nðsτÞα� ðc → ∞Þ: (6)

Note that in these equations, n was turned from an integer

to a continuous variable, characterized by a PDF. (Still, for

simplicity, we continue to refer to this variable as the

number of events.) For the sake of notational simplicity, we

set τ ¼ 1 in what follows, bearing in mind that the rescaled

time variables t and ta are measured in units that are by
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definition large as compared to the microscopic time scale

of individual waiting times.

The evolution of the probability density with respect to

real time t is obtained via Laplace inversion of Eq. (6),

according to the procedure

pðn; tÞ ¼ L−1
s→tfsα−1 expð−nsαÞg

¼ 1

α
L−1
s→t

�

∂

∂s
expð−nsαÞ

�

¼ 1

α
tn−1−1=αlþα ðtn−1=αÞ; (7a)

where

l
þ
α ðzÞ ¼ L−1

s→zfexpð−sαÞg; (7b)

is a one-sided (completely asymmetric) Lévy stable den-

sity. Remarkably, nðtÞ thus remains a nontrivial random

quantity even after the rescaling procedure. The special

limit α → 1 is representative for finite average waiting

times. In this case, the Laplace transform in Eq. (5) is a

moment generating function, and thus we identify τ ¼ hti.
In the scaling limit such a process collapses to a

deterministic counting process: Eq. (6) then implies

pðn; sÞ ¼ expð−nsτÞ, and, consistently, Eq. (7) becomes

a Dirac δ distribution, pðn; tÞ¼ tn−2δð1− t=nÞ≡δðn− tÞ.
In contrast, for any 0 < α < 1, nðtÞ obeys a scaling

relation nðtÞ ∼ tα and follows a Mittag-Leffler law [34],

directly related to the one-sided stable density l
þ
α ðzÞ

[33,37]. The latter is a fully continuous function on the

positive half line z ≥ 0. This implies, in particular, that for

t > 0, the probability to have exactly nðtÞ ¼ 0 is infinitely

small. Apparently, for the long-time scaling limit of the

counting process nðtÞ, the length of the very first single

waiting time is negligible and the observer starts counting

events immediately after initiation of the process.

The procedure for finding the PDF pa of counted events

na in an aged measurement ta ≥ 0 is analogous. In the long-

time scaling limit defined above, Eqs. (3) and (4) turn into

paðna; sa; sÞ ¼ δðnaÞ
�

1

sas
−mαðsa; sÞ

�

þ hðsa; sÞpðna; sÞ; (8)

with the definition

mαðsa; sÞ ¼ hðsa; sÞ=s (9)

and

hðsa; sÞ ¼
sαa − sα

sαaðsa − sÞ : (10)

Equation (8) demonstrates the aging time’s distinct influ-

ence on the shape of the PDF of the number of events.

Most remarkably, as t, ta > 0, the occurrence of a term

proportional to δðnaÞ indicates a nonzero probability for

counting exactly naðta; tÞ ¼ 0. This means we might

observe no events at all in the time interval ½ta; ta þ t�.
This is a quite distinct aging effect, contrasting

the immediate increase of the nonaged counting nðtÞ.
Only the limit α → 1 leads us back to a trivial deter-

ministic, nonaging counting process, and, consequently,

paðna; ta; tÞ≡ pðna; tÞ ¼ δðna − tÞ.
For the aged PDF pa, Laplace inversion of Eqs. (6–10) to

real time ta, t yields [14,15]

paðna; ta; tÞ ¼ δðnaÞ½1 −mαðta; tÞ� þ hðta; tÞ �t pðna; tÞ;
(11)

with [13,38,39]

mαðta; tÞ ¼
Z

t

0

hðta; t0Þdt0

¼ Bð½1þ ta=t�−1; 1 − α; αÞ
Γð1 − αÞΓðαÞ ≡mαðta=tÞ; (12)

where

hðta; tÞ ¼
sinðπαÞ

π

tαa

tαðta þ tÞ : (13)

Here, the asterisk �t indicates a Laplace convolution with

respect to time t. Figure 2 gives a first example of how such

an aged PDF behaves. We depict the case α ¼ 0.5 at high

ages, ta=t ¼ 100. In addition, we demonstrate scaling

convergence: if a renewal process with simple power-law

waiting time distribution is monitored on increasingly long

scales for time and event numbers, then its statistics

approach the continuous limit described by Eqs. (11–13).

In this case, Eqs. (11–13) relate the aged PDF pa to the

nonaged PDF p via the PDF h of the forward recurrence

time. mα is the probability to count any events at all during

observation. Its representation in terms of an incomplete

beta function Bðz; a; bÞ (see the Appendix) is found by a

simple substitution u ¼ t0=ðt0 þ taÞ. It can be written as a

function of the ratio ta=t alone, and we suggest to use the

latter as a more precise and quantitative notion of the age of

the measurement. In particular, we call the process or

measurement or observation slightly aged if ta ≪ t.
Conversely, we say it is strongly or highly aged if

ta ≫ t. We now look deeper into these two limiting

regimes.

At this point, we briefly digress to touch the issue of

other forms of waiting times in renewal processes.

Formally, any waiting time distribution different from an

exponential form yet possessing a finite characteristic

waiting time leads to nonconstant occurrence rates of

renewal events and thus to some sort of aging. A case

of particular interest is the one with broadly distributed

waiting times. As such, we designate waiting times

characterized by the algebraic decay (1), albeit with an

exponent 1 < α < 2. They result in renewal dynamics
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which are, in a sense, intermediate between simple

Poissonian and scale-free behavior. On the one hand, the

average waiting time hti is finite. Hence, by virtue of the

above scaling arguments, the renewal process nðtÞ behaves
quasideterministically on time scales that are arbitrarily

large as compared to hti. On the other hand, the fluctuations
around the average waiting time are considerable, since

ht2i ¼ ∞. This has a remarkable consequence for the

forward recurrence time. The PDF of the latter in this case

becomes, at infinite age [13], hðta ¼ ∞; tÞ≃ hti−1ðt=τÞ−α,
which is, in fact, heavy tailed. In other words, although the

average time passing between events is finite, the average

time passing before the very first event is infinite. The

inferred aging effect might, thus, still be notable on time

scales t several orders of magnitude larger than hti.
Therefore, the parameter regime 1 < α < 2 certainly

deserves a thorough investigation; see also the related

discussion in Refs. [40–42]. However, this is not the scope

of the present work, and in what follows, we restrict

ourselves to 0 < α < 1, the parameter range relevant to

single-particle tracking experiments in living cells

[10,11,43,44] or complex liquids [45,46]. We also note

that the case 1 < α < 2 deserves separate attention in

CTRW subdiffusion with a drift [47] and in aging processes

connected with logarithmic time evolution [48].

C. Aging probability distribution

1. Slightly aged PDF

First, notice that in Eqs. (11–13), the PDF h of the

forward recurrence time appears inside integrals and should

be interpreted in a distributional sense. For instance, in the

limit ta → 0, we should recover the PDF of a nonaged

system, pa → p. To confirm this, study the limit sa → ∞ in

Laplace space. We find hðsa; sÞ ∼ s−1a . Thus, we should

write hð0; tÞ ¼ δðtÞ, consistently implying mαð0Þ ¼ 1 and

paðna; 0; tÞ≡ pðna; tÞ. Again, we find that only an

observer counting from the initiation of the (rescaled)

renewal process, ta ¼ 0, witnesses the onset of activity

instantly.

We can go one step beyond this limit approximation and

study the properties of a slightly aged system (ta ≪ t and
sa ≫ s). We write hðsa; sÞ ∼ s−1a − s−1−αa sα and find, by

use of Tauberian theorems, that

1 −mαðt=taÞ ∼
ðta=tÞα

Γð1þ αÞΓð1 − αÞ ; (14)

and

hðta; tÞ �t pðna; tÞ∼L−1
s→tfsα−1e−nas

αg

−
ðta=tÞα
Γð1þαÞL

−1
s→tfs2α−1e−nas

αg

∼pðna; tÞ−
tαa

Γð1þαÞL
−1
s→tfs2α−1e−nas

αg:

(15)

Here, first-order corrections are provided in terms of a

Laplace inversion. For the analytical discussion, we alter-

natively express them as

FIG. 2 (color online). Scaling convergence of the aging renewal process. We simulate a renewal process with a waiting time

distribution ψðtÞ ¼ ð4πÞ−1=2ðπ−1 þ tÞ−3=2. The latter is of the heavy-tailed form (1) with α ¼ 0.5, τ ¼ 1 (a.u.). Time is rescaled as

t ↦ t=c and renewals as na ↦ na=c
α. We plot the PDF paðna; ta; tÞ for the number of renewals within the time interval ½ta; ta þ t�,

with ta ¼ 100 and t ¼ 1, in terms of the rescaled quantities. The area below each step in the graph represents the probability to count a

certain number of (rescaled) renewals; the respective values are indicated by symbols. As the scaling constant c increases (see key), pa

converges to the analytical, smooth scaling limit, i.e., the PDF given through Eqs. (11–13) (same as in Fig. 4, right center panel). Since

here we only show renewal probabilities for na > 0, the total area below each graph equals the probability mα to count any events at all.

Ensemble statistics are based on data from 107 independent renewal process realizations.
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hðta; tÞ �t pðna; tÞ ∼ pðna; tÞ þ
tαa

Γð1þ αÞ
∂pðna; tÞ

∂na
; (16)

relating them to the nonaged PDF, and thus to the familiar

stable density; see Eq. (7). Finally, we can also interpret

these contributions as FoxH-functions, for which we know

series expansions for small arguments and asymptotics for

large arguments (see the Appendix and Ref. [49]; the

connection between Fox H-functions, stable densities, and

fractional calculus is established in Ref. [50]):

hðta; tÞ �t pðna; tÞ∼H10
11

�

n

tα

�

�

�

�

ð1− α;αÞ
ð0;1Þ

�

−
ðta=tÞα
Γð1þ αÞ

1

tα
H10

11

�

n

tα

�

�

�

�

ð1− 2α;αÞ
ð0;1Þ

�

: (17)

From any of these representations, we learn that leading-

order corrections to the nonaged PDF are of the form

ðta=tÞα. An intuitive reasoning for this can be given as

follows. A slightly late observer generally has to wait the

forward recurrence time before seeing the first event. The

corrections thus have to account for waiting times that start

earlier than the beginning of the observation ta but reach far
into the observation time window ½ta; ta þ t�. Note that the
number of (still few) waiting times drawn before time ta is
measured by nðtaÞ ∼ tαa, while the probability for any of

them to be statistically relevant during an observation of

length t is proportional to
R

∞
t ψðtÞdt≃ t−α. The expected

number of statistically relevant waiting times starting

before but reaching into the time window ½ta; ta þ t�
therefore scales like tαa × t−α, and so do leading order

corrections.

The precise nature of the modifications to the nonaged

PDF due to aging can be separated into two aspects. On the

one hand, the continuous part of the aged PDF, h �t p, loses
weight to the discrete δðnaÞ part with growing age ta of the
counting process. This reflects an increasing probability to

havewaiting times that not only reach into but actually span

the full observation time window, so that no events at all are

observed. We provide a graphical study of the early age

dependence of 1 −mα, i.e., the weight of the discrete

contribution, in the left-hand panel of Fig. 3. The double

logarithmic plot clearly demonstrates the initial power-law

growth ≃ðta=tÞα. Moreover, we see that for any fixed age

ta=t, the value of 1 −mα is higher for lower values of α.

This was to be expected, since lower values of α are related

to broader waiting time distributions, and thus stronger

aging effects.

Interestingly, on the other hand, the modification to the

continuous part of the aged PDF, h �t p, goes beyond this

weight transfer: It is not proportional to the nonaged PDF

itself, but, according to Eq. (16), to its slope. With

increasing age ta=t, regions with negative (positive) slope

increase (decrease), so that local maxima have a tendency

to shift towards na ¼ 0. Furthermore, we can deduce from

the Fox H-function representations, Eq. (17), the behavior

around the origin, 0 < nat
−α ≪ 1, and the tail asymptotics,

nat
−α ≫ 1. See the Appendix for details. For α > 1=2, the

initial slope of h �t p is negative, and hence, the early aging

effect is an increase of h �t p between the origin and the

local maximum. This is notable since, on the long run (i.e.,

for sufficiently long ta), the probability to have any na > 0

tends to zero. For α < 1=2, we find the converse: the initial
slope is negative, and the PDF in the vicinity of the origin

starts dropping from early ages. The PDF tails are, for any

value of α, of a compressed exponential form, meaning

here logðh �t pÞ≃ n1=ð1−αÞ.
We can assess the validity of this early-age approxima-

tion by studying the left-hand panels of Fig. 4. We plot the

nonaged PDF, Eq. (7) (full lines) [37], a numerical

evaluation of the continuous part of the aged PDF,

h �t p, as given through the full convolution integral in

Eq. (11) (dotted or dashed lines), and the early-age

approximation by expanding the Fox H-functions in

Eq (17) as power series (symbols). All qualitative state-

ments from the previous paragraph are confirmed by the

sample plots. Still, the leading-order approximation,

Eqs. (15–17), is apparently not equally suitable for all

values of α. We observe deviations when α gets close to 1.

FIG. 3 (color online). Double logarithmic plots of the probability mα to observe any events during the measurement period ½ta; ta þ t�
(right) and the complementary probability 1 −mα (left), both as a function of age ta at t ¼ 1. The full analytic behavior is given by

Eq. (12). Note the initial power-law increase ð1 −mαÞ≃ ðta=1Þα and the final power-law decay mα ≃ ð1=taÞ1−α. Vertical lines indicate
the values of ta used for the plots in Fig. 4.
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FIG. 4 (color online). Continuous part of the PDF pðna; ta; tÞ of the number of events na counted during the measurement period

½ta; ta þ t�. Exact results are provided in terms of a numerical evaluation of the convolution hðta; tÞ �t pðna; tÞ as defined through

Eqs. (7), (11–13). We plot sample graphs for t ¼ 1 and various α. Left-hand panels show the nonaged case (ta ¼ 0), the slightly aged

case (ta ¼ 0.05), and the leading order approximation for the slightly aged PDF [ta ¼ 0.05; see Eq (17)]. Right-hand panels show the

highly aged case (ta ¼ 100) and the approximation thereto [ta ¼ 100; see Eq. (20)]. Note the significantly different vertical scales in the

panels, owing to the age-sensitive probability mα to count any events at all during observation (cf. Fig. 3).
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Indeed, one can show that the leading order terms in

Eqs. (15–17), which account for corrections of Oð½ta=t�αÞ,
are followed by higher-order terms of Oðta=tÞ. Hence, in
general, these “almost leading-order” corrections need to

be taken into account when α is close to 1. Yet again, in this

case, the total corrections with respect to the nonaged PDF,

as measured in terms of the weight loss 1 −mα, are

relatively small anyway.

2. Highly aged PDF

Conversely, we approximate for sa ≪ s,
hðsa; sÞ ∼ s−αa sα−1. This yields the leading-order behavior

for highly aged measurements, ta ≫ t,

1 −mαðt=taÞ ∼ 1 −
ðt=taÞ1−α

ΓðαÞΓð2 − αÞ (18a)

and

hðta; tÞ �t pðna; tÞ ∼
1

ΓðαÞ
1

t1−αa

L−1
s→tfs2α−2e−nas

αg: (18b)

The above Laplace inversion can be related to the nonaged

PDF (7) through

hðta; tÞ �t pðna; tÞ ∼ −
1

ΓðαÞ
1

t1−αa

Z

t

0

∂pðna; t0Þ
∂na

dt0; (19)

or expressed as a Fox H-function by

hðta; tÞ �t pðna; tÞ ∼
ðt=taÞ1−α
ΓðαÞ

1

tα
H10

11

�

n

tα

�

�

�

�

ð2 − 2α; αÞ
ð0; 1Þ

�

:

(20)

Again, modifications account for waiting times that start

before but reach into the time window of observation. But

in this late time regime, the initiation of the renewal process

already lies far in the past, so not all waiting times before ta
have a realistic chance to do that. Instead, we assume again

that statistically relevant premeasurement waiting times

need to be of the order of t (implying a probability ≃t−α).
To estimate their number, note that they must follow events

which occur roughly within a time period ½ta − t; ta�.
However, at this (late) stage of the renewal process, the

average event rate has dropped to ðdn=dtÞt≈ta ∼ tα−1a . Thus,

the expected number of waiting times in the (comparatively

short) time period preceding the measurement we con-

jecture scales like ∼tα−1a t. This heuristic line of argument

explains why, for highly aged measurements, we have

leading-order contributions of the order tα−1a t × t−α ¼
ðt=taÞ1−α.
Graphical examples for this regime are given in the right-

hand panels of Figs. 3 and 4. Here, the continuous part

h �t p of the aged PDF is not proportional to the slope of

the nonaged PDF, but, according to Eq. (19), rather its time

integral over the duration of the measurement. Moreover,

through its Fox H-function representation (20), we learn

that the initial slope of the late-age PDF is positive for

α > 2=3 and negative if α < 2=3. The far tail behavior,

however, persists at late-aging stages, as we still find

logðh �t pÞ≃ n1=ð1−αÞ. Notice that, in the case of high

ages, in Fig. 4 realized as ta=t ¼ 100, the leading-order

terms (18–20) are satisfactorily approximating the exact

convolution (11) for all values of α.

D. Aging ensemble averages

From the nonaged PDF in Eq. (6), one can derive the

expected time behavior of any function f of the number of

events n counted since the initiation of the renewal process:

hfðnðtÞÞi ¼
Z

∞

0

fðnÞpðn; tÞdn

¼ L−1
s→tfsα−1Ln→sαffðnÞgg: (21)

We give concrete examples below. First, we ask how such

an ensemble average is altered if evaluated for the aged

counting process. For this, we substitute n by na and p by

pa and insert Eqs. (11–20):

hfðnaðta; tÞÞi ¼
Z

∞

0

fðnaÞpaðna; ta; tÞdna

¼ fð0Þ½1 −mαðta=tÞ� þ hðta; tÞ �t hfðnðtÞÞi;
(22)

with the limiting behavior

hðta; tÞ �t hfðnðtÞÞi

∼

� hfðnðtÞÞi þ tαahf0ðnðtÞÞi=Γð1 − αÞ ta ≪ t

tα−1a

R

t
0hf0ðnðt0ÞÞidt0=ΓðαÞ ta ≫ t:

(23)

These equations relate an ensemble average taken for the

observation window ½ta; ta þ t� to the respective quantity

measured in ½0; t�. Interestingly, the modifications due to

aging are rather related to the ensemble average of the

derivative of the observable, f0ðnÞ ¼ ð∂f=∂nÞðnÞ.
As an example, we consider qth order moments of the

number of renewals, fðnÞ ¼ nq, q > 0. We find

hnqðtÞi ¼ L−1
s→t

�

sα−1
Γðqþ 1Þ
sαqþα

�

¼ A0t
αq (24)

and
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hnqaðta; tÞi ¼ Γðqþ 1Þðtþ taÞαq

×
Bð½1þ ta=t�−1; 1þ αq − α; αÞ

ΓðαÞΓð1þ αq − αÞ

∼

� hnqðtÞi þ A1t
α
at

αq−α ta ≪ t

B1t
α−1
a t1−αþαq ta ≫ t.

(25)

The incomplete beta function comes into play again by

substituting u ¼ t0=ðt0 þ taÞ in the convolution integral in

expression (22). The time-independent coefficients are

given by

A0 ¼
Γðqþ 1Þ
Γðαqþ 1Þ ; A1 ¼

Γðqþ 1Þ
Γð1 − αÞΓðαqþ 1 − αÞ ;

B1 ¼
Γðqþ 1Þ

ΓðαÞΓðαqþ 2 − αÞ : (26)

For the nonaged system, moments evolve like tαq,
reflecting the characteristic scaling property of the renewal

process, nðtÞ ∼ tα. But for aged systems, ta > 0, the scaling

is broken, and the behavior of moments with respect to time

is more complex. Only at very high ages, ta ≫ t, we can

approximate again by a single power law. When comparing

the growth of the counting processes for the two limiting

regimes, Eq. (25) is somewhat ambivalent. At high ages,

the probability for observing no events at all tends to one.

Consequently, a prefactor tα−1a lets all moments decay to

zero as ta goes to ∞. However, note that for a fixed, large

but finite value of ta, the t dependence is ≃t1−αþαq (in

accordance with Ref. [51]), so the power-law exponent is

actually larger than for the nonaged moments. In summary,

at higher ages ta, the absolute number na of counted events
drops, but it increases faster with measurement time t. In
particular, consider the average number of events during

observation, q ¼ 1: Counting from the start of the process,

we observe a sublinear behavior hni≃ tα, but at a fixed,

high age of the process, the average rate of events is

approximately constant, hnai≃ t, like in a nonaging,

Poisson type of renewal process.

Another useful expression is the Laplace transform of

Eq. (6) with respect to the number of renewals, n → λ, and,

respectively, Eq. (8), with na → λ, which is obtained

through the same techniques. Thus,

hexp½−λnðtÞ�i ¼ L−1
s→t

�

sα−1

sα þ λ

�

¼ Eαð−λtαÞ; (27)

and

hexp½−λnaðta; tÞ�i

∼

� hexp½−λnðtÞ�i½1 − λtαa=Γð1 − αÞ� ta ≪ t

1 − ðt=taÞ1−αEα;2−αð−λtαÞ=ΓðαÞ ta ≫ t;
(28)

where Eα and Eα;2−α are (generalized) Mittag-Leffler

functions (see the Appendix). Interestingly, here the early

first-order corrections due to aging do not significantly alter

the t dependence. At low age, the Mittag-Leffler function

interpolates between 1 − const × tα for t ≪ λ−1=α and

const × t−α at t ≫ λ−1=α. At high age, the transition is

from 1 − const × t1−α to 1 − const×t1−2α.

E. Conditional ensemble averages

To conclude this section, we address the question of how

counting statistics change when we selectively evaluate

only realizations of the process where na > 0. This means

we discard the data when no events happen during the

complete time of observation ½ta; ta þ t�. This is, on the one
hand, a relevant question when it comes to the application

of renewal theory: An observer who is unaware of the

underlying counting mechanism might misinterpret real-

izations with na ¼ 0 as a separate, dynamically different

process, since the statistics are so distinct from the

remaining continuum na > 0. A process realization during

which no events occur at all might not even be visible to the

observer in the first place. We give an example in the next

section. On the other hand, this study also helps us to

distinguish two aspects of the aging PDF: We neglect the

effect of having single waiting times that cover the full

observation window, leading to a weight transfer from the

continuous to the discrete part of the PDF. Instead, we

specifically only account for waiting times that start before

but finish during the period of observation, in order to

understand the modifications of the continuous part beyond

its loss of weight. With this intent, we look at the condi-

tional ensemble average

hfðnaðta; tÞÞim

≡

Z

∞

0

fðnaÞpaðnajna > 0; ta; tÞdna

¼ hðta; tÞ �t hfðnðtÞÞi
mαðt=taÞ

∼

� hfðnðtÞÞi ta ¼ 0

tα−1
R

t
0hf0ðnðvÞÞidv=Γð2 − αÞ ta=t → ∞:

(29)

For ta ¼ 0, as mentioned above, counting of events starts

instantly, so the restriction to na > 0 is redundant. But in

the limit of late ages, a possibly nonzero forward recurrence

time affects the measurement. We find that ensemble

averages conditioned to na > 0 have a well-defined, non-

trivial limiting time dependence, even when ta=t tends to
infinity. This is in contrast to the full ensemble, where at

infinite ages, hfðnaðta; tÞÞi → fð0Þ. As an example, con-

sider again the time evolution of qth order moments,

restricted to na > 0. We find

hnqaðta; tÞi → 0; as ta=t → ∞; (30)

but
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hnqaðta; tÞim ∼

�

A0t
αq ta ¼ 0

C0t
αq ta=t → ∞;

(31)

where A0 is given by Eq. (26) and

C0 ¼
Γðqþ 1ÞΓð2 − αÞ
Γðαqþ 2 − αÞ : (32)

Thus, as opposed to the unrestricted ensemble measure-

ment, conditional moments scale like ∼tαq in both nonaged
and extremely aged systems. Note, however, that prefactors

are different, and a behavior deviating from a simple power

law is still observable at intermediate ages.

III. AGING CONTINUOUS-TIME

RANDOM WALKS

The theory of continuous-time random walks directly

builds on the concept of the renewal theory. We are thus

able to view many of the intriguing features of this random

motion, such as anomalous diffusion, population splitting,

and weak ergodicity breaking, in the light of the abstract

analytical renewal theory ideas developed above. To do so,

we start with a definition of the CTRWmodel in Sec. III A,

extending the renewal process by a random spatial dis-

placement component. We then review results from pre-

vious work in the field, discussing, in particular, the aspects

of population splitting (Sec. III B) and anomalous diffusion

and weak ergodicity breaking (Sec. III C). Concurrently,

we add elements from our own recent discussion [20],

aiming at relating these phenomena to the aging properties

of the underlying renewal process. Population splitting can

be traced back to the partially discrete nature of the aging

renewal PDF. Studying ergodicity ultimately leads us to a

general in-depth study of aging ensemble and time averages

(Sec. III D). We work out the fundamental differences

between these two types of averages under aging con-

ditions (weak ergodicity breaking), but also find interesting

parallels at late ages (equivalence in time scalings). Finally,

we apply the methods and formulas developed in the course

of our discussion to analyze a stochastic process that

generalizes previous CTRW models by additional confine-

ment, friction, and memory components in Sec. III E.

A. From aging renewal theory to aging

continuous-time random walks

Consider a random walk process (one dimensional, for

the sake of simplicity) where steps do not occur at a fixed

deterministic rate, but are instead separated by random,

real-valued waiting times. The idea is to model the random

motion in a complex environment where sticking, trapping,

or binding reactions are to be taken into account. The

processes we study here are CTRWs with finite-variance

jump lengths, on the one hand, and independent, identically

distributed waiting times, on the other (see Refs. [16–18]

for a review on CTRW theory). Eventually, we are

interested in studying these processes on long time scales,

aiming at extending existing simple diffusion models to

describe diffusion in complex environments. Thus, we

focus again on scale-free waiting time distributions of

the form (1), which have the capability of modifying the

resulting diffusion dynamics on arbitrarily long time scales.

In the simplest scenario, sticking or trapping mecha-

nisms are decoupled from diffusion dynamics. On the level

of theoretical modeling, this means we can take jump

distances of the base random walk to be independent from

waiting times. The renewal theory of the previous section is

readily extended to describe such idealized systems. Let

xðnÞ be the random walk process as a function of the

number of steps n. Then, by means of subordination

[35,52–54], we construct a CTRWas xðtÞ ¼ xðnðtÞÞ, where
nðtÞ is a renewal counting process. Each step of the random
walk is, hence, interpreted as an event of the renewal

process. The properties of xðtÞ follow from the combined

statistics of xðnÞ and nðtÞ. For example, if WRWðx; nÞ
denotes the PDF for the position coordinate x after n steps,

starting with xð0Þ ¼ 0, then

WCTRWðx; tÞ ¼
Z

∞

0

WRWðx; nÞpðn; tÞdn (33)

is the PDF of the associated CTRW process at time t. Note
that we see n as a continuous variable here, so we are

arguing on the level of long-time scaling limits. In the

simplest case, xðnÞ would be an ordinary Brownian motion

so that WRW would be a Gaussian.

Now, imagine that a particle is injected into a complex

environment, beginning a CTRW-like motion at time 0. In

general, the experimentalist might start the observation at a

later time, ta > 0. The reason for this could be experimental

limitations, or maybe the goal is to study a maximally

relaxed system, which makes it necessary to wait for

relaxation. In either case, the particle motion is initially

unattended. At time ta, the particle is tracked down, and its
position at this instant serves as the origin of motion for

the following observations. Instead of the full CTRW xðtÞ,
the experimentalist then monitors the aged CTRW

xaðta; tÞ ¼ xðta þ tÞ − xðtaÞ. Thus, as we worked out in

the previous section, if the dynamics are characterized by

heavy-tailed trapping or sticking times, the issue of aging

has to be taken into careful consideration.

B. Population splitting

Arguably, the most striking aging effect in CTRW theory

is the emergence of an apparent population splitting

[15,20]. The aged renewal process naðta; tÞ controls

the dynamic activity of the aged CTRW xaðta; tÞ.
Consequently, the forward recurrence time t1 marks the

onset of dynamic motion in the monitored window of time.

We learned from the analysis of aging renewal theory that,
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for increasingly late measurements, we should expect t1 to
assume considerable values. Physically, this reflects the

possibility for the particle to find ever deeper traps or to

undergo more complex binding procedures, when given

more time to probe its environment before the beginning of

observation. In particular, the forward recurrence time is

more and more likely to span the full observation time

window, t1 > t, so that the particle does not visibly exhibit

dynamic activity.

From an external, experimental point of view, an

ensemble measurement in such a system appears to indicate

a splitting of populations. Let, for instance, the base

random walk xðnÞ be Markovian, and let the PDF

WRWðx; nÞ be a continuous function of x (e.g.,

Gaussian). In this case, we can supplement the ensemble

PDF WCTRW from Eq. (33) by its aged counterpart

WACTRW, using renewal theory Eq. (22):

WACTRWðxa; ta; tÞ ¼
Z

∞

0

WRWðxa; naÞpaðna; ta; tÞdna

¼ δðxaÞ½1 −mαðta=tÞ�
þ hðta; tÞ �t WCTRWðxa; tÞ: (34)

This propagator was discussed previously in Ref. [15]. The

ensemble statistics have a sharply peaked δ contribution,

caused by a fraction 1 −mα of particles that remain

immobile at the origin of the observed motion. They

contrast the mobile fraction mα of particles, since the

PDF of their arrival coordinates, h �t WCTRW, varies con-

tinuously along the accessible regions of space 0 < xa <
∞ [as derived, by virtue of Eq. (33), from the continuous

nature of the PDFs h, WRW, and p]. For fixed evaluation

time t, the size of the immobile subpopulation increases

with growing age ta, as aging renewal dynamics terminally

come to a complete halt. An exhaustive discussion of the

shape of the aged propagator WACTRW can be found in

Ref. [15] for both unbiased motion and in the presence of

a drift.

Indeed, splitting into subpopulations is a phenomenon

encountered in complex environments such as biological

cells. Such dynamics was observed for the motion of lipids

in phospholipid membranes [55], single protein molecules

in the cell nucleus [56], H-Ras on plasma membranes [57],

and of membrane proteins [58]. The immobile fraction is

also often found in fluorescence recovery after photo-

bleaching experiments [55].

It is important to understand that, for CTRW types of

motion, this effect emerges without assuming nonidentical

particle dynamics. Even during the evolution of the

process, stochastic motion of individual particles in an

ensemble is independent and identical. In particular, all

particles, in principle, exhibit their dynamic activity for an

indefinite amount of time. The “immobility attribute” can

only be assigned when the evolution of the (aged) process

is studied within a finite time window. Then, a certain

fraction of particles—the immobile ones—stand out sta-

tistically from the rest. The displacement propagator (34)

with its conspicuous, discontinuous contribution serves as a

statistical indicator for the population splitting, if evaluated

at finite times t < ∞ (more precisely, the effect is most

noticeable while t remains short as compared to the age ta).
Similarly, we show in the following section that population

splitting is particularly relevant when assessing time

average data on a per-trajectory basis. Of course, in any

case, observations of real physical systems are finite by

nature. It is, hence, important to know the characteristics of

the aging population splitting, as to set it apart from

separation mechanisms due to physically nonidentical

particle dynamics.

C. Analysis of mean-squared displacements

An alternative way to assess particle spreading in the

solvent is to study the time evolution of the mean-squared

displacement. This is particularly useful when ensemble

data are not extensive enough as to deduce reliable

propagator statistics WACTRW. There are two common

ways of defining such mean-squared displacements: in

terms of either an ensemble average or a single-trajectory

time average. Analysis and comparison of these two types

of observables reveals several fingerprint phenomena of

CTRW motion, such as subdiffusion and weak ergodicity

breaking. In the following, we collect known results and

discuss their implications for aged systems.

1. Ensemble average

As a simple example, we take xðnÞ to be unbounded,

unbiased Brownian motion and consider an ensemble

measurement of the mean-squared displacement. In this

case, the PDF WRW is Gaussian, and we know that

h½xðkþ nÞ − xðkÞ�2i ¼ hx2ðnÞi

¼
Z

∞

−∞

x2WRWðx; nÞdx

¼ 2Dn (35)

for all k, n > 0. We use arbitrary spatial units from here,

2D ¼ 1. Since xðnÞ is a process with stationary increments,

the calculation of moments is independent of the number of

steps k made before the start of the measurement. Thus, if

the process the experimentalist studies is Brownian motion,

there are no aging effects: at all initial times k, one observes
a linear scaling with respect to observational time n,
hx2ðnÞi≃ n, a behavior commonly classified as normal

diffusion. However, if the motion is paused irregularly for

heavy-tailed waiting time periods, the dynamics are of

CTRW type and we get a quite different picture. For the

process xðtÞ ¼ xðnðtÞÞ, we find
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h½xðta þ tÞ − xðtaÞ�2i ¼ hx2aðta; tÞi ¼
Z

∞

−∞

x2aWACTRWðxa; ta; tÞdxa ¼
Z

∞

−∞

Z

∞

0

x2aWRWðxa; naÞpaðna; ta; tÞdnadxa

¼
Z

∞

0

napaðna; ta; tÞdna ¼ hnaðta; tÞi ¼ hnðta þ tÞi − hnðtaÞi

¼ 1

Γð1þ αÞ ½ðta þ tÞα − tαa� ∼
�

tα=Γðαþ 1Þ þ tαa=Γð1 − αÞ ta ≪ t

tα−1a t=ΓðαÞ ta ≫ t;
(36)

in accordance with Ref. [15]. As expected, the non-

stationarity of the aging renewal process carries over to

the CTRW. If monitored at ta ¼ 0, the mean-squared

displacement grows like hx2ai ¼ hx2i≃ tα. With the in-

crease being less than linear in time, the phenomenon in the

context of diffusion dynamics is commonly referred to as

subdiffusion. For ta > 0, the mean-squared displacement is

no longer described in terms of a single power law. The

process looks more like diffusion in a nonequilibrium

environment, and in fact, ta might be conceived as an

internal relaxation time scale. Interestingly, if the meas-

urement takes place in the highly aged regime ta ≫ t, the
mean-squared displacement as a function of the observation

time t indicates normal diffusion with an age-dependent

diffusion coefficient, hx2ai≃ tα−1a t. We are able to identify

the complete turnover from one aging regime to the other as

a fingerprint of CTRW dynamics only if data on an

extensive range of time scales are available. Still, for as

long as the experimentalist cannot control the age ta of the
measurement, the aging effect can be misinterpreted as an

internal relaxation mechanism. The situation gets even

more complicated if ta is possibly random.

2. Time average

Now, consider the alternative time average notion of the

mean-squared displacement. For a single-particle trajectory

xðtÞ, recorded at times t0 ∈ ½ta; ta þ T�, it is defined in

terms of the sliding average

δ2ðΔ; ta; TÞ ¼
1

T − Δ

Z

taþT−Δ

ta

½xðt0 þ ΔÞ − xðt0Þ�2dt0:

(37)

Here, Δ is called lag time, and parameters defining the time

window of observation are also referred to as age ta and

measurement time T. While the ensemble mean (36) is

evaluated in terms of squared displacements from a

multitude of independent process realizations, the time

average (37) uses data from within a single trajectory at

several points in time. The latter is thus a useful alternative

whenever measurements on long (i.e., T ≫ Δ) but rela-

tively few trajectories are available. For ergodic, stationary

processes, both types of averages are equivalent. For

example, for a Brownian motion, the time average δ2 is

by definition a random quantity differing from one trajec-

tory to the next, but in the limit of long trajectory

measurements, T ≫ Δ, the time average converges to

the corresponding ensemble value, δ2 → 2DΔ, and fluc-

tuations become negligible [30,31].

In contrast, the CTRW xðtÞ ¼ xðnðtÞÞ violates both

ergodicity (δ2 remains random for arbitrarily long meas-

urement times) and stationarity (δ2 depends on ta and T). In
the context of aging, we can now ask two questions. First,

does the distribution of the time average change qualita-

tively when evaluated after the onset of the particle

dynamics, ta > 0? This issue is discussed extensively in

Ref. [20]. In short, we find that the time-averaged mean-

squared displacement is directly related to the number of

steps na made during the measurement via [21,30,31,59]

FIG. 5 (color online). Numerical demonstration of the asymp-

totic identity (38) in the limit of long measurement times T ≫ Δ.

While Δ ¼ 100 remains fixed, we compare T ¼ 2 × 105 (blue

squares), T ¼ 2 × 106 (red bullets), and T ¼ 2 × 107 (orange

triangles), demonstrating convergence. Each point in the graph

represents an individual CTRW trajectory. Full symbols represent

free CTRW, open symbols are for motion bounded by a box. ta is
either 0 (nonaged) or for specific α and T chosen such that

mαðta=TÞ ¼ 0.21 (aged). The simulation data are extensive

enough as to ensure that every system is represented by roughly

200 points with δ2 > 0.
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δ2ðΔ; ta; TÞ
D

δ2ðΔ; ta; TÞ
E ¼ naðta; TÞ

hnaðta; TÞi
: (38)

Figure 5 provides a numerical validation of this relation in

terms of explicit CTRW simulations for free and confined

motion. Notice that Eq. (38) is not a distributional

equality, but it is meant to be a stronger, per-trajectory

equality that we validate here by means of simulations

data. Hence, all random properties of the time average in

this case are not only related to, but quite literally taken

over from, the underlying counting process. In particular,

the distribution of the time average δ2 is a rescaled version

of the renewal theory PDF pa as discussed in Sec. II and

plotted in Figs. 3 and 4. This implies that a statistical study

of time averages reveals the aging population splitting:

within an ensemble of independent particles, we may find

some that do not exhibit any dynamic activity during

observation, na ¼ 0, δ2 ¼ 0, and thus apparently stand out

as an individual subpopulation from the remaining con-

tinuum, na > 0, δ2 > 0. Likewise, one can study [60] the

statistics of microscopic diffusivities Dα ¼ δ2=Δα ¼
½xðt0 þ ΔÞ − xðt0Þ�2=Δα along a single time series

t0 ∈ ½0; T�. These diffusivities are consistently found to

have a discrete probability for Dα ¼ 0. The latter implies

that no steps are made during any Δ-sized lag-time

interval along the time series, and the probability for this

actually grows with measurement time T.
The second aging-related question addresses the explicit

lag-time dependence. Although it is different from one

trajectory to the next, δ2 is generally characterized by a

universal scaling with respect to lag time Δ. The question

now is, is this scaling age dependent? To this end, we

consider the average (over many individual trajectories) of

Eq. (37). With the help of Eq. (36),

�

δ2ðΔ; ta; TÞ
�

¼ 1

T − Δ

Z

taþT−Δ

ta

h½xðt0 þ ΔÞ − xðt0Þ�2idt0

¼ 1

ðT − ΔÞΓð2þ αÞ ½ðta þ TÞαþ1−ðta þ T − ΔÞαþ1 − ðta þ ΔÞαþ1 þ tαþ1
a �

∼
Λαðta=TÞ
Γð1þ αÞ

Δ

T1−α
; (39)

where

ΛαðzÞ ¼ ð1þ zÞα − zα: (40)

The approximation in the fourth line is for the relevant case

of long measurement times, T ≫ Δ. A few points are

remarkable when comparing the time dependence of the

ensemble average, Eq. (36), to the scaling of the time

average, Eq. (39). The answer to the question on lag-time

dependence is a simple one: We generally find a linear

scaling δ2 ∼ Δ, regardless of age ta. In this respect, the time

average is a less complicated observable than the ensemble

average. The latter has a comparatively complicated t
dependence and is characterized by an age-dependent

regime separation. Compare this to the time average, where

nonstationarity enters in terms of the prefactors Λα and

Tα−1. Only the amplitude of time averages depends on the

measurement duration and age. More precisely, if either

measurement time parameter tends to ∞, the time average

itself tends to zero. This is why we call Λα an aging

depression. It can be expressed in terms of the dimension-

less ratio ta=T. In analogy to ensemble measurements, we

thus speak of a nonaged (ta ¼ 0), a slightly aged (ta ≪ T),
and a highly aged (ta ≫ T) time average.

Aside from the differences, there is also an interesting

parallel between ensemble and time average: the linear

scaling of the time average with respect to Δ is reminiscent

of the linear t dependence of the ensemble average at

high ages. If, in addition to a very long measurement

duration, we also assume an even longer preceding aging

period, ta ≫ T ≫ Δ, the similarity even becomes an

equivalence,

�

δ2ðΔ; ta; TÞ
�

∼ tα−1a

Δ

ΓðαÞ ∼ hx2aðta;ΔÞi: (41)

The time scalings of ensemble and time averages are hence

identical at high ages. This is quite surprising considering

that these quantities are fundamentally distinct in a process

that exhibits weak ergodicity breaking. In what follows, we

discuss whether or not these discrepancies and parallels of

the two types of averages are specific to the mean-squared

displacement.

D. Aging ensemble and time averages

Consider a random walk xðnÞ and a stationary observ-

able Fðx2; x1Þ, meaning that

hFðxðnþ kÞ; xðkÞÞi ¼ hFðxðnÞ; xð0ÞÞi≡ fðnÞ (42)

for any number of steps n or k. In other words, the above

ensemble average should not depend on when we begin the
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observation. The example discussed in the previous section

falls into this category. There, xðnÞ was Brownian motion,

Fðx2; x1Þ ¼ ðx2 − x1Þ2 was the squared displacement, and

we had fðnÞ ¼ 2Dn. But condition (42) would also allow

for general order moments or any other function of

displacements Fðx2 − x1Þ. Moreover, we can replace

xðnÞ by other processes with stationary increments, like

fractional Brownian motion [61]. If xðnÞ is even stationary

itself (e.g., the stationary limit of confined motion), then

any function F is fine (allowing us to calculate, e.g.,

correlation functions, Fðx2; x1Þ ¼ x2x1; CTRW multipoint

correlation functions have been studied extensively in

Refs. [30,31,53,62,63]).

1. Ensemble averages.

In any such case, we can ask the question of how the

statistical properties of the random motion and the mea-

sured observable change when introducing heavy-tailed

waiting times between steps. We define xðtÞ ¼ xðnðtÞÞ via
subordination, assuming that xðnÞ and nðtÞ are stochasti-

cally independent processes. In general, the aging proper-

ties of the renewal process nðtÞ are inherited by the CTRW

xðtÞ. The stationarity of the ensemble average is broken. To

calculate the magnitude of the effect, we can use condi-

tional averaging by virtue of the independency of the two

stochastic processes at work. We denote by h·iRW the

average with respect to realizations xðnÞ and write

hFðxðta þ tÞ; xðtaÞÞi ¼ hFðxðnðta þ tÞÞ; xðnðtaÞÞÞi

¼
Z

∞

0

Z

∞

0

hFðxðn2Þ; xðn1ÞÞiRW PrfnðtaÞ ¼ n1; naðta; tÞ ¼ n2 − n1gdn1dn2

¼
Z

∞

0

Z

∞

0

fðn2 − n1Þ PrfnðtaÞ ¼ n1; naðta; tÞ ¼ n2 − n1gdn1dn2

¼
Z

∞

0

Z

∞

0

fðmÞ PrfnðtaÞ ¼ n1; naðta; tÞ ¼ mgdn1dm

¼
Z

∞

0

fðmÞpaðm; ta; tÞdm

¼ hfðnaðta; tÞÞi: (43)

The average on the last line is with respect to naðta; tÞ, so
we can use our knowledge on ensemble averages of the

aging renewal process. The latter are characterized by a

distinct turnover behavior; see Eqs. (21–23). For the

slightly aged CTRW ensemble average, we have

hfðnðtÞÞi ¼L−1
s→tfsα−1Ln→sαffðnÞgg;

hfðnaðta; tÞÞi ¼ hfðnðtÞÞiþO½ðta=tÞα�; ðta ≪ tÞ: (44)

For CTRWs, the leading-order corrections due to aging are

of the order of ðta=tÞα, just as for the underlying renewal

process. Conversely, at high ages, we rewrite the leading-

order terms slightly as

hfðnaðta; tÞÞi

∼ fð0Þ þ tα−1a

ΓðαÞ

Z

t

0

�

hf0ðnðt0ÞÞi − fð0Þ ðt0Þ−α
Γð1 − αÞ

�

dt0

¼ fð0Þ þ tα−1a

ΓðαÞL
−1
s→tfs2α−2Ln→sαffðnÞ − fð0Þgg

≡ Cþ tα−1a

ΓðαÞ gðtÞ; ðta ≫ tÞ; (45)

introducing the constant C ¼ fð0Þ and defining an aux-

iliary function gðtÞ, either relating it to the analog stationary

average fðnÞ (third line) or to the corresponding nonaged

CTRW average hf0ðnðtÞÞi (second line). When the meas-

urement of the observable F is taken arbitrarily late,

ta → ∞, we will ultimately measure the constant C. For
example, if the base random motion xðnÞ is a random walk

with a characteristic scaling x ∼ nH, H > 0, and we study

moments of displacements, Fðx2; x1Þ ¼ jx2 − x1jq, q > 0,

then fðnÞ≃ nqH; in this case, C ¼ 0, so we will get

arbitrarily small moments at high ages. If xðnÞ is the

stationary limit of a confined motion and we are interested

in the correlation function Fðx2; x1Þ ¼ x2x1 (as studied in

Refs. [20,30,31]), then late measurements will be close to

the thermal value of the squared position C ¼ hx2i. No
matter which observable we are studying, the approach to

the constant value C is of the form hfðnaðta; tÞÞi − C≃
ðt=taÞ1−α, ta ≫ t.

2. Time averages

Now we turn to the analog time average, namely,

FðΔ; ta; TÞ ¼
1

T − Δ

Z

taþT−Δ

ta

Fðxðt0 þ ΔÞ; xðt0ÞÞdt0;

(46)

and calculate its expectation value
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�

FðΔ; ta; TÞ
�

¼ 1

T − Δ

Z

taþT−Δ

ta

hfðnaðt;ΔÞÞidt

∼ Cþ 1

T

Z

taþT

ta

ðtÞα−1
ΓðαÞ gðΔÞdt

¼ Cþ Λαðta=TÞ
Γð1þ αÞ

gðΔÞ
T1−α

: (47)

The approximation in the second line holds for sufficiently

long trajectories, T ≫ Δ. Note that from the full, possibly

complicated time dependence of the ensemble average,

only the late-age limiting behavior, Eq. (45), entered this

approximation. The reason is that with the integrand in the

time average of Eq. (47) decaying like ðt0Þα−1, the integral
itself is still an increasing function of T; namely, it grows

like Tα.

Thus, indeed, aging effects for time averages in CTRW-

type random motion are universally described in terms of

the constant C and simple prefactors Λα and Tα−1. The full

lag-time dependence is captured by the function gðΔÞ,
which is independent of the parameters defining the time

window of observation, ta and T. Conversely, the concrete
choice for the model xðnÞ or the observable F enters only C
and g but not the prefactors.

Furthermore, the Δ dependence of the time average is

closely related to the tdependenceof the ensemble average at

high ages, ta ≫ t. In particular, we find a universal asymp-

totic equivalence in the time scaling of time and ensemble

averages, if both are taken during late measurements:

D

FðΔ; ta; TÞ
E

∼ hFðxðta þ ΔÞ; xðtaÞÞi for ta ≫ T ≫ Δ:

(48)

Thus, indeed, averaging at late ages appears to happen

under stationary conditions. Keep in mind, however, that

the above identity refers to the expectation value of time

averages, and thus to the time scaling behavior. Since

CTRWs exhibit weak ergodicity breaking, the amplitude of

the time average of a single trajectory can largely deviate

from the expected value, especially at high ages. (See, for

instance, the discussion on the ergodicity-breaking param-

eter for δ2 in Ref. [20].)

E. Interplay of aging and internal relaxation

Recent experimental studies of the motion of submicron

granules in the cytoplasm and of protein channels in the

plasma membranes of living cells, as well as of lipid

molecules in large-scale computer simulations of lipid

bilayers, suggest that two different stochastic components

are needed to describe the observations [10,11,43,44].

Thus, one component underlying the motion was identified

as the weakly nonergodic, aging CTRW process whose

long-tailed waiting times may emerge due to transient

binding, caging, or critical clustering in the system. The

other component was identified as ergodic anomalous

diffusion mirroring the fractality of the available paths

due to the complex geometry of the environment [11] or the

viscoelasticity of the cytoplasm or lipid bilayers [10,43,44].

Here, we analyze such a two-component stochastic motion

governed by CTRW-style dynamics coupled to a visco-

elastic component described by the fractional Langevin

equation [64,65]. On the one hand, this analysis serves as

an exemplary application of the formulas and methods

described in this paper. In particular, it gives a concrete

meaning to the analytical discussion of time and ensemble

averages and their relation to internal relaxation time scales.

On the other hand, its complexity and versatility make it

more suitable for the description of physical phenomena.

The definition of this model is as follows.

With our base random walk xðnÞ, we depart from the

simple Brownian motion and instead consider the fractional

Langevin equation

0 ¼ −λxðnÞ − γ̄

Z

n

0

ðn − n0Þ2H−2x
: ðn0Þdn0

þ
ffiffiffiffiffiffiffiffiffiffiffi

γ̄kBT
p

ξHðnÞ: (49)

Here, the dot signals a first-order derivative, γ̄ > 0 is a

generalized friction constant, kBT > 0 gives the thermal

energy of the environment, and λ > 0 quantifies the

strength of an external, harmonic potential VðxÞ ¼ λx2,
centered around x ¼ 0. Thus, this fractional Langevin

equation describes the random motion xðnÞ of a pointlike

particle subject to the static external potential, a friction

force, and a fluctuating force due to the interaction with the

surrounding heat bath. We assume that dynamics are

overdamped, meaning that the particle mass is so small

that we can neglect particle inertia. Consequently, there is

no term proportional to x
::ðnÞ in Eq. (49). The random force

ξH is modeled in terms of the so-called fractional Gaussian

noise, i.e., a Gaussian process defined through [61,66]

hξHðnÞi ¼ 0 (50a)

and

hξHðn1ÞξHðn2Þi¼ jn2−n1j2H−2

þ 2

2H−1
jn2−n1j2H−1δðn2−n1Þ; (50b)

where 1=2 < H < 1.

While the noise process itself can be defined, in

principle, for any 0 < H < 1, the friction kernel in

Eq. (49) diverges for values H ≤ 1=2. Hence, we restrict

ourselves to 1=2 < H < 1, implying that noise correlations

are of the long-range, persistent type. They stand for the

interaction with a complex environment, where relaxation

dynamics are slow and cannot be characterized in terms of

single relaxation rates. The latter anomalous diffusion
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phenomenon comes about when accounting for obstructed

motion (e.g., single-file diffusion [67] or other many-body

systems [68,69]) or an interaction with a viscoelastic

network [64,65,70,71]. Biological cells feature highly

complex, crowded environments, crossed by filament net-

works. FLE dynamics have thus found wide application in

biological physics, describing diffusive motion processes

within the cell [70,72–75], and also conformational dynam-

ics of individual protein complexes [76].

Such long-range correlations carry over to the particle

motion in a twofold way, as the friction term in Eq. (49)

also incorporates long-range memory effects: its magnitude

is defined by the complete velocity history starting from

n0 ¼ 0. The power-law memory kernel is chosen such that

this FLE fulfills a Kubo-style fluctuation-dissipation theo-

rem [77]. This implies that deterministic friction and

random noise forces do not originate from separate physical

mechanisms, but are both generated by interactions with

the environment. Moreover, it means we can model

“equilibrated diffusion”: Eq. (49) admits a solution with

a stationary velocity profile, so that the net energy

exchange of the particle with the heat bath is zero. Such

a solution is a Gaussian process defined by [32]

hxðnÞi ¼ 0 (51a)

and

h½xðkþ nÞ − xðkÞ�2i ¼ 2kBT

λ

�

1 − E2−2H

	

−
λ

γ
jnj2−2H


�

;

(51b)

in terms of a generalized Mittag-Leffler function

E2−2H (see the Appendix), introducing γ ¼ γ̄Γð2H − 1Þ.
(Note that the definition of a Gaussian process in terms

of its correlation function is equivalent to the definition

in terms of squared increments, since h½x2 − x1�2i ¼
hx21i þ hx21i − 2hx1x2i.) The nonequilibrium solutions to

the FLE are discussed in Refs. [78,79], including an

interesting discussion on their transient aging behavior

[79]. In the limit H → 1=2, Eq. (51) defines a stationary

Ornstein-Uhlenbeck process, implying exponential relax-

ation. Physically, the latter models overdamped motion in

an harmonic potential where friction and noise forces are

memoryless.

The stationary Gaussian process (51) is the starting point

for our discussion on aging induced by heavy-tailed

waiting times. There are, of course, various ways to

introduce an aging, nonergodic, CTRW-like model com-

ponent, and the resulting stochastic processes differ largely.

For instance, one can combine the Gaussian dynamics with

an independent CTRW motion in a purely additive manner,

as discussed in Ref. [80]. Moreover, for a nonoverdamped,

inertial motion, the FLE velocity process vðnÞ ¼ x
: ðnÞ can

be modified by adding periods of constant velocity with

heavy-tailed statistics [81,82]. Here, we instead stick to the

standard subordination approach as described in the pre-

ceding sections: we introduce stalling dynamics by defin-

ing xðtÞ ¼ xðnðtÞÞ, where the aging renewal process nðtÞ is
assumed to be statistically independent from xðnÞ.
Physically, this scenario implies that the particle under

observation is governed by the FLE (49). Eventually, it

becomes trapped for a random waiting time governed by

the probability density ψðtÞ. After release from the trap, we

assume that the particle motion quickly thermalizes and the

particle again follows the stationary Gaussian dynamics

(51) until the next trapping event.

We note that the independence of xðnÞ and nðtÞ in a

physical sense implies that the stalling dynamics is neither

affected by the external binding potential nor intertwined

with heat bath relaxation mechanisms. The theory pre-

sented here may thus be considered as an effective case

study. The implications of the case when the waiting time

parameters τ or α respond to external forces are discussed

for two-state models in Refs. [83,84]. The interplay of

aging renewals and adapted nonstationary external forces

are highlighted in Refs. [85,86]. In particular, it was shown

that the regular fluctuation-dissipation and linear response

theorems break down for renewal aging processes [83–86].

It is also an open question to what extent these results carry

over to the physical behavior of the corresponding time-

averaged quantities. A partial answer to these questions

may come from applications of the aging renewal theory

discussed herein and formulations of the corresponding

dynamics by aging fractional Fokker-Planck–type equa-

tions [14], or aging extensions of the generalized master

equation [87]. In that sense, there are clearly some

fundamental physical questions still to be answered, which

certainly goes beyond the scope of the present work.

We also note that here we identify the origin of the time

coordinate as the time where the particle enters a trap [i.e.,

nðtÞ starts at t ¼ 0], and we assume that by the time ta we
start the observation, the FLE dynamics xðnÞ have already
relaxed to the stationary equilibrium state. Note that for

ta ¼ 0, this implies that we have means to either measure or

control the onset of trapping dynamics.

Basically, we have three motivations to study the random

motion xðtÞ. First, CTRWs provide one approach to model

diffusive motion in biological cells, where waiting times

represent multiscale binding or caging dynamics. The sheer

complexity of this kind of environment, however, brings

the necessity to further introduce aspects of anomalous

diffusion not contained in the renewal process nðtÞ
[43,44,51,88,89]. While the overdamped FLE dynamics

(51) adds both friction and external binding forces, it also

introduces the concept of long-time correlations within an

equilibrated environment.

From the point of view of our theoretical discussion of

aging CTRWs, our second motive to discuss this particular

model is the stationarity of increments of xðnÞ. It allows us
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to exercise the methods we introduced in the previous

section by calculating ensemble and time averages—mean-

squared displacements, in particular—of the aging proc-

ess xðtÞ.
Third, aside from its didactic purpose, the definition of

the process xðnÞ also extends the ordinary Brownian

motion by introduction of an intrinsic time scale

n� ¼ ðγ=λÞ1=ð2−2HÞ, characterizing the competition between

binding and friction forces. According to Eq. (51), sta-

tionary Langevin dynamics exhibit a turnover,

h½xðkþ nÞ − xðkÞ�2i

∼
2kBT

λ

� ½Γð3 − 2HÞ�−1ðn=n�Þ2−2H n ≪ n�

1 n ≫ n�;
(52)

from subdiffusion on short time scales to the stationary

Boltzmann limit 2kBT =λ on long scales. Now, for the aging
process xðtÞ, we know that the age of a measurement ta
itself can be conceived as a time scale separating the time

dependence into early- and late-age behavior. It would be

interesting to know how complex the process xðtÞ behaves
with respect to both time scales. Are all conceivable time

regimes clearly distinct? Are time and ensemble averages

equally sensitive to transitions from one regime to

the other?

A partial answer is given by Eqs. (43–45), which focus

on the calculation of ensemble averages. We discuss the

mean-squared displacement, Fðx1; x2Þ ¼ ðx1 − x2Þ2 and

fðnÞ, as defined through Eq. (51). Inserting the latter into

Eq. (44), we find an approximation for low ages, ta ≪ t:

hx2aðta; tÞi ¼ h½xðta þ tÞ − xðtaÞ�2i ¼ h½xðtÞ − xð0Þ�2i þO½ðta=tÞα�

∼
2kBT

λ
L−1
s→t=τ

�

sα−1Ln→sα

��

1 − E2−2H

	

−
λ

γ
jnj2−2H


���

¼ 2kBT

λ
L−1
s→t=τ

�

1

s
−

sð2−2HÞα−1

sð2−2HÞα − λ=γÞ

�

¼ 2kBT

λ

�

1 − Eð2−2HÞα;2−α

	

−
λ

γα
tð2−2HÞα


�

: (53)

In order to obtain reasonable physical units, we reintroduce

the parameter τ from Eq. (1), bearing the dimension of

seconds s. Moreover, the new constant γα ¼ γτð2−2HÞα has

physical units kg s−ð2−2HÞα−2.
For increasingly aged ensemble measurements, aging

corrections of the order ðta=tÞα come into play. The detailed

time behavior of the ensemble mean-squared displacement

is found by combining Eqs. (51), (43), and (22). Here, we

have fð0Þ ¼ 0, and thus we can write

hx2aðta;tÞi

¼2kBT

λ
hðta;tÞ�t

�

1−Eð2−2HÞα;2−α

	

−
λ

γα
tð2−2HÞα


�

: (54)

The full time dependence of the ensemble average comes as

a convolution of the forward recurrence time PDF (13) with

a generalized Mittag-Leffler function. We provide graphi-

cal examples below.

The behavior at high ages, ta ≫ t, can be calculated

analytically by use of Eqs. (51) and (44):

hx2aðta; tÞi ∼
tα−1a

ΓðαÞ gðtÞ;

where, in this case, C ¼ fð0Þ ¼ 0 and

gðtÞ¼2kBT

λ
L−1
s→t=τ

×

�

s2α−2Ln→sα

�

1−E2−2H

	

−
λ

γ
jnj2−2H


��

¼2kBT

λ
t1−α

�

1

Γð2−αÞ−Eð2−2HÞα;2−α

	

−
λ

γα
tð2−2HÞα


�

:

The time dependence of the mean-squared displacement,

Eq. (54), is relatively complicated. In both the limits of

slightly and highly aged measurements, we observe a

Mittag-Leffler behavior, but with different parameters.

We can extract from Eqs. (53) and (55) four time regimes

where the diffusive behavior with respect to time t is

described in terms of single power laws; regimes are

separated by a time scale ta induced by aging and an

intrinsic relaxation time scale τ�α ¼ ðγα=λÞ1=½ð2−2HÞα�:

hx2aðta; tÞi ∼
2kBT

λ

8

>

>

<

>

>

:

A�
αt

α−1
a t1−ð2H−1Þα t ≪ ta; τ

�
α

B�
αt

ð2−2HÞα ta ≪ t ≪ τ�α
C�
αt

α−1
a t1−α τ�α ≪ t ≪ ta

1 ta; τ
�
α ≪ t;

(55)

with coefficients
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A�
α ¼ ½τ�αð2−2HÞα

ΓðαÞΓð2 − ð2H − 1ÞαÞ�−1;
B�
α ¼ ½τ�αð2−2HÞα

Γð1 − ð2 − 2HÞαÞ�−1;
C�
α ¼ ½ΓðαÞΓð2 − αÞ�−1:

Figure 6 gives several examples for the detailed turnover

behavior of the mean-squared displacement for various

values of α and H. At infinite times t → ∞, the ensemble

mean-squared displacement converges to the Boltzmann

limit. At finite times, we generally observe subdiffusive

behavior. The dynamics are slowest when t is short as

compared to both intrinsic relaxation and aging time scales.

Notice that the behavior at times t ≫ τ�α is independent of

the parameter H, defining the memory of friction and noise

forces. This regime is fully dominated by the aging

transition.

Again, we stress that the full double turnover behavior of

the ensemble average might not be visible to the observer of

a real physical system due to limitations of the experimental

setup. In addition, precise knowledge of the aging time ta,
which preceded the actual ensemble measurement, might

not be available. Maybe ta is even random, varying from

one trajectory to the next. In any such case, the observer

cannot know which of the power-law regimes of Eq. (55) is

being probing by means of mean-squared displacement

measurements.

The analog time-average measurement is much less

complex and thus easier to interpret. According to

Eq. (47), we have for T ≫ Δ,

�

δ2ðΔ;ta;TÞ
�

∼
Λαðta=TÞ
Γð1þαÞ

gðΔÞ
T1−α

¼ Λαðta=TÞ
Γð1þαÞT1−α

2kBT

λ

×Δ
1−α

�

1

Γð2−αÞ−Eð2−2HÞα;2−α

	

−
λ

γα
Δ

ð2−2HÞα

�

: (56)

The dependence on measurement time parameters ta and T
factorizes from the lag-time dependence. The latter is

captured by the function g. Recall that for weakly non-

ergodic CTRW dynamics, the amplitude of a single-

trajectory time average δ2 is random by nature, while its

scaling with lag time Δ is not. Thus, the Δ scaling of the

time-averaged mean-squared displacement is age indepen-

dent. For combined CTRW-FLE dynamics, it is universally

given by g in terms of a Mittag-Leffler–type single turn-

over, with (lag) time regimes being separated by the

intrinsic time scale τ�α ¼ ðγα=λÞ1=½ð2−2HÞα�. In particular, a

single, long trajectory measurement is, in principle, suffi-

cient to read off the scaling exponents α andH and the time

scale τ�α.
Aging affects the amplitude of the time average only;

as ta increases, we expect smaller values of δ2. For

exemplary plots, see Fig. 7. Note that the late lag-time

behavior is generally Δ1−α, independently ofH, as reported

previously [23,30,31] for confined, memoryless CTRWs

(i.e., for H ¼ 1=2). Moreover, in the limit α → 1, aging

becomes negligible, Λ1 ≡ 1, and we recover the ergodic

FLE result
D

δ2ðΔÞ
E

¼ h½xðn ¼ Δ=τÞ − xð0Þ�2i, with xðnÞ
as in Eq. (51).

FIG. 6 (color online). Time evolution of the ensemble-averaged

mean-squared displacement for combined CTRW and over-

damped, confined FLE dynamics. Plots are numerical evaluations

of the convolution integral (54). We study several parameter

configurations for H and α. The behavior is characterized by a

double turnover between several power-law regimes as labeled

above the graphs; see also Eq. (55). Respective turnover time

scales τ�α and ta are indicated as vertical lines. A horizontal line

gives the infinite time stationary limit hx2ai → 2kbT =λ. Top: The
ensemble measurement starts at a time where internal FLE

dynamics have not yet relaxed to equilibrium; i.e., ta ≪ τ�α.
Bottom: Opposite case, ta ≫ τ�α.
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IV. CONCLUSIONS

We investigate a renewal process in which the average

waiting time between consecutive renewals is infinite. For

such a process, the randomness of events is relevant on

even the longest of time scales. This process has several

nontrivial properties, one of which is aging: the statistics of

renewals counted within a finite observation time window

strongly depends on the specific instant at which we start to

count. The most remarkable aging effect is a growing,

discrete probability to not count a single event during

observation. Concurrently, the continuous distribution of

the nonzero number of renewals is also transformed. We

discussed analytical expressions for this distribution with

respect to series expansions, tail behavior, and monoto-

nicity; see Eqs. (15–20) and Figs. 3 and 4. We deduce exact

expressions for related ensemble averages, Eqs. (22) and

(23), such as arbitrary moments of the number of renewals

in terms of incomplete beta functions, Eq. (25). We found

that we count fewer renewals at increasingly late ages.

However, this is mainly due to the mentioned high

probability of counting zero renewals. Restricting the

counting statistics to eventful measurements, see Eq. (31),

yields a finite distribution even at infinite age, characterized

by the same time scaling as the nonaged process.

Motivated by experimental evidence for stochastic

motion with long-tailed trapping time distributions of the

type (1) from single-particle tracking experiments in the

cytoplasm of living cells and other complex fluids, we

apply this aging renewal theory to CTRW models: renewal

events are identified with steps of the random walk. The

aging effects translate from the renewal to the random walk

process. Thus, the increasing probability for the complete

absence of dynamic activity is conceived as a population

splitting effect. In an ensemble of identical particles, a

certain fraction remains fully immobile during a finite time

observation. The total size of the mobile population

decreases with age, and their detailed statistics also change.

We discuss the implications for ensemble- and time-

averaged observables in CTRW theory. Aging affects the

distributions of time averages, and population splitting has

to be considered, in particular. Remarkably, we find that

ensemble averages behave very differently with respect to

aging effects than related time averages. The age of a

measurement modifies the complete time dependence of an

ensemble average, mimicking an internal relaxation mecha-

nism. We provide an analytical description in terms of

Eqs. (43–45). In contrast, aging enters the associate time

average only as a distributional modification, while its

scaling with respect to (lag) time remains indifferent. We

calculate the respective scaling function g [see Eqs. (45)

and (47)]. In addition, we derive the precise aging mod-

ifications for the ensemble averaged time average. The

latter, in turn, do not depend on details of the definition of

the process or the observable. Instead, they are captured by

universal constants, and the age enters, in particular,

through the aging depression Λα, defined in Eq. (40).

Despite this fundamental conceptual difference between

time and ensemble averages, we find that their time scalings

are identical in highly aged measurements. This is a

surprising result since CTRWs are notorious for weak

ergodicity breaking, i.e., the general inequivalence of the

two types of averages.

Following recent observations of the combined features of

weakly nonergodic and ergodic anomalous diffusion based

on experimental and simulations data, we give a more

specific meaning to these general considerations by discus-

sing combined FLE-CTRW dynamics. The latter extend

ordinary CTRW models by introduction of binding and

friction forces and a correlated noise. We contrast turnover

behaviors of aging and internal relaxation and provide a

detailed discussion of the associated limiting regimes.
CTRW is a very natural application of aging renewal

theory, yet it is far from unique. All aging effects, such as
population splitting and altered ergodic behavior, have their
analog phenomenon in any physical system where the

FIG. 7 (color online). Expectation value of the time-averaged

squared displacement δ2 as a function of lag time Δ. Plots

graphically represent Eq. (56), for the same system parameters α

and H as in Fig. 6. In all cases the duration of the measurement is

T ¼ 106. In contrast to the analog ensemble average, the behavior

is given by a single turnover at the internal relaxation time scale

τ�α, no matter at which time ta the recording of the trajectory is

initiated. Results obtained at late age (ta=T ¼ 103, dashed or

dotted lines) differ from those at early age (ta=T ¼ 10−3,

continuous lines of same color) merely by a prefactor (displayed

as a constant shift in the double logarithmic plot).
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mean sojourn time in microstates is infinite. Thus, we
expect a certain fraction of blinking quantum dots or cool
atoms to be constantly stuck in one state during a delayed
observation period. At the same time, the statistics of the
switching population are aging. Power spectral densities
obtained from signals from such systems should display
related aging properties, as discussed briefly in Ref. [90].
Aside from the stochastic process studies, weakly chaotic
systems are also shown to exhibit analogous aging behav-
iors [91]. When it comes to diffusion dynamics, a study of
alternative CTRW-like models might turn out to be worth-
while. Examples are the noisy CTRW [80], aging renewals
on a velocity level [81,82], spatiotemporally coupled
Lévy walks [40,92–95], and correlated CTRW [96–98].
Moreover, further studies of the aging renewal process,
e.g., with respect to higher-dimensional probability distri-
butions, will reveal additional insight into aging mecha-
nisms of such physical systems.

In the future, it will be interesting to consider the effect of

aging on other classical fields of application of the renewal

theory, such as operations research [99], social processes

[100], the theory of risk [101], or financial mathematics and

general queuing theory [102]. Moreover, physical ques-

tions, such as the the effect of aging and time averaging on

biased random walks as well as the formulation of a time-

averaged aging Einstein relation, will need to be addressed.

Finally, the parameter range 1 < α < 2 for the exponent of

the waiting time distribution should be considered. The

combination of a finite characteristic waiting time with a

diverging second moment should lead to further interesting

observations.
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APPENDIX: SPECIAL FUNCTIONS

The asymptotics of the PDF pa of the aging renewal

process na, Eqs. (17) and (20), and the rescaled time

averaged mean-squared displacement distribution in

Eq. (38) for highly aged processes contain the Fox H-

function, a very convenient special function [49]. For the

specific cases considered here, the series expansion around

z ¼ 0 is

H10
11

�

z
�

�

�

ðβ; αÞ
ð0; 1Þ

�

¼
X

∞

k¼0

ð−zÞk
k!Γðβ − αkÞ : (A1)

The behavior for large values of z is a stretched exponential,

H10
11

h

z
�

�

�

ðβ; αÞ
ð0; 1Þ

i

∼ Czð1−2βÞ=ð2−2αÞ expð−Dz1=ð1−αÞÞ; (A2)

with the abbreviations

C ¼ ½2πð1 − αÞ�−1=2αð1−2βÞ=ð2−2αÞ;
D ¼ ð1 − αÞαα=ð1−αÞ:

(A3)

Logarithmic tail analysis thus yields

log
n

H10
11

h

z
�

�

�

ðβ; αÞ
ð0; 1Þ

io

≃−z1=ð1−αÞ; (A4)

independently of β. The expressions for pa as nonaged,

slightly aged, and strongly aged renewal PDFs are obtained

by substituting β with 1 − α, 1 − 2α, and 2 − 2α, respec-

tively. Note that for α ¼ 1=2 the relevant, H-functions

simply become

H10
11

"

z

�

�

�

�

�

ð1=2; 1=2Þ
ð0; 1Þ

#

¼ 1
ffiffiffi

π
p expð−z2=4Þ;

H10
11

�

z

�

�

�

�

ð0; 1=2Þ
ð0; 1Þ

�

¼ z
ffiffiffiffiffiffi

4π
p expð−z2=4Þ;

H10
11

�

z

�

�

�

�

ð1; 1=2Þ
ð0; 1Þ

�

¼ erfcðz=2Þ (A5)

in terms of exponential and complementary error functions.

The probability mα in Eq. (11) and the qth order

moments of renewals (25) are expressed in terms of an

incomplete beta function, defined through [103]

Bðz; a; bÞ ¼
Z

z

0

ua−1ð1 − uÞb−1du

∼

�

za=a z≳ 0

Bða; bÞ − zb=b z≲ 1;
(A6)

with the special value

Bð1; a; bÞ ¼ Bða; bÞ ¼ ΓðaÞΓðbÞ=Γðaþ bÞ: (A7)

Here, a, b > 0 and 0 ≤ z ≤ 1.

The Laplace transform of pa with respect to the number

of events, Eqs. (27) and (28), and the mean-squared

displacement for FLE motion, Eqs (51), (53), and 55,

are expressed in terms of generalized Mittag-Leffler func-

tions. The latter are characterized alternatively by series

expansions around z ¼ 0,

Eα;βðzÞ ¼
X

∞

k¼0

zk

Γðαkþ βÞ ; (A8)

or asymptotic series for large arguments,

Eα;βðzÞ ∼ −
X

∞

k¼1

z−k

Γðβ − αkÞ ; (A9)
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or by their Laplace pair,

Eα;βð−ztαÞ ¼ t1−βL−1
s→t

�

sα−β

sα þ z

�

; (A10)

for any α; β > 0. The ordinary Mittag-Leffler functions are

the special cases EαðzÞ≡ Eα;1ðzÞ.
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