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Abstract

Bubbly flows involve bubbles randomly distributed within a liquid. At large

Reynolds number, they experience an agitation that can combine shear-

induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-

induced agitation (BIA). The properties of BIA strongly differ from those

of SIT. They have been determined from studies of homogeneous swarms

of rising bubbles. Regarding the bubbles, agitation is mainly caused by the

wake-induced path instability. Regarding the liquid, two contributions must

be distinguished. The first one corresponds to the anisotropic flow distur-

bances generated near the bubbles, principally in the vertical direction. The

second one is the almost isotropic turbulence induced by the flow instability

through a population of bubbles, which turns out to be the main cause of

horizontal fluctuations. Both contributions generate a k−3 spectral subrange

and exponential probability density functions. The subsequent issue will be

to understand how BIA interacts with SIT.

https://doi.org/10.1146/annurev-fluid-122316-045003
https://doi.org/10.1146/annurev-fluid-122316-045003
http://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-045003


SIT: shear-induced 
turbulence

BIA: bubble-induced 
agitation

1. INTRODUCTION

Bubbly flows belong to the more general family of dispersed two-phase flows, in which a popula-

tion of particles (either solid, liquid, or gaseous) is dispersed into a fluid, termed the continuous

phase. Such flows are complex because the two phases undergo two different, but closely coupled,

dynamics.

Two mechanisms can force the motion of the particles to be different from that of the sur-

rounding fluid. First, the fact that the dispersed particles cannot deform as much as the continuous

phase produces hydrodynamic forces, so-called Faxén forces (Gatignol 1983). Second, the inertia

and gravity forces acting on the particles are different from those acting on the surrounding fluid

as soon as the densities of the two phases differ. This latter mechanism is more often dominant,

and we focus here on situations where it can be considered as the only cause of velocity differ-

ences between particles and the fluid. Furthermore, the existence of a density difference can lead

to another major consequence. A single phase is usually set in motion by an imposed external

pressure gradient, caused either by a pump or by gravity. A dispersed two-phase flow can also be

generated by the sole action of buoyancy, for instance, by pouring heavy particles in a lighter fluid

or injecting gas bubbles in a liquid. The existence of two causes of motions leads to a wide range of

flow regimes, involving various physical mechanisms (Figure 1a). The external pressure gradient

and the buoyancy generate mean and fluctuating motions in the liquid and in the dispersed phase.

We first consider the case where buoyancy is negligible compared to the imposed pressure

gradient, as is usually the case when small bubbles are dispersed in a liquid pipe flow. The pressure

gradient causes a liquid flow, which becomes unstable if the Reynolds number is large enough

and generates turbulence, mainly close to the wall. Concurrently, the pressure gradient induces

a mean bubble motion, characterized by a velocity that differs from that of the fluid. The shear-

induced turbulence (SIT) then causes random motions of the bubbles, and in return, the presence

of the bubbles alters the liquid turbulence. These two latter mechanisms are predominant when

the SIT is the main source of fluctuations. Their investigation has given rise to a large number

of contributions (Balachandar & Eaton 2010) and still remains an issue of major interest for the

scientific community. The effect of turbulence on the motion of the bubbles is often called particle

dispersion and is referred to as one-way coupling in numerical simulations. It is, in particular,

responsible for the preferential concentration of particles in certain regions of the flow. The effect

of bubbles on turbulence is often called the turbulence modulation and is referred as two-way

coupling in such simulations.

We now consider the opposite situation, in which buoyancy is the only cause of motion, as is

the case in bubble columns where gas bubbles are injected at the bottom of a tank filled with a

liquid otherwise at rest (Figure 1b,c). Buoyancy causes the rising motion of the bubbles, but it

induces no mean motion of the liquid phase, provided that the random spatial distribution of the

bubbles is uniform. The flow disturbances generated by bubble-rising motions induce velocity

fluctuations in the surrounding liquid. This agitation of the liquid is often called bubble-induced

turbulence or pseudo-turbulence (Lance & Bataille 1991), but we prefer to call it bubble-induced

agitation (BIA), which does not suggest any physical interpretation. Of course, BIA acts in return

on the dispersed phase, but it is not the only cause of bubble agitation. Freely rising or falling

bodies are observed to follow oscillatory paths when their wake becomes unsteady (Ern et al. 2012).

These wake-induced fluctuations represent the major part of bubble agitation for millimeter-sized

bubbles in water.

A homogeneous spatial distribution of bubbles represents a very peculiar flow regime, which is

hard to observe in industrial bubble columns where large-scale liquid flows develop (Mudde 2005).

In spite of these considerations, a homogeneous bubble column can be more easily obtained in

laboratory experiments under the condition that bubbles are injected rigorously uniformly
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Figure 1
(a) Physical mechanisms involved in a turbulent bubbly flow. There are two possible causes of motions: an imposed external pressure
gradient (black) and buoyancy (red ). The pressure gradient causes a mean flow (P1) in the liquid (blue), generating near-wall turbulence
(T1) if the Reynolds number is large enough. Concurrently, the pressure gradient induces a mean motion (P2) in the dispersed phase
( green). The shear-induced turbulence causes random motions of the bubbles (D), which in turn alters the liquid turbulence (M).
Buoyancy causes the bubbles to rise (B1). The flow disturbances generated by bubble-rising motions induce velocity fluctuations in the
surrounding liquid (B3), which acts in return on the dispersed phase (B4). Freely rising or falling bodies follow oscillatory paths when
their wakes become unsteady, inducing the major part of agitation for millimeter-sized bubbles in water (B2). Buoyancy may also
generate mean liquid flows (B5) through an inhomogeneity of the bubble concentration. As the concentration increases, these motions
generate strong liquid velocity gradients that eventually produce turbulence (T2). (b) Laboratory-created homogeneous and
(c) heterogeneous bubble columns.

(Harteveld 2005). For a given column geometry, a homogeneous bubble distribution, which re-

mains stable under moderate spatial perturbations of the bubble injection, can be obtained up

to a critical value of the gas volume fraction α (Harteveld & Mudde 2003). This critical value

depends on the aspect ratio of the column, and it is possible to recover a stable homogeneous

flow from an unstable configuration by decreasing the liquid height in the column (Colombet

et al. 2015). Above this threshold, rising motions of the bubbly mixture are observed in regions

where the bubble concentration is higher, while downward flows are observed where it is lower.

Through an inhomogeneity of the bubble concentration, buoyancy may thus generate mean liquid

flows as natural convection does (Climent & Magnaudet 1999). With an increase in the average

gas volume fraction, these buoyancy-driven motions become stronger and generate strong liquid

velocity gradients that eventually produce turbulent fluctuations. Even if they both originate from

the bubbles and exist in the absence of an external pressure gradient, the turbulence induced by the

inhomogeneity of bubbles’ spatial distribution and the agitation that develops in homogeneous sit-

uations require two separate descriptions, each involving different mechanisms. On the one hand,

the first mechanism (part T2 of Figure 1) involves large-scale motions that give rise to a cascade



RANS: Reynolds-
averaged Navier–
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of increasingly smaller scales as the buoyancy gradients become larger. It is therefore the same

mechanism of turbulence production as single-phase flow (part T1 of Figure 1) and generates a

turbulence with similar properties. Therefore, it is not distinguished in this review from the SIT

that develops in the absence of bubbles. On the other hand, the second mechanism (part B3 of

Figure 1) injects energy in a narrow range of scales of the order of the bubble size and produces

an agitation with statistical properties that are very different from that of classic SIT (Riboux et al.

2010). In the following review, the term BIA refers exclusively to this latter mechanism.

In a pioneering work, Lance & Bataille (1991) injected a homogeneous swarm of bubbles in

an upward water flow where SIT was also generated by means of a grid. They clearly showed that

the bubbles increased the intensity of the liquid fluctuations and generated an original spectral

subrange, where the power spectral density decreased approximately as the −3 power of the wave

number. Later, several investigations (reviewed in Rensen et al. 2005) attempted to determine the

statistical properties of BIA but found different results, especially regarding the spectrum of the

fluctuations. These discrepancies arose from the fact that SIT and BIA were simultaneously present

with various relative intensities. To allow relevant comparisons between the various situations,

Rensen et al. (2005) introduced the bubblance parameter, which compares the intensity of BIA to

that of SIT. Although it is difficult to estimate this parameter in the general case, it can be easily

determined in a homogeneous bubbly flow where the intensity of SIT is similar to that measured

in the absence of bubbles. In a modern version of the Lance & Bataille (1991) configuration,

Prakash et al. (2016) experimentally showed how the specific properties of BIA emerged as the

bubblance parameter was increased.

In most practical situations, all mechanisms illustrated in Figure 1 are present. This is the case

for an upward turbulent pipe flow with bubbles large enough to have a significant drift velocity

relative to the liquid, a configuration that motivated many experimental investigations (reviewed

in Rzehak & Krepper 2013). The dynamics of a heterogeneous bubble column without average

vertical liquid flow, even if it might appear simpler, was shown to be quite similar to that of a

vertical pipe flow (Mudde & Saito 2001). The origins of the large-scale motions responsible for

the generation of SIT, which are either an external pressure gradient (part T1 of Figure 1) or

a nonuniform distribution of the bubbles (part T2 of Figure 1), are of secondary importance.

The main point is to distinguish SIT from BIA. The modeling of complex turbulent bubbly flows

where these two sources of agitations are present has been essentially developed in the framework

of the two-fluid formulation of the Reynolds-averaged Navier–Stokes equations (RANS), where

the mean velocity and kinetic energy of both phases are considered continuous. In the simplest

class of models, introduced by Sato et al. (1981), the effect of the bubbles on the liquid agitation is

accounted for by an additional contribution to the effective turbulent viscosity, while the equations

for the kinetic energy ke and the dissipation rate of the liquid fluctuations ǫ are identical to those

taken in a single-phase case. The second class of models, reviewed in Ziegenhein et al. (2017),

accounts for BIA by the addition of new terms in the equations for ke and ǫ. The third class of

models introduces a separate equation for the kinetic energy of BIA (Chahed et al. 2003). Even if

the third class is more realistic, the second one is nowadays the most commonly used, probably

due to the lack of reliable closure laws for BIA and its coupling with SIT.

Understanding turbulent bubbly flows therefore requires a deep knowledge of the agitation

generated by a population of bubbles freely moving in a fluid. In the last 15 years, several exper-

imental investigations and numerical simulations of a homogeneous swarm of rising bubbles of

fixed size (i.e., in the absence of bubble breakup or coalescence) have converged towards a rather

complete description of the specific statistical properties of BIA. Concurrently, researchers have

made significant progress regarding the underlying physical mechanisms. The aim of this article is

to review these advances by addressing, in particular, the following questions: To what extent is the



dynamics of a single bubble relevant for describing that of a bubble swarm? How are bubble wakes

modified by collective effects? Is BIA a real turbulence? What is the origin of the peculiar spectral

and statistical features of BIA? How do bubbles mix a tracer or influence interfacial transfers?

2. MOTIONS GENERATED BY INDIVIDUAL BUBBLES

2.1. Motion of a Single Rising Bubble

We first consider the case of a single gas bubble rising in a liquid at rest under the action of

gravity because it corresponds to the reference case in the absence of any interactions between the

bubbles. Considering a pure liquid and neglecting the density and viscosity of the gas, we find that

problem involves five physical parameters: the density ρ and viscosity µ of the liquid, the surface

tension σ , the bubble-equivalent diameter d = (6ϑ/π )1/3 based on the bubble volume ϑ , and

gravity g. Among the dimensionless parameters that can be defined, only two are independent,

namely the Eötvos (ρd 2g/σ ) and the Morton (gµ4/ρσ 3) numbers. This elementary situation is

already very complex and leads to a wide range of flow regimes (Maxworthy et al. 1996). In practice,

the physical analysis of the bubble dynamics is often carried out by considering nondimensional

numbers that involve the average bubble rise velocity 〈V 〉: the Reynolds number Re = ρ〈V 〉d/µ,

the Weber number We = ρ〈V 〉2d/σ , and the drag coefficient Cd = 4gd/3〈V 〉2.

Figure 2a shows measurements of the mean rise velocity 〈V 〉 of an air bubble rising in

pure water as a function of its diameter from Duineveld (1995). The velocity of small bubbles

(d ≤ 1 mm), which are almost spherical and rise on a straight path, increases with d . Larger

bubbles take a spheroidal shape (Figure 2b) as the velocity reaches a maximum before decreasing.

Concurrently, the bubble wake becomes unstable and bubbles larger than 2 mm generally follow

an oscillatory path (Aybers & Tapucu 1969, Ellingsen & Risso 2001, Shew et al. 2006), as shown

in Figure 2c. Finally, very large bubbles (d � 10 mm) take the shape of a hemispherical cap and

rise on an almost straight path.

Magnaudet & Mougin (2007) showed from numerical simulations that bubble path oscilla-

tions occur when the production of vorticity at the interface exceeds its advection by the flow

going around the bubble. They proposed a criterion for the onset of the path instability based on

the maximum vorticity magnitude at the interface. This criterion was in agreement with experi-

ments conducted by Zenit & Magnaudet (2008) involving bubbles rising in pure silicone oil and

corresponded to a bubble aspect ratio of 2 for Re > 100.

In practice, the continuous phase is rarely a totally pure liquid and, especially when it involves

water, contains surface-active molecules that adsorb on the bubble surface. Figure 2a also shows

two different rise velocities of air bubbles in tap water, as measured in the same experimental setup

by Peters & Els (2012). The main discrepancy between the two sets of data lies in the fact that

faster bubbles were rapidly released so that surfactant did not have the time to reach the interface,

whereas slower bubbles were kept at rest for a few seconds before being released. The velocity

decrease of the bubbles can be explained by the presence of a small amount of surfactant, which

is a well-known phenomenon largely described in the literature (Takagi & Matsumoto 2011).

The adsorbed molecules are advected towards the bubble rear, which generates a gradient of their

surface concentration and induces Marangoni stresses that increase the resistance to the bubble

motion (Bel Fdhila & Duineveld 1996, Cuenot et al. 1997). Because it increases the vorticity

generated at the interface, the presence of surfactant enhances the development of bubble wake

and path instabilities, which are consequently often observed even for spherical bubbles.

It is worth noting that wake-induced path oscillations are not marginal phenomena because

they cause significant horizontal velocity fluctuations. For example, the standard deviation of the

bubble velocity amounts to 30% of the average velocity for an air bubble of 2.5-mm diameter rising
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Figure 2
(a) Average velocity 〈V 〉 of a single air bubble rising in water as a function of diameter d . (b,c) Trajectories and shapes of 1.6-mm- and
2.1-mm-diameter single air bubbles rising in water.

in water (Riboux et al. 2010). Moreover, these oscillations are robust, and the velocity fluctuations

of a bubble with an unstable wake rising in a turbulent flow are still often dominated by the path

instability (Ford & Loth 1998, Mathai et al. 2015).

2.2. Liquid Disturbance Generated by a Bubble

A moving bubble generates a velocity disturbance in the surrounding fluid. At vanishing Reynolds

number, the velocity disturbance is a solution of the Stokes equations and decays with the reciprocal

of the distance r to the bubble (Batchelor 1967, section 4.9). For a clean and spherical bubble at

large Reynolds number, the vorticity remains confined in a thin boundary layer and a wake, the

thicknesses of which decrease as Re−1/2 and Re−1/4, respectively (Moore 1963). The potential

flow theory therefore gives a good approximation of the flow disturbance, which decays as r−3.

However, because large–Reynolds number bubbles are in general not spherical and their interface

is often contaminated by surfactant, a significant wake develops behind them (Brücker 1999,

Ellingsen & Risso 2001). The mean velocity disturbance in a wake decays with the vertical distance



z to the bubble as z−1 in the laminar regime (Batchelor 1967, section 5.12) and as z−2/3 in the

turbulent one (Tennekes & Lumley 1972, section 4.2).

The flow regime around each bubble thus determines the range of hydrodynamic interactions

between bubbles and is of major importance for the dynamics of bubbly flows. A first approximation

of the liquid agitation generated in a swarm of bubbles can be sought by neglecting hydrodynamic

interactions. Let us consider that the bubble locations are statistically independent from each

other and that the liquid velocity in a given location is simply the addition of the flow disturbances

induced by each individual bubble. In the Stokes regime, Caflisch & Luke (1985) demonstrated

that these assumptions led to an increase without bound of the liquid velocity variance as the

size of the swarm increased. Koch & Shaqgeh (1991) showed that a finite variance was obtained

if the distribution of the dispersed phase reflected a net deficit in the vicinity of each bubble.

Experimental investigations of a homogeneous bubble swarm at low to moderate Reynolds number

(1 ≤ Re ≤ 50) conducted by Cartellier & Rivière (2001) and Cartellier et al. (2009) showed the

independence of the liquid velocity variance with the size of the bubble swarm and confirmed the

existence of a deficit in the bubble distribution near the bubbles. For large–Reynolds number flows,

if the flow is assumed to be potential, the addition of independent bubble disturbances allows one

to obtain finite values for the variances of the three components of the liquid velocity fluctuations

as well as their cross-correlations (Biesheuvel & van Wijngaarden 1984, Lance & Bataille 1991)

thanks to the fast decay of the disturbance. However, the addition of individual wakes, decreasing

as either z−1 or z−2/3, leads again to a diverging variance (Parthasarathy & Faeth 1990). Because

wakes are the rule rather than the exception, knowledge of the flow disturbances generated by

noninteracting bubbles is therefore of little relevance to the description of large–Reynolds number

bubbly flows.

Risso & Ellingsen (2002) experimentally investigated the flow disturbance around a bubble

immersed in a homogeneous swarm of bubbles for a Reynolds number of 770 and gas volume

fractions ranging from 0.5% to 1%. Figure 3b shows the evolution of the maximum velocity

disturbance with the vertical distance to the bubble for both an isolated bubble (α = 0) and a

test bubble belonging to a bubble swarm (α = 0.5%). In the close vicinity of the test bubble

(−1 ≤ z/d ≤ 2.5), the flow is similar to that of an isolated bubble, potential above it (z < 0), and

dominated by the wake behind it. For z/d ≥ 2.5, in contrast with the wake of an isolated bubble that

slowly decreases with the distance, the wake of the test bubble is strongly attenuated until almost

vanishing at z/d ≈ 5, where the flow starts to be dominated by homogeneous fluctuations that

are independent of the presence of the test bubble. Roig & de Tournemine (2007) measured the

average wake behind a bubble within a homogeneous bubble swarm and found that it decreases

as exp(−z/Lw). Risso et al. (2008) showed that the exponential length of decay Lw was almost

independent of α and scaled as d/Cd. Moreover, from the investigation of the wake of solid

spheres, they found that this exponential decay was not due to an increase of the wake spreading

by turbulent diffusion, but rather resulted from interactions between the wakes, as Hunt & Eames

(2002) suggested.

Whereas at low to moderate Reynolds numbers (Re ≤ 50) the intensity of liquid fluctuations is

closely related to the microstructure of the bubble spatial distribution, at large Reynolds numbers

(Re ≥ 200) it is governed by wake interactions.

3. STATISTICAL PROPERTIES OF HIGH–REYNOLDS NUMBER
HOMOGENEOUS BUBBLE SWARMS

Following Lance & Bataille (1991), several teams designed and built experimental setups able to 
generate a homogeneous swarm of bubbles having all the same size (Zenit et al. 2001, Garnier
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et al. 2002, Risso & Ellingsen 2002, Rensen et al. 2005), usually by injecting bubbles by means of

arrays of calibrated capillary tubes. Various experimental techniques have been used, such as single

or multiple optical probes or high-speed imaging for the bubble phase, as well as laser doppler

anemometry, hot-film anemometry (HFA) or particle image velocimetry (PIV) for the liquid

phase. The presence of interfaces makes measurements much more difficult than in a single-phase

flow, disturbing measurements and limiting nonintrusive techniques based on optical imaging to

low gas volume fractions. Several solutions were proposed to overcome these limitations, such as

adding a small average liquid flow to allow HFA measurements (Garnier et al. 2002, Roig & de

Tournemine 2007), using a narrow tank to simplify the use of imaging methods (Zenit et al. 2001),

or making measurements below a bubble swarm to facilitate PIV (Riboux et al. 2010). In parallel,

swarms of a few tens of bubbles were investigated by means of direct numerical simulations

(DNS), first for small or moderate Re (Esmaeeli & Tryggvason 1999; Bunner & Tryggvason

2002a,b; Esmaeeli & Tryggvason 2005) and more recently for large Re (Roghair et al. 2011b,

2013).

Thanks to continuous efforts and despite the difficulty of comparing results obtained from

various methods, the main properties of BIA at large Re are now known. They depend on

three dimensionless numbers: the Reynolds number that determines the flow regime, the We-

ber number that governs the bubble shape, and the gas volume fraction that determines the

hydrodynamic interactions between bubbles. For a given fluid system, Re and We are gener-

ally varied by changing the bubble diameter, while α is adjusted by varying the inlet gas flow

rate.



3.1. Bubble Dynamics

We now describe the dynamics of the dispersed phase by considering the spatial distribution and 
velocity of the bubbles.

3.1.1. Spatial distribution of the bubbles. In a homogeneous bubble swarm, the average gas 
volume fraction is spatially uniform. This does not strictly imply that the probability of finding a 
bubble at a given location is independent of the position of the other bubbles. Due to hydrodynamic 
interactions, bubbles have a natural tendency to form clusters. DNS of the interaction between 
two spherical rising bubbles for 50 ≤ Re ≤ 500 indicate that the stable position is the side-by-

side configuration (Hallez & Legendre 2011). Horizontal bubble clusters were indeed observed in 
potential flow simulations (Smereka 1993, Yurkovetsky & Brady 1996, Sangani & Didwania 2006) 
and in DNS considering spherical bubbles at Re = 91.5 (Esmaeeli & Tryggvason 2005). However, 
for deformable bubbles at Re of the order of 100 or higher, such a strong clustering was observed 
neither in DNS (Esmaeeli & Tryggvason 2005, Roghair et al. 2011b) nor in experiments (Garnier 
et al. 2002, Roig & de Tournemine 2007, Riboux et al. 2010). Moreover, the statistical distributions 
of the time intervals between two consecutive bubbles passing at a given point were found to follow 
a Poisson distribution for homogeneous bubble swarms from Re = 600 to 800 and α = 0.5%

to 13% (Risso & Ellingsen 2002, Alméras et al. 2015), indicating that the bubble locations are 
independent of each other. From accurate measurement of the bubble pair density distribution, 
Martı́nez Mercado et al. (2010) nevertheless detected a preferential alignment in the vertical 
direction at Re = 1,000 for small gas volume fractions (0.28% ≤ α ≤ 0.74%), which induced long-

range correlations (≥20d ) between the bubble locations. This phenomenon is probably related to 
a mechanism of wake entrainment similar to that revealed by the DNS of Bunner & Tryggvason 
(2003) for deformable bubbles at moderate Re. The presence of such long-range correlations 
suggests that the homogeneous swarm was not stable and that a small mean vertical stream was 
present in the region of measurement. It is also worth mentioning that strong clusters have been 
observed in more complex situations such as in a confined geometry (Figueroa-Espinoza & Zenit 
2005), close to a wall in the presence of surfactant (Takagi et al. 2008), or in non-Newtonian 
liquids (Vélez-Cordero et al. 2014).

In summary, it can be concluded that no significant clustering is present in homogeneous

swarms of nonspherical bubbles rising at large Re. When clusters develop, the homogeneous

configuration becomes rapidly unstable and large-scale flows develop. Assuming that the bubble

positions are independent of each other is therefore reasonable to derive models of BIA. Because

several clustering mechanisms exist, we can wonder why stable bubble columns can be observed

at void fractions as large as 30%. In potential flow simulations (Smereka 1993, Yurkovetsky &

Brady 1996), it was shown that a significant agitation of the bubbles can prevent the formation of

clusters. For large-Re bubbles, the self-induced motions of the bubbles resulting from the wake

instability probably constitute the major mechanism that opposes the formation of clusters.

3.1.2. How collective effects influence the bubble velocity. All experiments reveal that the 
mean rise velocity 〈V 〉 of the bubbles in a homogeneous bubble swarm is lower than that deter-

mined in the case of an isolated bubble [by about 30% at α = 15% (Colombet et al. 2015)]. Its 
value has been found to be a decreasing function of the gas volume fraction for a wide range of α
(0.5% � α � 35%) and Re (10 � Re � 1,000) in experiments (Zenit et al. 2001, Garnier et al.

2002, Martı́nez Mercado et al. 2007, Roig & de Tournemine 2007, Riboux et al. 2010, Colombet

et al. 2015), as well as in DNS (Roghair et al. 2013). The decrease of 〈V 〉 is generally attributed to a

hindrance effect resulting from the counterflow generated between the bubbles in order to balance
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the flow entrained in the vicinity of each bubble. Even though several empirical correlations have

been proposed (Roghair et al. 2011a, 2013), so far no theory exists to predict the evolution of 〈V 〉
with α.

Whereas measurements of the average bubble velocity are rather robust, determining the bub-

ble velocity fluctuations is tricky. At very low gas volume fraction (α ≤ 1%), accurate measure-

ments of bubble velocity fluctuations have been achieved by means of particle-tracking velocimetry

(PTV) (Martı́nez Mercado et al. 2010). PTV can be additionally used at larger gas volume fractions

(α ≤ 15%), but in this case, it will be limited to measurements performed in the vicinity of a wall

(Colombet et al. 2015). Experiments conducted at large Re and low α show that horizontal fluctua-

tions are much more intense than vertical ones and that their probability density functions (PDFs)

follow a non-Gaussian distribution with exponential tails. These fluctuations are dominated by

wake-induced path oscillations and are similar to those of an isolated bubble. A double optical probe

is commonly used to address a large range of gas volume fractions. It records the propagation time

τop of the bubble interfaces between two points separated by a distance δop in the vertical direction

(Kiambi et al. 2003). Dividing δop by τop gives a velocity sample vop. For a bubble of constant shape

and orientation rising on a straight vertical path, vop corresponds to the vertical component of the

bubble velocity. For a deformed bubble following an oscillatory path, vop also includes contribu-

tions of the horizontal component of the velocity as well as the rotation rate. Even though vop is

not perfectly defined, its standard deviation v′
op can be used to characterize the global agitation of

the bubbles. Surprisingly, v′
op is observed to be almost independent of α when 0 ≤ α � 35% and

50 � Re � 1,000 (Martı́nez Mercado et al. 2007, Riboux et al. 2010, Colombet et al. 2015).

On the one hand, the average bubble velocity depends on the gas volume fraction and is sensitive

to local inhomogeneities of the bubble distribution. On the other hand, the intensity of the bubble

agitation remains mainly controlled by wake-induced path oscillations and is rather independent

of bubble interactions, even at significant gas volume fractions.

3.2. Liquid Dynamics

We now address the dynamics of the liquid phase by considering the energy, the PDFs, and the

spectra of the velocity fluctuations.

3.2.1. Energy of liquid fluctuations. At variance with bubbles, the agitation of the liquid reg-

ularly increases with the gas volume fraction, regardless of the values of the Reynolds or the 
Weber number (Martı́nez Mercado et al. 2007). For Re ≥ O(100), the variance of the liq-

uid velocity normalized by the square of the bubble rise velocity is observed to be roughly 
proportional to the gas volume fraction: 〈u2〉/〈V 〉2 = κα, where the proportionality coeffi-

cient κ is a decreasing function of Re. In this expression, the average bubble velocity 〈V 〉 is 
a function of α. It is therefore interesting to investigate how 〈u2〉 scales with the velocity of 
an isolated bubble 〈V 0〉, which corresponds to the limit case where α = 0. In agreement 
with the observations of Risso & Ellingsen (2002), various experiments (Martı́nez Mercado 
et al. 2007, Roig & de Tournemine 2007, Riboux et al. 2010) pointed out that the standard 
deviations of the vertical and horizontal liquid velocities are well described by the following 
expressions:

〈u2
x〉

1/2 = γx〈V 0〉α0.4, 1.

〈u2
z〉

1/2 = γz〈V 0〉α0.4. 2.

A linear superposition of the disturbances generated by the bubbles should lead to a linear

dependence of the fluctuating energy with α. The actual evolution of the energy as αn with a value



of n ≈ 0.8 significantly smaller than unity is attributed to nonlinear interactions between bubbles,

which may enhance the energy dissipation. From the work of Lance & Bataille (1991), many

studies confirmed that the energy of vertical fluctuations is larger than that of horizontal ones:

γz = 1.14 and γx = 0.76 for the case of a bubble of d = 2.1 mm rising in water (〈V 0〉 =320 mm s−1)

(Riboux et al. 2010).

It is important to mention that variance measurements only give a rough description of liq-

uid fluctuations. First, it is difficult to assess their accuracy because the variance depends sig-

nificantly on the largest velocity fluctuations that are localized in the vicinity of the interfaces,

where spurious measurements and lack of detections are common. Second, the variance only de-

scribes a small part of the statistical information when the fluctuations do not follow a Gaussian

distribution.

3.2.2. Probability density functions of liquid fluctuations. PDFs of BIA have been reported in 
several experimental works (Zenit et al. 2001; Risso & Ellingsen 2002; Rensen et al. 2005; Martı́nez 
Mercado et al. 2007, 2010; Riboux et al. 2010, Prakash et al. 2016). Figure 4 represents a typical 
example of PDFs of the vertical and horizontal liquid fluctuations measured in a homogeneous 
bubble swarm. The velocities have been normalized by the standard deviation of the fluctuations in 
the corresponding direction to facilitate the comparison between the various gas volume fractions. 
A semilogarithmic scale is used so that a linear evolution on the graph represents exponential 
behavior.

The vertical PDFs are clearly non-Gaussian. First, they are strongly asymmetric, with large

positive (upward) fluctuations more probable than large negative (downward) ones. Second, they

can be described as a succession of decreasing exponential evolutions, exp(−β |ui |), of different

slopes β. Positive fluctuations show a first rapid exponential decay with a large slope followed by
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Figure 4
Probability density functions of bubble-induced liquid fluctuations in (a) vertical and (b) horizontal velocities. Data taken from Riboux
et al. (2010). Abbreviations: α, gas volume fraction; PDF, probability density function.
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a slower exponential decay with a smaller slope at large fluctuations. Negative fluctuations show

similar behavior but the slower decay concerns only very rare events. Except for the fact that

they are symmetric, horizontal PDFs resemble vertical ones, with high exponential decreases for

small fluctuations followed by gentle ones at large fluctuations. When α varies, the central part of

both the horizontal and vertical PDFs remains almost unchanged, whereas the exponential tails

corresponding to large fluctuations are modified, as well as the velocity at which the transition

between the two different slopes occurs. This indicates that the small and large velocity fluctuations

are controlled by different mechanisms involving a different scaling.

3.2.3. Spectra, length scales, and timescales. A comprehensive description of liquid agita-tion 
requires the specification of the characteristic time and length scales of the flow. This in-

formation is generally obtained from the average spectra of the fluctuations, which are usually 
determined by taking the Fourier transform of a velocity signal. In bubbly flows, velocity sig-

nals are discontinuous, however, because of the interruptions by the bubble interfaces. There 
is therefore no straightforward definition of the velocity spectrum of bubble-induced liquid ve-

locity fluctuations. Different approaches have been used to deal with a continuous signal: filling 
the gaps by a smooth Gaussian function (Lance & Bataille 1991), considering only intervals 
between bubbles where the signal is continuous (Martı́nez Mercado et al. 2010, Roghair et al. 
2011b, Mendez-Diaz et al. 2013, Prakash et al. 2016), or investigating the flow just behind a 
rising swarm of bubbles (Riboux et al. 2010). Moreover, depending on the configuration and 
measurement technique, the considered velocity signals differ from one another in the different 
investigations. Most of the time, an average frequency spectrum is determined from the time series 
of liquid velocity samples that are acquired at a single point: Sometimes the probe is fixed and 
no mean liquid velocity is present (Martı́nez Mercado et al. 2010, Roghair et al. 2011b); other 
times, a uniform mean liquid velocity is imposed (Lance & Bataille 1991) or the probe is moved 
at constant velocity in the horizontal direction (Mendez-Diaz et al. 2013). Riboux et al. (2010) 
computed wave number spectra from spatial series of velocity samples regularly distributed on a 
line, which were obtained by PIV. If the Eulerian length scales that are obtained from a spatial 
spectrum are unambiguous, the interpretation of the timescales derived from frequency spectra is 
not evident and depends on the relative motion of the probes with respect to the liquid and the 
bubbles.

Nevertheless, two properties turn out to be independent of the method used to determine the

spectra. First, all experiments considering homogeneous bubble swarms observe a subrange where

the power spectral density evolves as the −3 power of either the frequency f or the wave number k,

for Reynolds numbers from a few tens to more than 1,000 and for Weber numbers on the order of

1 to 4. It is also found in DNS (Roghair et al. 2011b) or in large-eddy simulation (LES) in which

the bubbles wakes are resolved (Riboux et al. 2013), but not in simulations where the bubbles are

treated as point particles (Mazzitelli & Lohse 2009), which indicates that this peculiar spectral

behavior is related to the existence of wakes behind the bubbles. Second, when normalized by the

variance of the fluctuations, the power spectral density becomes independent of the gas volume

fraction (Lance & Bataille 1991; Riboux et al. 2010, 2013; Mendez-Diaz et al. 2013). This means

that, whereas the energy of the fluctuations increases with α, the characteristic scales of the flow

do not depend on α.

Figure 5 shows the evolution of the normalized longitudinal spectra of the vertical, Szz/〈u2
z〉, and

horizontal, Sxx/〈u2
x〉, liquid velocity fluctuations as a function of the reciprocal of the wavelength

λ = 2π/k, measured in a homogeneous swarm of 2.5-mm-diameter bubbles rising in water.

There are no significant differences between the vertical and the horizontal directions, and the

invariance of the normalized spectra with respect to α is observed for the whole available range
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Figure 5
Spectra of bubble-induced liquid fluctuations in (a) vertical and (b) horizontal velocities. Data taken from Riboux et al. (2010). The
limits Lc and lc of the k−3 subrange are indicated by vertical dashed lines. Gray lines show the −3 and −5/3 slopes.

of wavelengths. The k−3 subrange is observed for the wavelengths between lc = 2 mm and

Lc = 7.7 mm. It is followed at smaller scales by a k−5/3 subrange, which is probably the signature

of a classic turbulent inertial subrange. The final dissipative range, which is expected to depend

on α, is not observed because the measurement resolution is not sufficient.

Having established the structure of the spectra, it remains to establish their characteristic length

scales: the Eulerian integral length scale �, the limits Lc and lc of the k−3 subrange for the large

scales, and the Kolmogorov scale for the final dissipative range. The two scales that immediately

come to mind when seeking the characteristic lengths of a homogeneous bubble swarm are the

bubble diameter d and the average distance between the bubbles (π/6α)1/3d . The average distance

is clearly not compatible with the invariance with respect to α. Concerning the bubble diameter,

Riboux et al. (2010) did not find any significant difference between the spectra measured for

d = 1.6, 2.1, and 2.5 mm. They also remarked that the ratio between the bubble diameter and

the drag coefficient of a single rising bubble was almost constant for the three diameters they

considered: d/Cd ≈ Lc ≈ �/2. Because it was also found to be related to the length of the bubble

wake (see Section 2.2) and consistent with the experiments of Lance & Bataille (1991) where

d = 5 mm, d/Cd appeared to be a good candidate for the role of the characteristic length scale.

However, by considering a much larger range of Re and We, Mendez-Diaz et al. (2013) questioned

the relevance of d/Cd for the characterization of the large scales generated by BIA, especially for

Re < 500.

The dissipative scales are in general below the resolution of the experimental techniques im-

plemented in bubbly flows. But even if the corresponding spectral range is not available, the rate

of dissipation of the energy in a steadily rising bubble swarm is equal to the power of the buoyancy

force and can thus be determined from the relation ǫ = αg〈V 〉. It can also be measured from the

decay of the kinetic energy of the liquid fluctuations after the passage of a bubble swarm (Riboux

et al. 2010). Then the Kolmogorov microscale η can be estimated from the classic relation for



isotropic turbulence, η = (ν3/ǫ)1/4. For the case shown in Figure 5, η is found to decrease from

0.2 to 0.1 mm when α increases from 4.6% to 12%, evolving broadly as α−0.6.

4. PHYSICAL MECHANISMS OF BUBBLE-INDUCED AGITATION

4.1. The Two Causes of Bubble-Induced Agitation

Even if BIA represents only one element of the general picture of a bubbly flow (Figure 1), it

still involves two different contributions. The first one results from the flow disturbances gen-

erated in the vicinity of each bubble. The second one results from the turbulence that develops

when the flow through the swarm of bubbles becomes unstable beyond a certain Reynolds num-

ber. The different natures of these two contributions are easily understood by considering the

ideal situation where the flow disturbance induced by each bubble is steady and all bubbles are

moving at the same velocity. In a frame moving with the bubbles, the flow disturbances around

the bubbles generate random spatial variations but, contrary to turbulence, do not induce any

temporal fluctuations. It is only in the laboratory frame that both contributions generate tem-

poral fluctuations. In practice, bubble velocities fluctuate and it is not possible to define a frame

where the bubbles are fixed. Because they involve different mechanisms, the distinction between

these two kinds of fluctuations is nevertheless required in order to understand and model high-Re

BIA.

A few configurations make it possible to distinguish between the fluctuations induced by local

bubble disturbances and real turbulence. Bouche et al. (2012, 2014) investigated a homogeneous

swarm of quasi-two-dimensional (2D) bubbles confined in a Hele–Shaw cell whose gap (1 mm)

was much thinner than the bubble size (≈4 mm). The flow regime (Re ≈ 500) corresponds to

ellipsoidal bubbles rising on oscillatory trajectories, and the flow disturbance around each bubble

resembles that observed in an unconfined bubble swarm (potential flow above and next to the

bubble and an exponentially decaying wake behind it), although the cause of the exponential

decrease was the friction at the walls (Roig et al. 2012) rather than interactions between the

wakes of neighboring bubbles. Because turbulence cannot develop in such a confined geometry,

this configuration is an example of bubbly flow where BIA only results from individual bubble

disturbances. Confined bubbly flows are not a good model of 3D ones: Bubble interactions are

much stronger in two dimensions, and statistics of both the bubble and liquid velocities evolve

differently with the gas volume fraction. However, their PDFs show exponential tails and their

spectra exhibit a k−3 subrange, indicating that these two properties can be observed in the absence

of turbulent fluctuations.

Consider now a steady uniform flow that goes through a random swarm of fixed bubbles

with a homogeneous spatial distribution. The velocity fluctuations, u(x, t) = U(x, t) − 〈U〉, can

be decomposed by the combined use of spatial averaging, denoted by angle brackets, and time

averaging, denoted by an overbar (Risso et al. 2008):

u(x, t) = u(x) + u′(x, t) . 3.

On the one hand, the spatial fluctuation u(x), which only depends on the spatial coordinate x,

corresponds to the contribution of the individual bubble disturbances. On the other hand, the

temporal fluctuation u′(x, t), which still depends on both the time t and the location x, accounts

for the turbulence. The variances of the total fluctuation u(x, t) are the sum of the variances of

these two contributions:

〈u2〉 = 〈u2〉 + 〈u′ 2〉. 4.
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Fields of vertical velocity in a vertical plane computed by large-eddy simulation (Riboux et al. 2013). The total fluctuation (a),
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z(x, t), has been decomposed into its (b) spatial fluctuation uz(x) and (c) temporal fluctuation u′
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Riboux et al. (2013) first investigated by means of LES the flow of water through a random swarm

of air bubbles (Figure 6). Each bubble was modeled as a fixed source of momentum that was

distributed over a few mesh sizes. Because the grid spacing was of the order of the bubble diameter,

scales smaller than a bubble were not resolved, and the simulated flow therefore essentially resulted

from large-scale interactions between the bubble wakes. In addition, the flow through a random

array of fixed solid spheres was investigated experimentally (Amoura 2008, Risso et al. 2008,

Amoura et al. 2017).

Figures 7 and 8 show the PDFs and the spectra of the total spatial and temporal fluctuations

computed by LES or measured in a random array of spheres, as well as the total fluctuation

measured in a real bubble swarm. It is worth mentioning that the ratios of the vertical to the

horizontal total fluctuations differ according to the configuration:
√

〈u2
z〉/〈u2

x〉 ≈ 1.5 in the real

bubble swarm, 2.4 in the array of spheres, and 3 in the LES. Oscillatory motions of the bubbles

are responsible for a more efficient energy redistribution between the velocity components, which

probably explains the larger anisotropy observed for fixed bubbles or spheres. In Figure 7, each

velocity fluctuation has been normalized by the standard deviation of the total fluctuation of

the corresponding velocity component, in order to improve comparisons of the PDF shape in

the different situations. In Figure 8, the spectrum of each contribution has been normalized by

using its own variance and the integral length scale of the temporal fluctuation. Given the coarse

resolution of the LES and the differences between solid spheres and bubbles, the PDFs and the

spectra of the normalized total fluctuations in the two idealized flows are in remarkable agreement
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with those of a real bubble swarm. Whereas the energy of the fluctuations depends on the nature of

the dispersed phase and on the fluctuating motions of the bubbles, the structure of the fluctuations

mainly results from large-scale interactions between wakes.

Let us distinguish now the contributions of the spatial and temporal fluctuations. The PDF

of the spatial fluctuation in the vertical direction is dominated by a long tail corresponding to
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(a–c) Normalized spectra of bubble-induced liquid fluctuations decomposed into their different contributions. Red lines indicate
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large upward fluctuations. The PDF of the horizontal spatial fluctuation and the PDFs of the

temporal fluctuation in both directions are symmetric and well described by an exponential law,

exp(−β | ui |). The temporal fluctuations are isotropic and have a slope β larger than that of

the horizontal spatial fluctuation. In the vertical direction, the total fluctuation is dominated

by the temporal contribution at moderate fluctuations and by the spatial contribution at large

positive fluctuations. In the horizontal direction, the total fluctuation is dominated by the temporal

contribution at moderate fluctuations and by the spatial contribution at large fluctuations. As can

be seen in Figure 4, the spatial contribution starts to dominate the PDFs for increasingly lower

velocity fluctuations as the gas volume fraction increases. The succession of exponential decays

with different slopes in the PDFs of the total fluctuation therefore results from the combination of



the spatial and temporal fluctuations. Regarding the spectra, the spatial contribution dominates at

large scales, whereas the temporal contribution dominates at small scales, but both contributions

generate a k−3 subrange.

4.2. Interpretation and Modeling

Thanks to investigations of the flow through a random array of obstacles, the main features of

the PDFs and the spectra of the total fluctuations have been attributed either to individual bubble

disturbances (spatial fluctuations) or to fluctuations resulting from the flow instability (temporal

fluctuations). We discuss now the underlying mechanisms.

4.2.1. Flow disturbances generated by the bubbles. The simplest way to model the fluctu-

ations induced by individual bubble disturbances is to linearly superimpose them. The bubbles 
are randomly distributed over space and their positions are assumed to be independent of each 
other. Then, the liquid velocity at a given point is computed as the sum of the flow disturbances 
generated by each bubble. This requires a realistic model of the flow around a bubble. Such an 
approach was first implemented by considering the potential flow around a bubble (Biesheuvel 
& van Wijngaarden 1984, Lance & Bataille 1991) and the wake of an isolated bubble, which 
was truncated to avoid the divergence of the energy (Parthasarathy & Faeth 1990). As seen in 
Section 2.2, the flow around a bubble immersed in a bubble swarm is potential above and next 
to the bubble, but involves a wake that is exponentially attenuated by interaction with the wakes 
of the neighboring bubbles and is almost constant for α = 0.5–10%. Risso (2016) considered 
the sum of (a) the potential flow around a spheroidal bubble of aspect ratio ξ and (b) a vertical 
disturbance generated by a Gaussian wake that exponentially decays with the vertical distance to 
the bubble: uz = exp(−z/L) exp (−(x2 + y2)/w2), where L and w are the characteristic length and 
width of the wake, respectively. The PDFs of the fluctuations were then computed from samples of 
randomly chosen bubble locations. Given d , ξ , 〈V 〉, an d α, it turns out that the PDFs only depend 
on the wake volume Lw2, which can be fitted on the experimental PDFs of the total fluctuation 
measured in a homogeneous bubble swarm by considering the large positive vertical fluctuations, 
which have been shown to be controlled by the spatial fluctuation. In practice, the value of Lw2

is independent of α but is obtained with better accuracy for a gas volume fraction around 4% at 
which the spatial fluctuations are probable enough. Figure 7c,d shows the PDFs computed with 
this model together with the PDFs of the spatial fluctuations computed by LES or measured in an 
array of spheres. In the vertical direction, large positive fluctuations are dominated by the bubble 
wakes, whereas rare large negative fluctuations are due to the potential flow. In the horizontal 
direction, the wake contribution is negligible and the exponential tails are due to the potential 
contribution.

We can also wonder what the spectral signature of a population of velocity disturbances ran-

domly distributed over space is. Considering that the disturbances have a smooth pattern, that

their magnitude and size are statistically independent, and that their size is uniformly distributed

between two finite lengths Lmin and Lmax, it has been demonstrated that the spatial spectrum

follows a k−3 law for wavelengths in the range from Lmin to Lmax (Risso 2011).

The main features of the PDFs and the spectra of the spatial fluctuations can thus be reproduced

by the linear superimposition of independent individual disturbances.

4.2.2. Turbulence induced by the bubbles. Having regarded the properties of the temporal 
fluctuations in a flow through a random array of fixed obstacles, Risso (2016) proposed to describe 
the PDF of the turbulent contribution to the fluctuations in a real bubble swarm by an exponential



function:

ft(u
′) =

√
2

2σt

exp

(

−
√

2 | u′ |
σt

)

, 5.

where σt = (α/0.01)0.4vt. Assuming that bubble-induced turbulence is isotropic, Equation 5 is

used for all the velocity components with the same standard deviation σt. The value of vt can

be deduced from the slope β of the first exponential decay of the horizontal total fluctuations at

low α, which has been shown to be dominated by the temporal fluctuation. Figure 7e, f shows

these model PDFs for a value of vt that has been measured from experimental total fluctuations

at α = 0.34%. They reasonably collapse with the temporal fluctuations computed from LES with

bubbles or measured in experiments with fixed solid spheres.

The interest of this model is to extract the turbulent contribution from the total fluctuation

measured in real bubble experiments. However, it cannot help us much to interpret the mech-

anisms of bubble-induced turbulence and the reason for the exponential PDFs and k−3 spectral

subrange. LES of the flow through a population of fixed bubbles (Riboux et al. 2013) provides

some additional clues. First, whereas the flow that is computed by considering a single bubble

remains stationary, the flow that is computed with a population of bubbles reveals temporal fluc-

tuations. Second, significant fluctuations are not localized in the bubble wakes but rather are

distributed in a homogeneous way across space (Figure 6). Third, the average frequency spec-

trum of the fluctuations, which is obtained from a Fourier transform of the time evolutions of

the liquid velocity at a given position, shows that the energy density is concentrated around a

frequency fc = 0.14〈V 〉/d . At low α and moderate Re, the spectrum presents a sharp peak at fc,

which broadens when the energy of the fluctuations is increased by increasing either α or Re. The

authors conclude that temporal fluctuations are the result of a collective instability of the flow

involving nonlinear interactions between bubble wakes.

Lance & Bataille (1991) considered the energy balance in the spectral space. In a statistically

steady and homogeneous state, the power spectral density E of the turbulent fluctuations is related

to the energy production � and to the energy transfer T between the wave numbers by

2νk2 E = T + �. 6.

They considered that the turbulent fluctuations were localized within the bubble wakes where they

were both produced and dissipated. Assuming that the production only depends on the dissipation

rate ǫ and on the wave number k, dimensional considerations lead to � ∝ ǫk−1. Inserting this

expression into Equation 6 and neglecting T , they obtained a spectrum in k−3:

E ∝
ǫk−3

2ν
. 7.

Due to the results of LES in which the scales smaller than the wakes are not resolved (Riboux et al.

2013) and to the fact that a k−3 subrange has been observed in experiments for scales larger than

d (Riboux et al. 2010), the assumption that turbulence is localized within the wakes is invalidated.

However, the assumption that � and T depend only on ǫ and k is less restrictive and still leads to

Equation 7.

Now, recall that the spectrum is invariant with respect to α when normalized by the variance

〈u′2〉 of the fluctuation and the integral length scale �. In particular, this implies the following

relation for the k−3 subrange:

E

〈u′2〉�
∝ (�k)−3. 8.



Equating Equations 7 and 8 yields

ǫ ∝
ν〈u′2〉
�2

, 9.

where � appears as a kind of Taylor scale for the k−3 subrange. Taking into account that ǫ = αg〈V 〉
and 〈u′2〉 ∝ α〈V 〉2 finally leads to the following scaling for �:

� ∝

√

ν〈V 〉
g

∝
d

√
Cd Re

. 10.

The interest of this relation is that it can be tested in experiments or simulations to assess the

validity of the assumptions leading to Equation 7. For the experiments of Riboux et al. (2010),

taking the values of Re and Cd corresponding to an isolated bubble, Equation 10 leads to the same

value of � for the three investigated bubble diameters, which is in agreement with the observations.

Note that for these particular bubble sizes, Cd was almost proportional to Re, which explains why

the scaling � ∝ d/Cd proposed by the authors was also in agreement with the experiments. In

Figure 8d, the various scalings for � have been compared to the results obtained in an random

array of fixed spheres for various Re by estimating Cd by the Schiller and Naumann relation for an

isolated solid sphere. It turns out that Equation 10 gives the correct evolution of �, whereas d or

d/Cd do not. Comparisons with other investigations covering a broader range of parameters are

nevertheless required to reach a definitive conclusion regarding the validity of Equations 7 and 10.

4.2.3. Total fluctuation. Distinguishing the contribution of individual bubble disturbances from 
that of turbulence proved useful so far. However, the question of how they combine together to 
constitute the total BIA remains.

Risso (2016) assumed that a fluctuation sample at given instant and location was the sum

of the contribution of individual bubble disturbances and of that of turbulent fluctuations. The

first contribution was computed by considering a random distribution of the bubbles around the

measurement point. The second was computed by randomly choosing a realization of a random

variable following the probability density defined by Equation 5. Assuming that both contributions

were statistically independent, a statistically representative ensemble of samples of total fluctua-

tions was obtained. The PDFs were compared to experimental results by independently adjusting

the values of the wake volume Lw2 and of the reference turbulent velocity vt, as described in

Sections 4.2.1 and 4.2.2. Figure 7a,b shows the model PDFs for α = 1.7%. The model turned

out to describe well the evolution with the gas volume fraction of the experimental PDFs for

α = 0.3–8% without any further parameter adjustment. Therefore, it can be used to estimate

the relative contribution of each kind of fluctuation in a real bubbly flow. It is worth noting that

the assumption of statistical independence of the two contributions is in conflict with turbulent

fluctuations localized within bubble wakes. However, it is compatible with turbulent fluctuations

resulting from the interactions between the bubble wakes. It is also consistent with the fact that

significant temporal fluctuations were found outside the wake in LES results (Figure 6c).

With regard to the spectra, both contributions follow a k−3 power law in the range of wave-

lengths where they are likely to have comparable intensity. This is probably the reason why a k−3

subrange is observed for such a wide range of Reynolds numbers. But it does not provide any clues

about a possible interaction between the two contributions.

5. CONCLUDING REMARKS AND PROSPECTS

The statistical properties of the agitation induced by a homogeneous swarm of bubbles rising at
large Reynolds number (Re ≥ 100) are now rather well known.  



The average velocity of the bubbles within a bubble swarm is lower than that of an isolated

bubble and decreases as the gas volume fraction increases. This phenomenon is attributed to a

hindrance mechanism caused by the return flow required to balance the flow entrainment by the

bubbles. From a theoretical point of view, it is not well understood and presently no universal model

has been developed to describe it. The wake of a bubble is usually unstable because of the interface

deformation or the presence of surface-active contaminants. The bubble velocity fluctuations are

generally dominated by wake-induced path oscillations, and their variance is weakly dependent

on the gas volume fraction.

In contrast, the variance of the liquid velocity fluctuations increases almost proportionally to

the gas volume fraction. BIA involves two kinds of fluctuations. The first one results from the

flow disturbance induced by each bubble, which weakly depends on α, and it involves both a

potential contribution and a strongly attenuated wake. It is the main cause of anisotropy and

generates the fluctuations with the greatest intensity and of the largest scales. It is responsible for

the exponential tails on the sides of the PDFs and produces a k−3 spectral subrange. The second

kind of fluctuation is the turbulence that results from the instability of the whole flow. It is almost

isotropic and weakly correlated to the bubble positions. It is responsible for the central exponential

parts of the PDFs and also generates a k−3 spectral subrange. It is worth noting that all of these

characteristics are rather independent of the exact nature of the dispersed phase (solid spheres or

bubbles) and of whether the bubbles are moving relatively to each other or not. This is not the case

for the variance of the fluctuations and the ratio of anisotropy, which depend on the precise details

of the configuration. Whereas the fluctuations induced by individual bubble disturbances are now

well understood, the mechanism driving the turbulence production still needs to be elucidated. A

first direction for future research is to achieve a definitive determination of the characteristic scale

of the k−3 subrange, wherein energy is continuously injected by the bubbles. Another promising

direction is the numerical investigation of a random array of interacting wakes: in particular, the

study of the flow stability and the analysis of the energy budget in the spectral domain.

Two other issues that are important both from a fundamental point of view and for applica-

tions are how BIA mixes up a tracer and how it influences interfacial mass transfer. Alméras et al.

(2015) experimentally investigated the mixing of a low-diffusive dye in a homogeneous swarm of

air bubbles (d = 2.1 mm) rising in water. It turns out that, at a scale of few bubble diameters, it

can be described by an anisotropic regular diffusion process, with a more efficient diffusion in the

vertical direction than in the horizontal one. The diffusion coefficient Di in direction i was found

to be the product of the variance of the fluctuations in the considered direction and of a timescale

TD: Di = 〈u2
i 〉TD. At low gas volume fraction, TD corresponds to the correlation time of the BIA

(TD ∝ �/〈u2
i 〉1/2) and Di increases as α1/2. At larger α, TD is given by the time interval between two

consecutive bubbles at a given location, and Di converges towards a value independent of α. It thus

appears that the mixing can be related to the characteristics of the BIA. Colombet et al. (2015) inves-

tigated the mass transfer between the bubbles and the liquid in a similar configuration where the

concentration of dissolved gas was homogeneous in the whole flow. Under these conditions,

the transfer mainly occurs at the front of the bubbles where the mean flow is potential. Moreover,

the smallest scales of the BIA are much larger than the thickness of the diffusion layer at the bubble

interface. For these reasons, the rate of mass transfer is unaffected by the BIA and remains close

to the value corresponding to a single rising bubble, up to a gas volume fraction of 30%. Future

research should address the cases where large-scale mixing and mass transfer occur simultaneously.

The next important challenge is to understand how BIA interacts with SIT. A first promising

way is the one highlighted by Prakash et al. (2016). It consists of injecting a homogeneous bubble

swarm into grid-generated turbulence. It has already been shown how the specific properties of

BIA, such as the exponential tails of PDFs, emerge when the ratio between the intensity of BIA



and that of SIT is increased. Future research should consider varying the integral length scale of

SIT relative to that of BIA in order to change the overlap between the k−3 subrange of BIA and the

k−5/3 inertial subrange of SIT. Varying both the relative intensity and length scales is probably a

relevant method to reveal the coupling between the two sources of fluctuations. A second important

phenomenon is the interaction between BIA and buoyancy-driven flows caused by gradients of

the gas volume fraction. This could be investigated by considering a bubble column at the bottom

of which we can impose a gas injection gradient (Alméras 2014). At uniform gas injection, the

bubble column is stable and homogeneous. From a certain inlet gradient, large-scale circulations

are first observed. Then, while the inlet gradient further increases, fluctuations of lower and lower

scales develop, eventually leading to a classic turbulent cascade. This configuration should thus

make it possible to study of the transition from a situation where the fluctuations resulting from

the buoyancy-driven flow only concern scales that are much larger than those of BIA to a situation

where the spectra overlap.
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