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1Centre for Logic, Epistemology and the History of Science (CLE)

University of Campinas – UNICAMP, Campinas, SP, Brazil
2Department of Philosophy – Institute of Philosophy and the Humanities (IFCH)

University of Campinas – UNICAMP, Campinas, SP, Brazil
3School of Arts, Sciences and Humanities (EACH)

University of São Paulo (USP), São Paulo, SP, Brazil

E-mail: rafaeltesta@gmail.com; coniglio@cle.unicamp.br; marciomr@usp.br

July, 2017

Abstract

Two systems of belief change based on paraconsistent logics are intro-
duced in this paper by means of AGM-like postulates. The first one,
AGMp, is defined over any paraconsistent logic that extends classical
logic such that the law of excluded middle holds w.r.t. the paraconsis-
tent negation. The second one, AGM◦, is specifically designed for para-
consistent logics known as Logics of Formal Inconsistency (LFIs), which
have a formal consistency operator which allows to recover all the classi-
cal inferences. Besides the three usual operations over belief sets, namely
expansion, contraction and revision (which is obtained from contraction
by the Levi identity), the underlying paraconsistent logic allows us to de-
fine additional operations involving (non-explosive) contradictions. Thus,
it is defined external revision (which is obtained from contraction by the
reverse Levi identity), consolidation and semi-revision, all of them over
belief sets. It is worth noting that the latter operations, introduced by
S. Hansson, involve the temporary acceptance of contradictory beliefs,
and so they were originally defined only for belief bases. Unlike to pre-
vious proposals in the literature, only defined for specific paraconsistent
logics, the present approach can be applied to a general class of paracon-
sistent logics which are supraclassical, thus preserving the spirit of AGM.
Moreover, representation theorems w.r.t. constructions based on selection
functions are obtained for all the operations.

Keywords: Paraconsistent belief revision, AGM belief revision, paraconsis-
tency, belief change, logics of formal inconsistency, contradiction.
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1 Introduction

Belief Revision studies the dynamics of agents’ epistemic states. The most in-
fluential paradigm in this area of study is the AGM model, introduced by C.
Alchourrón, P. Gärdenfors and D. Makinson [1], in which epistemic states are
represented as theories – considered simply as sets of sentences closed under
logical consequence. Three types of epistemic changes (or operations) are con-
sidered in this model: expansion, the incorporation of a sentence into a given
theory; contraction, the retraction of a sentence from a given theory; and revi-
sion, the incorporation of a sentence into a given consistent theory by ensuring
the consistency of the resulting one.

From the definition of revision the role of consistency in AGM can be per-
ceived. This role is grasped by the so-called principle of consistency. The reason
for this is that the underlying logic is supraclassical (that is, it is an expansion
of propositional classical logic) and therefore satisfies the explosion principle. If
explosion holds, given a negation ¬ in a logic L, from a contradiction {β,¬β}
any sentence may be derived in L. Such negation is called an explosive one. In
this case there is only one inconsistent belief set, namely the whole language, so
that given an inconsistent belief set all distinctions are lost.

This means that the belief system must dismiss contradictions in all op-
erations. But this is not how cognitive agents behave in practice. It can be
argued that real agents can accept contradictory statements without believing
everything and losing all the distinctions (see, for instance, [7], [17] and [18,
chapters 7 and 8]). In order to circumvent explosion, and define a more realistic
model of belief revision, it is possible to weaken the logical closure minimally by
assuming a non-explosive negation, i.e. a paraconsistent one. There are some
investigations in the literature in this direction, which we briefly describe below
(see [29] for a survey on AGM systems of belief change based on non-classical
logics, including paraconsistent logics).

G. Restall and J. Slaney [20], based on the four-valued relevant logic of
first-degree entailment, define an AGM-like contraction without satisfying the
recovery postulate. As usual, revision is defined from contraction by the Levi
identity. Based on the same logic, A. Tamminga [23] proposes a belief change
system which uses finite representations of epistemic states, and which can
deal with contradictory beliefs. Additionally, he analyzes the subject of be-
lief change from the epistemological point of view. Also based on a four-valued
logic (namely, the related Belnap and Dunn’s logic), S. Chopra and R. Parikh
[5] propose a model for belief revision that preserves an agent’s ability to answer
contradictory queries in a coherent way. In a conceptual paper, N. da Costa and
O. Bueno [7] suggest a slight modification of the AGM postulates in order to deal
with paraconsistent logics, in particular da Costa’s C-systems Cn (for n ≥ 1).
E. Mares [16] developed a model in which an agent’s belief state is represented
by a pair of sets. One of these is the belief set, and the other consists of the
sentences that the agent rejects. A belief state is coherent if and only if the
intersection of these two sets is empty, i.e. if and only if there is no statement
that the agent both accepts and rejects. In this model, belief revision preserves
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coherence but does not necessarily preserve consistency. G. Priest ([19] and [18,
Chapter 8]) and K. Tanaka [24] suggested that, under a paraconsistent logic,
revision can be performed just by adding sentences without removing anything.
That is, revision could be defined as a simple expansion. Moreover, the ques-
tion of defining an AGM-like revision operator for paraconsistent logics which
differs from expansion is considered as an open problem in [11]. Furthermore,
Priest [19] pointed out that in a paraconsistent framework, revision on belief sets
can be performed as external revision, defined with the reversed Levi identity as
suggested by S. Hansson [13] for bases. However, this idea was not technically
developed.

The present paper goes further in this direction, by effectively defining such
revisions with full technical details by means of an AGM-like system called
AGMp. This belief change system can be defined not only for a specific para-
consistent logic (as in the previous approaches in the literature), but for any
paraconsistent logic extending classical logic (thus being faithful to the supra-
classicality desideratum of AGM) in which the paraconsistent negation satisfies
the law of excluded middle. A second AGM-like system for belief change, called
AGM◦, is also introduced in this paper. It is specifically designed for the class
of paraconsistent logics called Logics of Formal Inconsistency (LFIs) [4, 3, 2],
in which a consistency operator ◦ allows to recover all the classical inferences
(including the explosion law) within the logic, in a controlled way. Given that
both AGMp and AGM◦ are based on paraconsistent logics, they allow us to
give a precise account of external revision for belief sets. Recall that the ex-
ternal revision, based on the reverse Levi identity, was proposed by Hansson
in [13] only for belief bases (that is, sets of formulas which are not closed by
logical consequences). Finally, additional change operations (consolidation and
semi-revisions) proposed by Hansson in [14] to deal with belief bases are also
extended to belief sets. These constructions can be applied to belief sets over
any supraclassical paraconsistent logic (as the ones considered for AGMp) in
which at least one contradiction (w.r.t. the paraconsistent negation) is not a
theorem, which is quite a reasonable assumption. The richness of the language
of the logics considered in this paper (in which there are two negations, a para-
consistent one and a classical one) allows us to consider two Levi identities
(one for each negation), enlarging even more the expressive power of the two
proposed paradigms. In particular, all the constructions can be applied to the
LFIs studied in [4, 3, 2], which are decidable. Some of these logics are 3-valued
and so it is possible to construct systems of belief change over them with po-
tential concrete applications. It is important to notice that all the belief change
operations presented in this paper are given by means of postulates, and fully
characterized by concrete constructions through representation theorems.

The structure of the paper is as follows: Section 2 introduces the classical
AGM model of belief change. Section 3 briefly discusses the Logics of Formal
Inconsistency (LFIs), the class of paraconsistent logics adopted in this paper.
The system AGMp is introduced in Section 4. The system AGM◦ is presented
in Section 5, in which the main features of LFIs play an important role. In
Section 6 the operations of consolidation and semi-revision, introduced by S.
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Hansson for belief bases, are extended to belief sets. In Section 7, AGMp and
AGM◦ are enlarged with a new revision operator defined by means of the Levi
indentity w.r.t. the classical negation, and some examples show that revision
does not necessarily collapse with expansion in a paraconsistent environment,
as suggested by some authors. Finally, some concluding remarks are given in
Section 8.

2 On AGM and Levi identities

The AGM model describes an idealized reasoner, called agent, with a family
of (potentially infinite) sets of beliefs closed under logical consequences, called
epistemic states. An agent can be a human, a computer program or any system
able to subscribe beliefs and whose behaviour can be expected to be rational (see
[9]). Those criteria can be summarized as follows (see, for instance, Gärdenfors
and Rott [10]):

logical closure Any sentence logically entailed by beliefs in an epistemic state
should be included in the epistemic state;

success (i) A sentence to be added is included in the outcome; (ii) A sentence
to be contracted is not included in the outcome;

consistency preservation Where possible, epistemic states should remain con-
sistent;

minimal change When changing epistemic states, loss of information should
be kept to a minimum.

Those criteria are used to define rationality postulates for each operation.
Together with these criteria, additional ones can be required, for instance

entrenchment Beliefs held in higher regard should be retained in favour of
those held in lower regard.

Besides presenting postulates, it is possible to define the operations construc-
tively. The result showing that certain explicit construction is fully characterized
by a set of postulates is central in AGM theory and is called representation theo-
rem. Once a representation theorem is proved one can examine the construction
by studying the postulates that characterize it and, in this way, the details of
implementation can be abstracted away.

As required in standard AGM, it is assumed that epistemic states are closed
under logical consequences. This presupposes the existence of an underlying
logic L. The logic L = 〈L, Cn〉, where L is its language and Cn is its logical
closure, is assumed to be tarskian, finitary and structural, that is, it is standard
(see Appendix). Additionally, it is assumed supraclassicality, that is, the logic
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is closed under all the cassical connectives, being so an expansion of proposi-
tional classical logic. Moreover, the (classical) implication connective → is still
deductive, i.e., it satisfies the deduction-detachment metatheorem:

α→ β ∈ Cn(X) if and only if β ∈ Cn(X ∪ {α}).1

As usual, a closed theory of L, that is, a set of formulas K such that K =
Cn(K) will be called a belief set. Following that notation, a sentence α is said
to be:

accepted if α ∈ K.

rejected if ¬α ∈ K.

indeterminate if α 6∈ K and ¬α 6∈ K.

Expansion is certainly the simplest operation and can be easily achieved by
the following equation:

K + α =def Cn(K ∪ {α})

The next subsections will briefly describe the more interesting operations of
classical AGM, namely contraction and revision.

2.1 AGM contraction

In this section, the standard AGM postulates for contraction and a construction,
called partial meet contraction, are presented. Both were originally presented in
[1].

Contraction consists in the retraction of a belief-representing sentence α
from K so as to ensure that: (i) the input in the new epistemic state K ÷ α
should not be accepted, and (ii) the change should ensure minimal change –
the fourth rationality criterion presented above. In order to achieve consistency
preservation, contraction should retract some other sentences – namely those
that entail α. To guarantee minimal change, this operation depends on extra-
logical compounds for deciding which previous beliefs should be retracted – the
entrenchment rationality criterion.

The minimal change criterion, although it is consensus, depends on the
exact interpretation of “minimal”. But this is far from a consensus view. There
are several heuristics in order to measure the loss of information, as well as
different postulates (to be presented below) intending to capture the intuition
of information lost in different ways. The main reason for this debate is the fact
that the logical form of the operations are not enough to express what must be
abandoned in a belief change. Thus, as noted by Gärdenfors [9], extra-logical
information is needed.

Let L be a logic as mentioned at the beginning of this section. The (basic)
postulates for AGM contraction are the following:

1Note that, by adding rules to a logic which have a deductive implication→, in the resulting
logic the implication→ could be non-deductive. Of course this never happens with axiomatic
extensions. This is why we use in the general case the term ‘still’.
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Definition 2.1 (Postulates for AGM contraction) An AGM contraction
over L is a function ÷ : Th(L) × L −→ Th(L) satisfying the following pos-
tulates:

(÷closure) K ÷ α = Cn(K ÷ α).2

(÷success) If α /∈ Cn(∅) then α /∈ K ÷ α.

(÷inclusion) K ÷ α ⊆ K.

(÷relevance) If β ∈ K \ (K ÷ α) then there exists X such that K ÷ α ⊆
Cn(X) ⊆ K and α /∈ Cn(X), but α ∈ Cn(X) + β.

(÷extensionality) If (α↔ β) ∈ Cn(∅) then K ÷ α = K ÷ β

As a direct consequence of ÷relevance and ÷inclusion, it is immediate to see
that ÷ also satisfies the following postulate:

(÷vacuity) If α 6∈ K then K ÷ α = K.

Remark 2.2 The ÷relevance postulate was introduced by Hansson in [12]. In
the standard presentation of AGM, the ÷recovery postulate

(÷recovery) K ⊆ (K ÷ α) + α

is placed instead of ÷relevance. Among the AGM postulates for contraction,
÷recovery is the most controversial one. It guarantees that if α is contracted
from K then the new belief set K÷α should retain enough information from K so
that, if it is expanded by α, then it recovers every information from K. Despite
being an important minimality criterion, several authors criticizes ÷recovery
given its apparently strong assumption. However, as proved in [12], ÷recovery
is equivalent to ÷relevance in the presence of the other postulates, which is
arguably a much more intuitive property.

In [1] the authors present other two postulates, called supplementaries, con-
cerning contraction of sentences of the form α ∧ β. These will not be discussed
in this paper since they are not the focus of this work.

2.1.1 AGM partial meet contraction

The literature on belief revision advances several constructions for contraction
that satisfy the AGM postulates. Since we are interested in minimal modifica-
tions, as stated by the rationality criteria and captured by the postulates above,
the construction should capture that fact.

This can be noted by the explicit construction that defines a contraction.
We describe here the one introduced in [1], called partial meet contraction, con-
structed as follows:

2Rigorously speaking, this postulate is redundant since by definition the co-domain of the
function ÷ is Th(L). However, in order to keep closer to the classical AGM presentation, we
decide to maintain this postulate in all the operations presented here.
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1. Choose some maximal subsets of K (with respect to the inclusion) that
do not entail α.

2. Take the intersection of such sets.

The remainder of K and α is the set of all maximal subsets of K that do
not entail α. Formally the definition is the following:

Definition 2.3 (Remainder [1]) Let K be a belief set, and let α be a formula.
A set X ⊆ L is a maximal subset of K that does not entail α if and only if:3

(i) X ⊂ K.

(ii) α 6∈ Cn(X).

(iii) If X ⊂ X ′ ⊆ K then α ∈ Cn(X ′).

The set of all the maximal subsets of K that do not entail α is called the
remainder set of (K,α), and is denoted by K⊥α.

Observe that, if α /∈ K or α ∈ Cn(∅) then K⊥α = ∅ (the converse also
holds, see Corollary E in the Appendix). Typically K⊥α may contain more
than one maximal subset. The main idea constructing a contraction function
is to apply a selection function γ which intuitively selects the sets in K⊥α
containing the beliefs that the agent holds in higher regard (the beliefs more
epistemically entrenched). Such qualitative distinction between beliefs is the
extra-logical factor previously mentioned.

Definition 2.4 (AGM selection function) An AGM selection function in L
is a function γ : Th(L) × L −→ ℘(Th(L)) \ {∅} such that, for every K, α and
β:

1. γ(K,α) = γ(K,β) if (α↔ β) ∈ Cn(∅);

2. γ(K,α) ⊆ K⊥α if K⊥α 6= ∅;

3. γ(K,α) = {K} otherwise.

Observe that, if (α ↔ β) ∈ Cn(∅) then K⊥α = K⊥β, for any belief set K,
and so the notion of AGM selection function is well-defined.

The AGM partial meet contraction is the intersection of the sets selected by
the AGM selection function:

K ÷γ α =def

⋂
γ(K,α).

Notice that, if (α ↔ β) ∈ Cn(∅) then, by definition, γ(K,α) = γ(K,β), for
any belief set K. Being so, the ÷extensionality postulate holds for every partial
meet contraction operator.

The following classical result (as presented in [1]) holds:

3The usual definition requires in item (i) that X ⊆ K. We decided to slightly modify
item (i) by requiring instead that X ⊂ K.
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Theorem 2.5 (Representation for AGM contraction) An operation ÷ :
Th(L) × L −→ Th(L) satisfies the postulates of AGM contraction (see Defini-
tion 2.1) iff there exists an AGM selection function γ in L such that K ÷ α =⋂
γ(K,α), for every K and α.

2.2 AGM Revision

Relative to revision, the two major tasks of this operation are (i) adding the
new belief α to the belief set K (ii) ensuring that the resulting belief set K ∗α is
consistent (unless α is inconsistent itself).4 The first task can be accomplished
by expanding K by α, that is, K+α. The second can be accomplished by prior
contracting of K by the (explosive) negation of α, that is, K ÷ ∼α, recalling
that the underlying logic L is supraclassical. The composition of the mentioned
sub-operations gives rise to the following definition of revision (Levi Identity)
[15]:

Definition 2.6 (Internal revision defined by Levi identity) K ∗ α =def

(K ÷∼α) + α

Alternatively, as suggested by Hansson [13], the two sub-operations may take
place in reverse order (reverse Levi identity) but this latter is, classically, only
possible if the belief set is not closed under logical consequences (namely, belief
base theory).

Definition 2.7 (External revision defined by reverse Levi identity) K~
α =def (K + α)÷∼α

External and internal revision differ in their logical properties and neither
of them can be subsumed under the other. Intuitively, external revision by α
has an intermediate contradictory state in which both α and ∼α are accepted,
whereas internal revision has an intermediate non-committed state in which
neither α nor ∼α are accepted. Of course external revision lies outside the
scope of classical AGM for belief sets. In the next sections it will be shown how
to overcome this limitation by means of a paraconsistent negation.

Now, let us return to the standard AGM system, in which the (explosive)
negation of the underlying supraclassical logic L is denoted by ∼.

Definition 2.8 (AGM (internal) revision) An AGM revision over L is an
operation ∗ : Th(L)× L −→ Th(L) satisfying the following postulates:

(∗closure) K ∗ α = Cn(K ∗ α).

(∗success) α ∈ K ∗ α.

4Observe that, in the standard AGM model, a consistent belief set is a set K of sentences
closed by logical consequences, which is non-trivial – that is, there is some sentence which
does not belong to K. Equivalently, a consistent belief set is a closed set of sentences which
does not contain any contradiction. Otherwise, it is inconsistent. Of course there is just one
inconsistent belief set, namely the set L of all the sentences of the underlying logic.
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(∗inclusion) K ∗ α ⊆ K + α.

(∗vacuity) If ∼α 6∈ K then K + α ⊆ K ∗ α.

(∗non-contradiction) If ∼α /∈ Cn(∅) then ∼α /∈ K ∗ α.

(∗relevance) If β ∈ K \ (K ∗ α) then there exists X such that K ∩ (K ∗ α) ⊆
Cn(X) ⊆ K, ∼α 6∈ Cn(X) and ∼α ∈ Cn(X) + β.

(∗extensionality) If α↔ β ∈ Cn(∅) then K ∗ α = K ∗ β.

Remark 2.9 The ∗non-contradiction postulate was slightly modified with re-
spect to the usual presentations of AGM, by replacing ‘K ∗ α 6= L’ by ‘∼α /∈
K ∗ α’. In view of the ∗success postulate and the fact that ∼ is explosive, both
conditions are clearly equivalent. This alternative presentation of the postulate
will allow the generalization of the notions to paraconsistent logics. As a conse-
quence of this move, two versions of the postulate are admitted, by considering
the explosive negation ∼ and the paraconsistent one, say ¬, respectively. This
possibility will be explored in Subsection 7.1.

As it might be expected, AGM (internal) revisions defined from partial meet
contractions are fully characterized by the postulates of Definition 2.8.

Theorem 2.10 An operation ∗ : Th(L)×L→ Th(L) is an AGM revision over
L iff it is an internal partial meet revision operator over L, that is: there is
an AGM selection function γ in L such that K ∗ α =

(⋂
γ(K,∼α)

)
+ α =

(K ÷γ ∼α) + α, for every K and α.

3 On Paraconsistency

As observed in [3], contradictoriness (the presence of contradictions in a theory)
and triviality (the fact that such a theory entails all possible consequences)
are assumed inseparable in classical logic. This is a consequence of a meta-
logical property known as explosiveness (ex falso quodlibet or ex contradictione
sequitur quodlibet). According to this principle, from a contradiction everything
is logically derivable. Therefore classical logic (like many other logics with an
explosive negation) identify ‘consistency’ with ‘freedom from contradictions’.

Paraconsistency is the study of logic systems having (at least) a negation
which is non-explosive. Within these logics, ‘consistent theory’ is no longer syn-
onymous of ‘non-contradictory theory’ (at least w.r.t. the paraconsistent nega-
tion). Equivalently, in a paraconsistent logic the notions of ‘inconsistent theory’
and ‘contradictory theory’ (w.r.t. the paraconsistent negation) do not neces-
sarily coincide. Thus, the pragmatic point of paraconsistency is not whether
contradictory theories exist, but how to deal with them. These distinctions will
be fundamental in order to consider systems of paraconsistent belief dynamics.
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3.1 The Logics of Formal Inconsistency

The Logics of Formal Inconsistency (LFIs) [4, 3, 2] constitute a class of paracon-
sistent logics that can internalize the meta-theoretical notions of consistency and
inconsistency by means of formulas of the object language. As a consequence,
despite constituting fragments of consistent logics, the LFIs can canonically be
used to faithfully encode all the consistent inferences.

Roughly speaking, the idea is to express the meta-theoretical notions of
consistency and inconsistency at the object language level by adding a new
connective • to the language with the intended meaning of “being inconsistent”.
However, it is the dual ◦ expressing “being consistent” that is more frequently
used. In this way one can limit the applicability of the explosion principle to
the case when α is consistent and so:

(1) α,¬α ` β is not the case in general

(2) α,¬α, ◦α ` β is always the case.

Condition (2) is usually called the Gentle Explosion Principle, in contrast to
the usual Explosion Principle which states that everything follows from a plain
contradiction.

The two systems to be presented here are defined over LFIs, but the con-
structions of the second are specially related to the formal consistency operator.5

Specifically, we define the constructions over a particular class of LFIs, devel-
oped by Carnielli, Coniglio and Marcos [3] (see also [2]), in which the formal
consistency is taken as a primitive operator. The most basic LFI considered
there is the propositional logic mbC. The language L of mbC is generated by
the connectives ∧,∨,→,¬, ◦.

Definition 3.1 (mbC [3]) The logic mbC is defined over the language L by
means of a Hilbert system as follows:

Axioms:

(A1) α→ (β → α)

(A2) (α→ β)→ ((α→ (β → δ))→ (α→ δ))

(A3) α→ (β → (α ∧ β))

(A4) (α ∧ β)→ α

(A5) (α ∧ β)→ β

(A6) α→ (α ∨ β)

5Notably the terms consistency and inconsistency captures a more sensible definition in
the LFIs. In order to avoid misunderstanding, in this paper it will be used, for those logics,
specifically the terms formal consistency and formal inconsistency. So the terms consistency
and inconsistency will maintain the usual interpretation, namely non-triviality and triviality,
respectively.
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(A7) β → (α ∨ β)

(A8) (α→ δ)→ ((β → δ)→ ((α ∨ β)→ δ))

(A9) α ∨ (α→ β)

(A10) α ∨ ¬α

(bc1) ◦α→ (α→ (¬α→ β))

Inference Rule:

(Modus Ponens) α, α→ β ` β

It is worth noticing that (A1)-(A9) plus Modus Ponens constitutes an axiomati-
zation for the classical positive logic CPL+. The falsum (or bottom) is defined
in mbC by means of the formula ⊥β =def β ∧ ¬β ∧ ◦β, for any formula β.
From this, the classical negation (or strong negation) is defined in mbC by
∼βα =def (α → ⊥β). Since ⊥β and ⊥β′ are interderivable in mbC, for any β
and β′, then ∼βα and ∼β′α are also interderivable. Hence, the strong negation
of α will be denoted by ∼α, while ⊥ will denote any formula ⊥β . As usual,
α↔ β is an abbreviation for (α→ β) ∧ (β → α).

Since mbC is an axiomatic extension of CPL+, and a classical negation
∼ can be defined in mbC, it is clear that mbC can be seen as an expansion
of the classical propositional logic CPL by adding a paraconsistent negation ¬
and a consistency operator ◦ satisfying certain axioms. Thus, mbC is standard,
supraclassical and deductive (see Section 2). An interesting way to recover the
classical logic inside mbC is by assuming the consistency of suitable sets of
premises. In formal terms, consider CPL defined over the language L0 gener-
ated by the connectives ∧,∨,→,¬ (observe that, now, ¬ represents the classical
negation instead of the paraconsistent negation of mbC). Let us denote by `CPL

the consequence relation in CPL, while `mbC will denote the corresponding one
in mbC. If Y ⊆ L0 then ◦(Y ) = {◦α : α ∈ Y }. Then, the following result can
be obtained:

Theorem 3.2 (Derivability Adjustment Theorem [3]) Let X ∪ {α} be a
set of formulas in L0. Then X `CPL α if and only if ◦(Y ), X `mbC α for
some Y ⊆ L0.

For instance α → β 0mbC ¬β → ¬α despite α → β `CPL ¬β → ¬α. However,
◦β, α → β `mbC ¬β → ¬α is always the case. In particular, CPL can be
obtained from mbC by adding ◦α as an axiom schema (see [3]). The logic
mbC (as well as every extension of it considered in the literature) is semantically
characterized by valuations over {0, 1} also called bivaluations).

Definition 3.3 (Valuations for mbC) A function v : L→
{

0, 1
}

is a valua-
tion for mbC if it satisfies the following clauses:

(vAnd) v(α ∧ β) = 1 ⇐⇒ v(α) = 1 and v(β) = 1
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(vOr) v(α ∨ β) = 1 ⇐⇒ v(α) = 1 or v(β) = 1

(vImp) v(α→ β) = 1 ⇐⇒ v(α) = 0 or v(β) = 1

(vNeg) v(¬α) = 0 =⇒ v(α) = 1

(vCon) v(◦α) = 1 =⇒ v(α) = 0 or v(¬α) = 0.

The semantical consequence relation associated to valuations for mbC is defined
as expected: X |=mbC α iff, for every mbC-valuation v, if v(β) = 1 for every
β ∈ X then v(α) = 1. The following result is well-known:

Theorem 3.4 (Adequacy of mbC w.r.t. bivaluations [3]) For every set of
formulas X ∪ {α}: X `mbC α if and only if X |=mbC α.

Remark 3.5 (Relationship between the two negations in mbC) As ob-
served above, mbC have two distinct negations: the paraconsistent (and primi-
tive) ¬, and the (derived) classical negation ∼. As one could expect, ∼α `mbC

¬α (and so ∼α → ¬α is a theorem of mbC, given that mbC satisfies the
deduction-detachment metatheorem), but the converse does not hold in general.6

This means that, given a belief set K in mbC, ∼α ∈ K implies that ¬α ∈ K (but
the converse is not necessarily true). As a consequence of this, if ¬α /∈ K then
certainly ∼α /∈ K. This implies that ∼α /∈ K÷¬α (K contracted by ¬α), unless
¬α is a theorem, and so (K÷¬α)+α is not trivial. Since K ∗α = (K÷¬α)+α
by Levi identity w.r.t. ¬ (recall Subsection 2.2), this feature of mbC is extremely
relevant. The Levi identity in paraconsistent belief revision will be additionally
analyzed in Subsection 7.1.

Different LFIs generate distinct logical consequences and therefore substan-
tially alter the rationality captured by the principle of deductive closure.

Definition 3.6 (Extensions of mbC [2]) Consider the following axioms:

(ciw) ◦α ∨ (α ∧ ¬α)

(ci) ¬◦α→ (α ∧ ¬α)

(cl) ¬(α ∧ ¬α)→ ◦α

(cf) ¬¬α→ α

(ce) α→ ¬¬α

(cc) ◦◦α

Some interesting extensions of mbC are the following:

6In order to prove this, observe that ∼α, α `mbC ¬α (since ∼ is an explosive negation),
while obviously ∼α,¬α `mbC ¬α. Then ∼α, α ∨ ¬α `mbC ¬α (by the properties of ∨) and
so ∼α `mbC ¬α, since α∨¬α is a theorem of mbC. To prove that ¬α 0mbC ∼α it is enough
to consider a valuation v such that v(α) = v(¬α) = 1.
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mbCciw = mbC + (ciw)

Cbr = mbC + (ciw) + (ce) + (cf) = = mbCciw + (ce) + (cf)7

mbCci = mbC + (ci) = mbCciw + (cc) (see [2, Proposition 3.1.10(3)])

bC = mbC + (cf)

Ci = mbC + (ci) + (cf) = mbCci + (cf)

mbCcl = mbC + (cl)

Cil = mbC+(ci)+(cf)+(cl) = mbCci+(cf)+(cl) = mbCcl+(cf)+(ci) = Ci+(cl)

The semantical characterization by bivaluations for all these extensions of mbC
can be easily obtained from the one for mbC (see [3, 2]). For instance, mbCciw
is characterized by mbC-valuations such that v(◦α) = 1 if and only if v(α) = 0
or v(¬α) = 0 (if and only if v(α) 6= v(¬α)).

The technical details of these logics as well as a taxonomy of LFI systems
can be found in the references [4, 3, 2].

4 The AGMp system

In this section it will be introduced AGMp, the first of the AGM-like systems
of belief dynamics based on paraconsistent logics proposed in this paper.

The main difference of AGMp relative to standard AGM is that epistemic
states are represented by logically closed sets of sentences over a given para-
consistent logic expanding classical logic (in order to ensure supraclassicality).
In particular, it applies to any LFI which is an extension of mbC. The con-
structions of AGMp are based on the same postulates of AGM by considering
suitable modifications. It is important to notice that the consistency operator
◦ will not be explicitly considered in the postulates. A second proposal, AGM◦
(see Section 5), is fully oriented to LFIs and so the consistency operator will
play a fundamental role in that system.

4.1 Formal Preliminaries

Let us assume a standard propositional logic, namely L = 〈L, Cn〉, which ex-
pands classical propositional logic CPL with a paraconsistent negation ¬ such
that α ∨ ¬α ∈ Cn(∅) for every sentence α and where the implication → is
deductive. For instance, L could be an axiomatic extension of mbC. In the
terminology of AGM, this means that L is supraclassical (recall Section 2). The
deductively closed theories of L are called belief sets (or epistemic states) of L.
The set of belief sets of L is denoted by Th(L). Assume that the language L of
L contains the connectives ∧,∨,→,¬. If L is an LFI as the ones considered in
Subsection 3.1, the language also contains a consistency operator ◦ such that the
strong (explosive) negation is defined by ∼α =def (α → ⊥). The consequence
relation of L will be denoted by `.

7This system was not considered in [4, 3, 2], and it is originally presented in this paper.
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Remark 4.1 As observed in [2, Theorem 3.4.10], any logic L such as the ones
considered above turns out to be an LFI by defining a consistency operator as
◦′α =def ∼(α ∧ ¬α), where ∼ and ¬ denote the explosive and paraconsistent
negation respectively. Moreover, the axiom (ciw) holds for ◦′ in L. The only
difference between L and the LFIs extending mbC is that in the latter the
consistency operator ◦ is primitive. Hence, mbC and the LFIs extending it
have two different consistency operators: a primitive ◦, which can satisfy or not
axiom (ciw), and a derived ◦′ which always satisfies (ciw).

4.2 AGM-compliance

An interesting idea proposed by Flouris [8] is to elucidate the applicability of the
AGM system in several non-classical logics, a concept called AGM-compliance.
An AGM-compliant logic is simply one in which it is possible to completely
characterize contraction via classical postulates.

It is known that standard, supraclassical and deductive logics, like the ones
considered in AGMp, are AGM-compliant. Furthermore, in this kind of logic
the properties of ÷recovery and ÷relevance are still equivalent. Hence, although
this equivalence is not valid in general (see [21, 22]), both postulates can be
used indistinguishably for the logics considered here. By coherence with the
presentation of the standard AGM system given in Section 2, in what follows
the ÷relevance postulate will be considered instead of ÷recovery.

4.3 (Non-extensional) AGMp contraction

As mentioned in the previous section, AGMp contraction can be defined as
in the classical AGM system one due to the AGM-compliance of the involved
logics. Since this operation depends on extra-logical components, it is defined
indirectly via the set of rationality postulates from AGM. However, extension-
ality is problematic in this context, and several modifications are required in
order to retain it (see Subsection 4.5).

Given the AGM-compliance of the logics considered here, it is possible to
define an AGMp contraction by means of AGM selection functions, which guar-
antee the satisfaction of the ÷extensionality postulate. However, when defining
a revision ∗ from a contraction ÷ by Levi identity (recall Definition 2.6), but now
with respect to the paraconsistent negation ¬, some problems can arise. Indeed,
in the paraconsistent setting, the paraconsistent negation ¬ does not preserve,
in general, logical equivalences. Thus, assume that α is logically equivalent to β.
Since an internal revision K ∗α pressuposes a previous contraction K÷¬α, and
since there is no guarantee of the equivalence between ¬α and ¬β from the given
hypotesis (and, conversely, the equivalence between ¬α and ¬β does not imply
the equivalence between α and β), the belief sets K ∗ α and K ∗ β should not
necessarily coincide. That is, the revision should not satisfy the ∗extensionality
postulate in general.

As a consequence of this, in the proof of the representation theorem for
revision, the selection function defined from a given AGMp revision ∗ could

14



not satisfy the first condition of AGM selection function, and so the induced
contraction could not satisfy ÷extensionality. This is why ÷extensionality (and,
in consequence, ∗extensionality) is dropped in the definition of the basic AGMp
operators. In Subsection 4.5 below we will show how to define contractions and
revisions in AGMp satisfying a suitable form of extensionality.

Definition 4.2 (Postulates for AGMp contraction) An AGMp contraction
over L is a function ÷ : Th(L) × L −→ Th(L) satisfying all the postulates of
an AGM contraction (see Definition 2.1) with the exception of ÷extensionality.

As in the case of AGM contraction, an AGMp contraction ÷ also satisfies
÷vacuity. As a consequence of Definition 4.2, the selection functions of AGM
must be weakened in order to generate AGMp contractions.

Definition 4.3 (AGMp selection function) An AGMp selection function in
L is a function γ : Th(L)×L −→ ℘(Th(L))\{∅} such that, for every K, α and
β:

1. γ(K,α) ⊆ K⊥α if K⊥α 6= ∅;

2. γ(K,α) = {K} otherwise.

The AGMp partial meet contraction is the intersection of the sets selected
by the AGMp selection function:

K ÷γ α =def

⋂
γ(K,α).

By simplifyng the proof for standard AGM, the following result follows easily:

Theorem 4.4 (Representation for AGMp contraction) An operation ÷ :
Th(L)× L −→ Th(L) satisfies the postulates of AGMp contraction iff there ex-
ists an AGMp selection function γ in L such that K÷α =

⋂
γ(K,α), for every

K and α.

4.4 (Non-extensional) AGMp revisions

As discussed in Subsection 4.3, an important difference between AGMp and
classical AGM is that the ∗extensionality postulate will not be valid in gen-
eral. The corresponding operation satisfying a variant of this postulate will be
presented in Subsection 4.5.

Definition 4.5 (AGMp internal revision) An AGMp internal revision over
L is an operation ∗ : Th(L) × L −→ Th(L) satisfying all the postulates of an
AGM revision (see Definition 2.8) with the exception of ∗extensionality, and
where the explosive negation ∼ is replaced by the paraconsistent negation ¬.

In other words, an AGMp internal revision is an operation satisfying the
∗closure, ∗success and ∗inclusion postulates of Definition 2.8, plus the following:
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(∗vacuity) If ¬α 6∈ K then K + α ⊆ K ∗ α.

(∗non-contradiction) If ¬α /∈ Cn(∅) then ¬α /∈ K ∗ α.

(∗relevance) If β ∈ K \ (K ∗ α) then there exists X such that K ∩ (K ∗ α) ⊆
Cn(X) ⊆ K, ¬α 6∈ Cn(X) and ¬α ∈ Cn(X) + β.

As in the case of classical AGM, AGMp internal revisions defined from partial
meet contractions are fully characterized by the postulates of Definition 4.5.

Theorem 4.6 (Representation for AGMp internal revision) An operation
∗ : Th(L)× L→ Th(L) is an AGMp internal revision over L iff it is an inter-
nal partial meet revision operator over L, that is: there is an AGMp selection
function γ in L such that K ∗α =

(⋂
γ(K,¬α)

)
+α = (K÷γ ¬α)+α, for every

K and α.

The most interesting case to be analized in this section is the definition, by
means of the reverse Levi identity with respect to the paraconsistent negation, of
an external revision for theories in L (recall Definition 2.7), extending the results
of Hansson for belief bases (see [13]). Just as with AGMp internal revision,
the AGMp external revision will not satisfy the ∗extensionality postulate in
general. An extensional version of AGMp external revision will be defined in
Subsection 4.5.

Definition 4.7 (AGMp external revision) An AGMp external revision over
L is an operation ~ : Th(L)× L −→ Th(L) satisfying the following postulates:

(~closure) K ~ α = Cn(K ~ α).

(~success) α ∈ K ~ α.

(~inclusion) K ~ α ⊆ K + α.

(~non-contradiction) If ¬α /∈ Cn(∅) then ¬α /∈ K ~ α.

(~relevance) If β ∈ K \ (K ~ α) then there exists X such that K ~ α ⊆
Cn(X) ⊆ K + α, ¬α 6∈ Cn(X) and ¬α ∈ Cn(X) + β.

(~pre-expansion) (K + α) ~ α = K ~ α.

Using the ~pre-expansion, ~relevance and ~inclusion postulates, it is easy
to prove that any external revision ~ also satisfies the following postulate:

(~vacuity) If ¬α 6∈ K then K ~ α = K + α.

From this, it can be observed that the differences between an internal and an
external revision in AGMp lie in the particular form of the relevance postulate,
and in the fact that the latter satisfies additionally the ~pre-expansion postulate.
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By reverse Levi identity (see Definition 2.7) we use the AGMp partial meet
contraction to define a construction for an external revision operator defined
over belief sets instead of belief bases:

K ~γ α =def (K + α)÷γ ¬α =
⋂
γ(K + α,¬α).

As expected, external partial meet revision is fully characterized by the pos-
tulates of Definition 4.7.

Theorem 4.8 (Representation for AGMp external revision) An opera-
tion ~ : Th(L) × L → Th(L) is an AGMp external revision over L iff it is
an external partial meet revision operator over L, that is: there is an AGMp
selection function γ in L such that K ~ α =

⋂
γ(K + α,¬α), for every K and

α.

Remark 4.9 The logical possibility of defining external revision challenges the
necessity of a prior contraction, as in the internal revision. Thus, it is possible
to interpret the contraction underlying an internal revision as an unnecessary
retraction and therefore as a violation of the principle of minimality. On the
other hand, if we consider the non-contradiction principle as a priority, then
internal revision remains the only rational option. This illustrates the clear
opposition between the principle of non-contradiction and that of minimality, as
explored by R. Testa in [26].

4.5 AGMp contractions and revisions with extensionality

In order to guarantee a suitable form of extensionality for the contraction and
revision operators in AGMp, more general selection functions must be consid-
ered. Additionally, it must be required that, in the underlying logic L, α and
¬¬α be equivalent, for every sentence α.

From now on, given a standard logic L, and two sentences α and β, α ≡L β
means that α↔ β ∈ Cn(∅).

The (non-extensional) belief change operations defined in sections 4.3 and 4.4
can thus be modified as follows:

Definition 4.10 (Extensional AGMp contraction) Let L be a logic as de-
scribed in Subsection 4.1 such that, in addition, α ≡L ¬¬α for every sen-
tence α. An extensional AGMp contraction over L is an AGMp contraction
÷ : Th(L) × L −→ Th(L) (see Definition 4.2) which additionally satisfies the
following postulate:

(÷extensionality) If α ≡L β and ¬α ≡L ¬β then K ÷ α = K ÷ β.

Definition 4.11 (Extensional AGMp internal revision) Let L be a logic
as described in Subsection 4.1 such that α ≡L ¬¬α for every sentence α.
An extensional AGMp internal revision over L is an AGMp internal revision
∗ : Th(L) × L −→ Th(L) (see Definition 4.5) which additionally satisfies the
following postulate:
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(∗extensionality) If α ≡L β and ¬α ≡L ¬β then K ∗ α = K ∗ β.

Definition 4.12 (Extensional AGMp external revision) Let L be a logic
as described in Subsection 4.1 such that α ≡L ¬¬α for every sentence α.
An extensional AGMp external revision over L is an AGMp external revision
~ : Th(L) × L −→ Th(L) (see Definition 4.7) which additionally satisfies the
following postulate:

(~extensionality) If α ≡L β and ¬α ≡L ¬β then K ~ α = K ~ β.

As mentioned above, the construction of extensional AGMp contraction and
revisions requires a wider notion of selection function.

Definition 4.13 (General AGMp selection function) A general AGMp se-
lection function in L is a function γ : Th(L)×L −→ ℘(Th(L)) \ {∅} such that,
for every K and α:

1. γ(K,α) = γ(K,β) if α ≡L β and ¬α ≡L ¬β;

2. γ(K,α) ⊆ K⊥α if K⊥α 6= ∅;

3. γ(K,α) = {K} otherwise.

As in the case of AGM selection functions, the notion is well-defined.
The extensional AGMp partial meet contraction generated by a general

AGMp selection function γ is the intersection of the sets selected by γ:

K ÷γ α =def

⋂
γ(K,α).

Theorem 4.14 (Representation for extensional AGMp contraction) Let
L be a logic as described in Subsection 4.1 such that α ≡L ¬¬α for every sen-
tence α. An operation ÷ : Th(L) × L −→ Th(L) is an extensional AGMp
contraction iff there exists a general AGMp selection function γ in L such that
K ÷ α =

⋂
γ(K,α), for every K and α.

Analogous results can be obtained for the other belief change operators:

Theorem 4.15 (Representation for extensional AGMp internal revision)
Let L be a logic as described in Subsection 4.1 such that α ≡L ¬¬α for every
sentence α. An operation ∗ : Th(L) × L −→ Th(L) is an extensional AGMp
internal revision iff there exists a general AGMp selection function γ in L such
that K ∗ α =

(⋂
γ(K,¬α)

)
+ α, for every K and α.

Theorem 4.16 (Representation for extensional AGMp external revision)
Let L be a logic as described in Subsection 4.1 such that α ≡L ¬¬α for every
sentence α. An operation ~ : Th(L) × L −→ Th(L) is an extensional AGMp
external revision iff there exists a general AGMp selection function γ in L such
that, for every K and α, K ~ α =

⋂
γ(K + α,¬α).

18



5 The AGM◦ system

In this section, a second AGM-like system of paraconsistent belief change will
be introduced, called AGM◦. The name is motivated by the fact that, different
to AGMp, the consistency operator ◦ of LFIs will play a fundamental role in
the postulates and the corresponding constructions.

The main idea of this system is incorporating the notion of formal consistency
in the contraction operator, thus being trasferred to revisions by means of the
(direct or reverse) Levi identity. The intuition behind AGM◦ is that a belief
α being consistent in K (that is, ◦α ∈ K) means its unavailability for removal
from the belief set K.

5.1 Epistemic states

From now on, L will denote any LFI extending mbC. In particular, if we allow
to consider the consistency operator as a derived (not primitive) one, all the
logics in the scope of AGMp lie also in the scope of AGM◦ since they are, as
observed in Remark 4.1, extensions of mbCciw, where ◦α =def ∼(α ∧ ¬α).

When consider an LFI, that is, a paraconsistent logic with a consistency
operator ◦, additional epistemic attitudes can be considered, because of the
richness of the language. Figure 1(a) helps to better understand the role of the
underlying language of L in the definition of the system’s epistemic states. It
shows how LFIs give rise to different scenarios of epistemic attitudes (here, K⊥
denotes the trivial belief set L):

(a) Possible scenarios of epistemic attitudes in
AGM◦

The link between the scenarios indicates proper inclusion, relative to K,
from bottom up.

We can now distinguish three groups of epistemic attitudes:

Propositional: Regarding the acceptance of a belief in the epistemic state.

Quasi-Modal: Regarding the entrenchment of a belief expressed by the con-
sistency operator.

Modal: Regarding the mode one accepts a belief in the epistemic state.
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5.1.1 Propositional epistemic attitudes

Four epistemic propositional attitudes are considered in relation to a sentence
α ∈ L (which make sense in any paraconsistent logic, not only LFIs). Let K be
a given belief set. Then, a sentence α is said to be:

accepted if α ∈ K.

rejected if ¬α ∈ K, i.e., ¬α is accepted in K.

under-determined (or indeterminate) if α /∈ K and ¬α 6∈ K, i.e., neither α
nor ¬α are accepted in K.

over-determined (or contradictory) if α ∈ K and ¬α ∈ K, i.e., both α and
¬α are accepted in K.

(b) accepted (c) rejected

(d) underdetermined (e) overdetermined

In classical AGM over-determination is not considered as an epistemic atti-
tude since it is the trivial case. However, in a paraconsistent paradigm appre-
hended by AGMp and AGM◦, an agent simultaneously accepting and rejecting a
sentence is possible, i.e., it is not incoherent and does not generate trivialization.
Consider the following example.

Example 5.1 I believe in the existence of Poseidon (p ∈ K). I will also accept,
because of your argument, your claim that that there is no such thing as Poseidon
(¬p ∈ K) in order to better reflect on the issue.
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The attitude of not accepting nor rejecting a sentence, despite being already
possible in classical AGM, deserves a prominent role in our system because
of its duality with over-determination. The agnostic situation of example 5.2
illustrates that fact.

Example 5.2 I do not accept the existence of Poseidon (p /∈ K). Nevertheless,
I also do not reject it (¬p /∈ K).

5.1.2 Quasi-modal epistemic attitude

Now, let us turn the attention to LFIs. Let K be a given belief set in an LFI
extending mbC. Then, a sentence α is said to be:

consistent if ◦α ∈ K, that is, if ◦α is accepted in K (independently of the
acceptance or rejection of α).

(f) consistent

The consistency of α in K, illustrated by Figure 1(f), means that any propo-
sitional epistemic attitude about it is irrefutable. If the agent accepts or rejects
such belief-representing sentence, K will be non-revisable, respectively, by ¬α
and α. Furthermore, the sentence will be so entrenched in the epistemic state
that to exclude it is not even a possibility (those cases are the modal epistemic
attitudes described below).

Such entrenchment may be due to different factors such as, for example,
preferences or due to a hierarchy deliberately set by a programmer in a database.
Another example is a normative system in which certain norms are not liable to
be retracted from the system. Moreover, the consistency may also indicate that
the belief in question is not likely to be refuted because the agent believes that
there are no arguments against it. Example 5.3 helps us to describe that fact.

Example 5.3 I neither accept nor reject the existence of Poseidon. Further-
more, I believe that it is impossible to discuss the existence of Poseidon (◦p ∈ K)
simply because that’s a question that transcends any rational argumentation.
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5.1.3 Modal epistemic attitudes

Let K be a given belief set in an LFI extending mbC. Then, a sentence α is
said to be:

boldly accepted if α ∈ K and ◦α ∈ K, i.e., if α is consistent and it is accepted
in K.

boldly rejected if ¬α ∈ K and ◦α ∈ K, i.e., if α is consistent and it is rejected
in K.

(g) boldly accepted (h) boldly rejected

Remark 5.4 It is worth noting that in mbC a sentence α being boldly rejected
in K entails that ∼α ∈ K, but the converse is not necessarily true. However,
the converse holds in mbCciw and all of its extensions.

A sentence α boldly accepted in K means that α is accepted in K, and this
set is not liable to be contracted by α. Furthermore K is not revisable by ¬α.
Consider the following example.

Example 5.5 I boldly believe in the existence of Poseidon (◦p, p ∈ K). There-
fore for the price of coherence I cannot accept your idea that there is no Poseidon
(i.e., ¬p), not even for the sake of argument.

Conversely, a sentence α being boldly rejected means that the belief set is
not revisable by α (due the presence of ∼α, entailed by the joint presence of ◦α
and ¬α), as in the following example.

Example 5.6 I boldly reject the existence of Poseidon (◦p,¬p ∈ K). Therefore
for the price of coherence I cannot accept your idea that Poseidon exists (i.e.,
p), not even for the sake of argument.

It would be possible to define an eighth epistemic attitude, describing the
situation in which a sentence is indeterminate and also not consistent – a specific
subset of under-determination. But every under-determined sentence is regarded
as inconsistent unless its consistency is stated. This is a consequence of an
important feature of LFIs – there are no theorems of the form ◦α in most
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of LFIs, like mbC, mbCciw and mbCcl (see [3, 2]). This means that the
consistency of a sentence is a non-logical (i.e., non-tautological) belief of the
agent.

In short, the seven epistemic attitudes defined in AGM◦ are:

Definition 5.7 (Epistemic attitudes of AGM◦) Let K be a given belief set.
Then, a sentence α is said to be:

Accepted if α ∈ K.

Rejected if ¬α ∈ K.

Under-determined (or indeterminate) if α /∈ K and ¬α /∈ K.

Over-determined (or contradictory) if α ∈ K and ¬α ∈ K.

Consistent if ◦α ∈ K.

Boldly accepted if ◦α ∈ K and α ∈ K.

Boldly rejected if ◦α ∈ K and ¬α ∈ K.

Remark 5.8 Observe that, in mbC and several of its extensions, ◦α and ◦¬α
are, in general, logically independent. As a consequence of this, the epistemic
attitudes of boldly reject α and boldly accept ¬α are, in general, unrelated. These
attitudes are equivalent if and only if (◦α ↔ ◦¬α) ∈ Cn(∅) in the given LFI,
for every sentence α. An extension of mbC in which the validity of the latter
condition is guaranteed is Cbr, the system obtained from mbCciw by adding
axioms (ce) and (cf) (that is, the axiom schema (α↔ ¬¬α), see Subsection 3.1).
Indeed, if v is a valuation for Cbr then v(α) = v(¬¬α) for every α. Thus :
v(◦α) = 1 if and only if v(α) 6= v(¬α) if and only if v(¬¬α) 6= v(¬α) if and
only if v(◦¬α) = 1.

5.2 (Non-extensional) AGM◦ contraction

Like in AGM and AGMp, expansion is univocally defined in terms of the con-
sequence operator. In order to define contraction, a set of postulates will be
presented, as usual in AGM like systems of belief dynamics. As asserted before,
AGM◦ takes into account the properties of the formal consistency operator in
the definitions and, henceforth, the postulates must be redefined accordingly.
As in the case of AGMp, the basic operators of contraction (and the induced
internal and external revisions) will not satisfy extensionality. In Subsection 5.5
it is shown how to obtain extensionality by considering additional assumptions,
as it was done with AGMp.

5.2.1 Postulates for AGM◦ contraction

As usual, closure ensures that the outcome is closed under logical consequences
and success ensures the sentence’s removal. However the removal fails if the
sentence is assumed to be consistent. This fact is captured by failure. That
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postulate is the main difference between AGM◦ and AGMp (and also AGM,
of course). Failure reflects the intuitive notion of formal consistency to be
captured. These assumptions, altogether, illustrate the difficulties faced in a
contraction: we want to remove the sentence from the belief set by preventing
the removal of consistent sentences. Furthermore, it is also necessary to respect
logical closure. Not to mention that the operation must ensure that the changes
are minimal. The latter stricture is exactly what it is required by the other
postulates altogether.

The AGM◦ system can be defined over any LFI, say L, with a (primitive
or defined) consistency operator ◦, which is standard and supraclassical (recall
Section 2), such that the paraconsistent negation satisfies the law of excluded
middle (recall Subsection 4.1 and Remark 4.1). For instance, L could be any of
the paraconsistent systems Cn of da Costa (see [2, Subsection 3.7]).

Just to fix ideas, assume from now on that L is an axiomatic extension
of mbC. Thus, the language L of L is (at least) generated by the connectives
∧,∨,→,¬, ◦, and the strong (explosive) negation is defined by ∼α =def (α→ ⊥)
(recall Section 3).

The main novelty with respect to AGM and AGMp is that the basic postu-
lates for contraction are modified, in order to guarantee that consistent sentences
(that is, sentences α such that ◦α ∈ K) cannot be removed, as happens in AGM
when α ∈ Cn(∅).

Definition 5.9 (Postulates for AGM◦ contraction) An AGM◦ contraction
over L is a function ÷ : Th(L)×L −→ Th(L) satisfying the following postulates:

(÷closure) K ÷ α = Cn(K ÷ α).

(÷success) If α /∈ Cn(∅) and ◦α /∈ K then α /∈ K ÷ α.

(÷inclusion) K ÷ α ⊆ K.

(÷failure) If ◦α ∈ K then K ÷ α = K.

(÷relevance) If β ∈ K \ (K ÷ α) then there exists X such that K ÷ α ⊆
Cn(X) ⊆ K and α /∈ Cn(X), but α ∈ Cn(X) + β.

As in the case of AGMp contractions, it is easy to see that any operator
÷ satisfying the ÷relevance and ÷inclusion postulates of Definition 5.9 also
satisfies the following postulate:

(÷vacuity) If α 6∈ K then K ÷ α = K.

5.2.2 AGM◦ partial meet contraction function

Regarding the partial meet construction, since AGM◦ requires the failure pos-
tulate, this feature must be taken into account in the selection function. This
strategy proves to be quite natural when it is considered that, in fact, consistent
beliefs are not an option in the retraction – even if they were retracted as the
last option such as the more entrenched beliefs. Rather, the consistent belief
remains in the epistemic state in any situation, unless the agent retract the own

24



fact that such belief is consistent.8 Additionally, extensionality is not required,
analogously with AGMp selection functions.

Definition 5.10 (AGM◦ selection function) An AGM◦ selection function
in L is a function ς : Th(L)×L −→ ℘(Th(L)) \ {∅} such that, for every K and
α:

1. ς(K,α) ⊆ K⊥α if ◦α /∈ K and K⊥α 6= ∅.

2. ς(K,α) = {K} otherwise.

The partial meet contraction is the intersection of the sets selected by the
choice function:

K ÷ς α =def

⋂
ς(K,α).

Theorem 5.11 (Representation for AGM◦ contraction) An operation ÷ :
Th(L)×L −→ Th(L) is an AGM◦ contraction iff there exists an AGM◦ selection
function ς in L such that K ÷ α =

⋂
ς(K,α), for every K and α.

5.3 (Non-extensional) AGM◦ internal Revision

Recall from Definition 2.6 that the internal revision is defined in AGM by Levi
identity as K ∗ α = (K ÷ ¬α) + α. Although internal revision is defined from
contraction in AGM◦ in the same way than in AGM and AGMp, i.e by Levi
identity (w.r.t. the paraconsistent negation ¬), the new postulates and con-
struction for contraction impose the definition of a new set of postulates and
construction for internal revision:

Definition 5.12 (Postulates for internal AGM◦ revision) An AGM◦ re-
vision over L is an operation ∗ : Th(L)× L −→ Th(L) satisfying the following:

(∗closure) K ∗ α = Cn(K ∗ α).

(∗success) α ∈ K ∗ α.

(∗inclusion) K ∗ α ⊆ K + α.

(∗vacuity) If ¬α 6∈ K then K + α ⊆ K ∗ α.

(∗non-contradiction) If ¬α /∈ Cn(∅) and ◦¬α /∈ K then ¬α /∈ K ∗ α.

(∗failure) If ◦¬α ∈ K then K ∗ α = K + α

8Given the formal consistency propagation (cf. [3]) or a deliberate incorporation of iterated
consistency (the consistency of a consistent belief, for instance, by considering axiom (cc), see
Definition 3.6), sometimes an agent, in order to retract the fact that a belief is consistent, it
is necessary to first retract the consistency of consistency, and so on. But that’s not possible
in some LFIs given the referred consistency propagation. Those LFIs capture an interesting
reasoning rationality – that all the accepted beliefs are irrefutable, that is, once a belief is
accepted, it is taken for granted.
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(∗relevance) If β ∈ K \ (K ∗ α) then there exists X such that K ∩ (K ∗ α) ⊆
Cn(X) ⊆ K and ¬α /∈ Cn(X), but ¬α ∈ Cn(X) + β.

It is worth noting that the ∗failure postulate illustrates the case in which
the negation of the sentence to be incorporated is consistent in K and thus the
prior removal is not possible due to the ÷failure postulate for the contraction
operator ÷ in AGM◦.

By Levi identity, as in the classical model, we use the partial meet contraction
to define a construction for AGM◦ internal revision:

K ∗ς α =def (K ÷ς ¬α) + α =
(⋂

ς(K,¬α)
)

+ α.

Theorem 5.13 (Representation for AGM◦ internal revision) An opera-
tion ∗ : Th(L)× L −→ Th(L) over L is an AGM◦ internal revision if and only
if there exists an AGM◦ selection function such that K ∗α =

(⋂
ς(K,¬α)

)
+α,

for every K and α.

5.4 (Non-extensional) AGM◦ external Revision

Recall from Definition 2.7 that the external revision is defined by reverse Levi
identity as K~α = (K+α)÷¬α. Taking this identity into account, the proposed
postulates that characterize an external revision in AGM◦ are the following:

Definition 5.14 (Postulates for external AGM◦ revision) An AGM◦ ex-
ternal revision over L is a function ~ : Th(L) × L −→ Th(L) satisfying the
following postulates:

(~closure) K ~ α = Cn(K ~ α).

(~success) α ∈ K ~ α.

(~inclusion) K ~ α ⊆ K + α.

(~non-contradiction) If ¬α /∈ Cn(∅) and ◦¬α /∈ K + α then ¬α /∈ K ~ α.

(~failure) If ◦¬α ∈ K + α then K ~ α = K + α

(~relevance) if β ∈ K \ (K ~ α) then there exists X such that K ~ α ⊆
Cn(X) ⊆ K + α and ¬α 6∈ Cn(X), but ¬α ∈ Cn(X) + β.

(~pre-expansion) (K + α) ~ α = K ~ α.

By ~pre-expansion, ~relevance and ~inclusion, it is immediate to prove that
any AGM◦ external revision ~ also satisfies the following postulate:

(~vacuity) If ¬α 6∈ K then K ~ α = K + α.
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Observe that the relevance postulate for AGM◦ external revision coincides
with the corresponding one for AGMp external revision (recall Definition 4.7).
The non-contradiction, failure and pre-expansion postulates highlight the main
feature of an external revision in the AGM◦ paradigm.

By Hansson’s reverse Levi identity, the partial meet contraction of AGM◦
can be used to obtain another construction for an external revision operator
defined over belief sets, instead of belief bases (as done in [13]):

K ~ς α =def (K + α)÷ς ¬α =
⋂
ς(K + α,¬α).

Theorem 5.15 (Representation for AGM◦ external revision) An oper-
ation ~ : Th(L)×L −→ Th(L) over L satisfies the postulates for AGM◦ exter-
nal revision iff there is an AGM◦ selection function ς in L such that, for every
K and α, K ~ α =

⋂
ς(K + α,¬α).

5.5 AGM◦ contractions and revisions with extensionality

With the aim of satisfy a suitable form of extensionality for the contraction
and revision operators in AGM◦, a weaker notion of AGM◦ selection functions
must be considered. This strategy is similar to the one adopted for AGMp in
Subsection 4.5. Once again, the underlying logic L must satisfy that α ≡L ¬¬α
for every sentence α.

In order to be extensional, the AGM◦ belief change operations can be mod-
ified as follows:

Definition 5.16 (Extensional AGM◦ contraction) Let L be a logic as de-
scribed in Subsection 5.1 such that, additionally, α ≡L ¬¬α for every sen-
tence α. An extensional AGM◦ contraction over L is an AGM◦ contraction
÷ : Th(L) × L −→ Th(L) (see Definition 5.9) which additionally satisfies the
following postulate:

(÷extensionality) If α ≡L β, ¬α ≡L ¬β and ◦α ≡L ◦β then K÷α = K÷β.

Definition 5.17 (Extensional AGM◦ internal revision) Let L be a logic
as in Subsection 5.1 such that α ≡L ¬¬α for every α. An extensional AGM◦
revision over L is an AGM◦ revision ∗ : Th(L)×L −→ Th(L) which additionally
satisfies the following postulate:

(∗extensionality) If α ≡L β, ¬α ≡L ¬β and ◦¬α ≡L ◦¬β then K∗α = K∗β.

Definition 5.18 (Extensional AGM◦ external revision) Let L be a logic
as in Subsection 5.1 such that α ≡L ¬¬α for every α. An extensional AGM◦
external revision over L is an AGM◦ external revision ~ : Th(L)×L −→ Th(L)
which additionally satisfies the following postulate:

(~extensionality) If α ≡L β , ¬α ≡L ¬β and ◦¬α ≡L ◦¬β then K ~ α =
K ~ β.
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The construction of extensional AGM◦ contraction and revisions requires a
wider notion of selection function.

Definition 5.19 (General AGM◦ selection function) A general AGM◦ se-
lection function in L is a function ς : Th(L)× L −→ ℘(Th(L)) \ {∅} such that,
for every K and α:

1. ς(K,α) = ς(K,β) if α ≡L β, ¬α ≡L ¬β and ◦α ≡L ◦β;

2. ς(K,α) ⊆ K⊥α if K⊥α 6= ∅;

3. ς(K,α) = {K} otherwise.

As in the case of general AGMp selection functions, the notion above is
well-defined.

The extensional AGM◦ partial meet contraction generated by a general AGM◦
selection function ς is defined a usual:

K ÷ς α =def

⋂
ς(K,α).

Theorem 5.20 (Representation for extensional AGM◦ contraction) Let
L be a logic as described in Subsection 5.1 such that α ≡L ¬¬α for every sen-
tence α. An operation ÷ : Th(L) × L −→ Th(L) is an extensional AGM◦
contraction iff there exists a general AGM◦ selection function ς in L such that,
for every K and α, K ÷ α =

⋂
ς(K,α).

Analogous results hold for the other belief change operators:

Theorem 5.21 (Representation for extensional AGM◦ internal revision)
Let L be a logic as described in Subsection 5.1 such that α ≡L ¬¬α for every
sentence α. An operation ∗ : Th(L) × L −→ Th(L) is an extensional AGM◦
internal revision iff there exists a general AGM◦ selection function ς in L such
that, for every K and α, K ∗ α =

(⋂
ς(K,¬α)

)
+ α.

Theorem 5.22 (Representation for extensional AGM◦ external revision)
Let L be a logic as described in Subsection 5.1 such that α ≡L ¬¬α for every
sentence α. An operation ~ : Th(L) × L −→ Th(L) is an extensional AGM◦
external revision iff there exists a general AGM◦ selection function ς in L such
that, for every K and α, K ~ α =

⋂
ς(K + α,¬α).

Remark 5.23 Let L be a logic as the ones considered in this section. Sup-
pose that, additionally, (ciw) holds in L. In particular, L could be Cbr or an
axiomatic extension of it (see Definition 3.6). By Remark 5.8, ◦α ≡L ◦¬α for
every sentence α. It is easy to see that, if α ≡L β and ¬α ≡L ¬β, then ◦α ≡L ◦β
and ◦¬α ≡L ◦¬β. From this, all the definitions and constructions introduced
in this section can be simplified accordingly. For instance, ÷extensionality and
∗extensionality coincide with the ones considered in Subsection 4.5.

An interesting example of a logic with the specifications mentioned above is
the well-known da Costa-D’Ottaviano’s 3-valued paraconsistent logic J3, which
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was independently proposed by several authors under different names in different
contexts (see [2, Subsections 4.4.3 and 4.4.7]). The advantages to considering
systems of (paraconsistent) belief change based on finitely-valued logics is that
they are better suitable to build concrete computational implementations of them
(see, for instance, [5]).

6 Consolidation and Semi-revision in AGMp and
AGM◦

In the literature on belief bases, the notion of consolidation of a belief base
was proposed by Hansson (see [14]). Given a possibly inconsistent (i.e., possibly
contradictory w.r.t. the classical negation) belief base, the result of its consolida-
tion is a consistent belief base obtained from the previous one by doing minimal
changes. Of course this operation is senseless in classical AGM theory since,
classically, there is only one inconsistent belief set. In the present framework,
however, this operation is meaningful as long as the paraconsistent negation
is considered instead of the classical one, and corresponds to the contraction
of every over-determined sentence. This means that the constructions to be
presented in this section can be done both in AGMp and in AGM◦. The only
additional requirement on the paraconsistent underlying logic is that no contra-
diction (w.r.t. the paraconsistent negation) be a theorem. This is usually the
case for most paraconsistent logics and, in particular, with the LFIs considered
here.

Definition 6.1 (Normal paraconsistent logics) A paraconsistent logic L (w.r.t.
a negation ¬) is normal if there is no formula α such that α ∧ ¬α is a theorem
of L (here, ∧ denotes a classical conjunction, see Lemma A in the Appendix).

Given a normal paraconsistent logic L (w.r.t. a negation ¬), a set of formulas
X ⊆ L is contradictory if α ∧ ¬α ∈ Cn(X) for some formula α.

Remark 6.2 It should be noticed that all the LFIs considered here and, in
general, the LFIs studied in [4, 3, 2], are normal paraconsistent logics. Thus,
the constructions to be defined below can be applied to them.

Definition 6.3 (Postulates for AGMp/AGM◦ consolidation) Let L be a
normal paraconsistent logic. An AGMp/AGM◦ consolidation over L is an op-
eration ! : Th(L) −→ Th(L) satisfying the following postulates:

(closure) K! = Cn(K!).

(inclusion) K! ⊆ K.

(non-contradiction) If K 6= L, then K! is not contradictory (w.r.t. the para-
consistent negation).
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(failure) If K = L, then K! = L.

(relevance) If β ∈ K \ K! then there exists X such that K! ⊆ Cn(X) ⊆ K
and X is not contradictory, but Cn(X) + β is contradictory (w.r.t. the
paraconsistent negation).

Note that consolidation is a particular case of contraction, so it is natural
that many of its postulates and the explicit construction follow that operation.

As in the case of contraction, a choice function over a remainder set will
be used for each consolidation operator. The particularity of the definition of
remainder sets is that, in the case of consolidation, these sets are defined over
collections of belief sets.

Definition 6.4 (Remainder for sets [14]) Let K be a belief set in L and
∅ 6= A ⊂ L. The set K⊥PA ⊆ ℘(L) is such that for every X ⊆ L, X ∈ K⊥PA
iff the following is the case:9

(i) X ⊂ K

(ii) A ∩ Cn(X) = ∅

(iii) If X ⊂ X ′ ⊆ K then A ∩ Cn(X ′) 6= ∅.

Clearly the remainder for sets generalize the notion of remainder for formulas
(recall Definition 2.3). Indeed, K⊥α = K⊥P {α}, for every K and α. Moreover,
the elements of K⊥PA are closed theories (see Lemma F in the Appendix). As
in the case of reminder for formulas, it is easy to prove that, if A ∩K = ∅ or
A ∩ Cn(∅) 6= ∅ then K⊥PA = ∅. The converse also holds, see Corollary H in
the Appendix.

Consolidation considers a specific subset A, that is, the one that represents
the totality of contradictory sentences in K, defined as follows:

Definition 6.5 (Set of contradictory sentences) Let K be a belief set in a
normal paraconsistent logic L. The set ΩK of contradictory sentences of K is
defined as follows:

ΩK = {α ∈ K : there exists β ∈ L such that α ≡L β ∧ ¬β}

where, for every formulas α and β, α ≡L β means that α ↔ β is a theorem of
L.

Definition 6.6 (Consolidation function) Let L be a normal paraconsistent
logic. A consolidation function in L is a function γf : Th(L) −→ ℘(Th(L))\{∅}
such that, for every belief set K in L:

1. γf (K) ⊆ K⊥PΩK if K 6= L and K⊥PΩK 6= ∅.

2. γf (K) = {K} otherwise.

9Item (i) was changed as in Definition 2.3.
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The consolidation operator defined by a consolidation function γf is then
defined as follows: for every belief set K in L,

K!γf =def

⋂
γf (K)

Theorem 6.7 (Representation of consolidation) An operation ! : Th(L) −→
Th(L) over a normal paraconsistent logic L satisfies the postulates of Defini-
tion 6.3 iff there exists a consolidation function γf in L such that K! =

⋂
γf (K)

for every belief set K in L.

From the definition of external revision, it is possible to define an operation
that challenges the principle of primacy of new information, tacitly accepted
in internal and external revisions. In the context of belief bases it is called
semi-revision by Hansson (see [14]), which is characterized by the expansion-
consolidation scheme.

In the same way, semi-revision for belief sets can be defined as a general-
ization of external-revision in which the choice for the removal is left to the
selection function:

K?γfα =def (K + α)!γf

7 Does paraconsistent belief revision coincide
with expansion?

In a conceptual essay, G. Priest[17] suggests that the revision operation should
coincide with expansions in an AGM-like system of belief change based on para-
consistent logics. The main reason is that the presence of contradictions do not
trivialize, in general, a theory in such logics:

“If we are allowing for the possibility of inconsistent beliefs, why
should revising our beliefs with new information ever cause us to
reject anything from our belief-set at all? Why not simply add the
belief to our belief-set, and leave it at that?”
(G. Priest, [17, page 219])

Because of this and other considerations, he proposed an alternative sys-
tem for belief change by modifying the AGM postulates, in order to deal with
paraconsistent logics. Other authors, like P. Girard and K. Tanaka, disagree
with Priest’s perspective about the identification of revision with expansion in
a paraconsistent environment:

“Hence, even though paraconsistency does not force one to always
resolve contradictory beliefs, it is important to distinguish between
expanding one’s beliefs by accepting contradictory beliefs and revis-
ing them by resolving contradictory beliefs. There is thus still a need
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for revision in paraconsistent logic.” (P. Girard and K. Tanaka, [11,
page 2])

However, because of some limiting results obtained in [24], the authors con-
sider that the definition of a paraconsistent belief revision different than expan-
sion constitutes an open problem (see Subsection 7.2).

7.1 Two negations, two Levi identities

Recall from Definition 2.6 that an internal revision ∗ is defined from a contrac-
tion ÷ by means of the Levi identity as follows: K ∗α =def (K÷¬α)+α, where
¬ is some negation defined in the underlying logic L. Now, under the hypothesis
assumed in Subsection 4.1, there are (at least) two negations in L, namely, the
paraconsistent ¬ and the explosive ∼. Being so, two revision operators can be
generated from contraction ÷ by means of Levi identity, one for each negation.
Thus, consider, besides Definition 2.6, the following notion:

Definition 7.1 (Classical Internal Revision) K ∗̄α =def (K ÷∼α) + α.

The operation ∗̄ is called ‘classical’ for two reasons: on the one hand, it is
defined by means of the ‘classical’ negation ∼. On the other hand, it coincides
with ‘classical’ AGM since ∼ should be the main (and only?) negation to be
considered in such framework, given the supraclassicality assumption. Observe
that, as in the case of classical AGM systems, it makes no sense the definition
of a classical external revision (that is, an external revision with respect to ∼)
given that the negation ∼ is explosive.

As observed in the beginning of Subsection 4.3, the AGMp contraction ÷
could be defined in terms of AGM selection functions (because of the AGM-
compliance), and so it would satisfy ÷extensionality. In such a case, the classical
internal revision ∗̄ would also satisfy ∗̄ extensionality.

In terms of the AGM-like systems of paraconsistent belief change proposed
here (AGMp and AGM◦), the use of Levi identity with respect to ¬ (internal
belief revision ∗) or ∼ (classical internal belief revision ∗̄ ) corresponds to quite
different approaches to internal belief revision. Indeed, assume in AGMp that
¬α 6∈ Cn(∅). Hence, ∼α 6∈ Cn(∅) (recall Remark 3.5). In order to revise K 6= L
by α using ∗, firstly the belief set K is contracted by the sentence ¬α and then
α is finally added by expansion. Thus, K ∗α is never contradictory with respect
to α. From this perspective, if ¬α ∈ K and α is received as a new piece of
information, then α is never over-determined in K ∗ α (even if this epistemic
attitude is possible in a paraconsistent logic). That is, in order to accept α, the
(possible) belief in ¬α must be abandoned. On the other hand, if K is revised
by α using ∗̄ , the belief set K is now contracted by the sentence ∼α and then
α is added by expansion. But, in this way, it is a valid possibility to keep ¬α
in K ÷ ∼α (even if ¬α 6∈ Cn(∅)). In this scenario, K ∗̄α is contradictory with
respect to α. Under this (maybe more conservative) perspective, the contraction
with∼α is performed in order to accomodate the new information α avoiding the
logical collapse, as required by an AGM-like revision. However, the (possible)
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belief in ¬α is maintained, for the sake of informational economy. A consequence
(desirable or not) of this choice is that the new piece of information α is not
merey accepted in K ∗̄α, but it is over-determined.

The same argument as above can be applied to AGM◦, but in this case
it must be additionally assumed (besides ¬α 6∈ Cn(∅)) that ◦∼α /∈ K and
◦¬α /∈ K. Notice that the reminder sets K⊥∼α and K⊥¬α are incomparable
in general, and then so are K ∗̄α and K ∗ α (in both AGMp and AGM◦).

Example 7.2 Let L be mbC or any extension of it among the ones in Def-
inition 3.6. Let p, q and r be three different propositional variables, and con-
sider K = Cn(∼p,¬p → q, q → r}). Then ¬p ∈ K, q ∈ K and r ∈ K.
Let X0 = {¬p,¬p → q, q → r} ⊆ K. Then ∼p /∈ Cn(X0), as the follow-
ing L-valuation v shows: v(p) = 1 (hence v(∼p) = 0), v(¬p) = 1, v(q) = 1
(hence v(¬p → q) = 1) and v(r) = 1 (hence v(q → r) = 1). Additionally,
◦∼p /∈ Cn(X0) and ◦¬p /∈ Cn(X0). In order to see this, consider L-valuations
v′ and v′′ such that v′(p) = 0 (hence v′(∼p) = v′(¬p) = 1), v′(q) = 1 (hence
v′(¬p → q) = 1), v′(r) = 1 (hence v′(q → r) = 1) and v′(¬∼p) = 1 (hence
v′(◦∼p) = 0); and v′′(p) = v′′(¬p) = v′′(¬¬p) = v′′(¬¬¬p) = v′′(q) = v′′(r) = 1
(hence v′′ satisfies X0 but v′′(◦¬p) = 0).

By Lemma D (see Appendix) there exists X ∈ K⊥∼α such that X0 ⊆ X and
so the set R0 = {X ∈ K⊥∼α : X0 ⊆ X} is non-empty. Either by definition
of AGMp selection function (if we are working in AGMp), or by definition of
AGM◦ selection function (if we are working in AGM◦), it can be defined a
selection function % such that ∅ 6= %(K,∼p) ⊆ R0 and so X0 ⊆ K ÷∼p. Hence
{p,¬p, q, r} ⊆ K ∗̄ p, for some classical internal revision ∗̄ in AGMp or AGM◦.
Note that ∗̄ can satisfy ∗̄ extensionality, as observed above.

Now, let Y0 = {q, r} ⊆ K. A similar argument can be applied to show that
it is possible to have that Y0 ⊆ K÷¬p (thus {p, q, r} ⊆ K ∗p) for some internal
revision ∗ in AGMp or AGM◦ (which can satisfy ∗extensionality, if desired)
. However, ¬p /∈ K ∗ p for every internal revision ∗ in AGMp or AGM◦, by
Lemma B (see Appendix).

7.2 Paraconsistent belief revision does not coincide with
expansion!

In [24], Tanaka proposed Grove’s sphere systems in order to deal with an AGM-
like paraconsistent belief revision theory for some paraconsistent logics, includ-
ing da Costa’s paraconsistent logics Cn, for n ≥ 1 (see [6]). For the latter, he
shows a kind of trivializing property, which can be reformulated as follows. Ob-
serve that each calculus Cn is an special case of LFIs in which the consistency
operator ◦n is not primitive, but it is defined by means of a suitable combi-
nation of conjunctions and negations (see [2, Subsection 3.7]). For instance,
◦1α =def ¬(α ∧ ¬α) in C1. Thus:

Lemma ([24, Lemma 4])
Let K be a belief set in Cn, and let α be a sentence. If ◦nα /∈ K then K ∗ α =
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K + α.

This means that, in the really interesting situations, that is, when the sen-
tence α to be added is not consistent (or it is not ‘well-behaved’, according to
da Costa’s terminology) in the given belief set K, then the proposed revision
method coincides with expansion. Similar results of collapse of revision with
expansion holds for the other paraconsistent logics analyzed in [24]. This is in
line with Priest’s considerations mentioned at the beginning of this section and
motivates [11] to claim that the definition of a paraconsistent belief revision
system which does not collapse with expansion constitutes a challenge to be
tackled:

“Defining a distinct [to expansion] revision operation using para-
consistent logic, thus, remains an open question.”
(P. Girard and K. Tanaka, [11, page 3])

The limiting result pointed out by [24] in the Lemma above does not hold, in
general, in our setting: let L be mbC or any extension of it as in Definition 3.6.
Let α be a sentence and let K be a belief set in L such that ◦α /∈ K. Suppose
aditionally that ◦¬α /∈ K (in Cbr this is a consequence of the fact that ◦α /∈ K),
¬α 6∈ Cn(∅) and ¬α ∈ K. For instance, take α as a propositional variable p and
K = Cn({¬p}). Then ¬α ∈ (K + α) \ (K ∗ α) in AGMp or AGM◦, where the
internal revision ∗ can be taken as extensional or not. This constitutes a family
of counterexamples to Tanaka’s Lemma. A particular instance is the following:

Example 7.3 Recall Example 7.2. It is easy to see that ◦p /∈ K if L is mbC.10

Indeed, it is enough to consider the valuation v of Example 7.2. From this,
¬p ∈ (K + p) \ (K ∗ p) in AGMp and AGM◦. This means that K + p 6= K ∗ p in
AGMp and AGM◦, despite ◦p /∈ K. This holds for the internal revision ∗ being
extensional or not.

Thus, the very general approach to paraconsistent belief revision provided by
AGMp and AGM◦ allows us to overcome limiting results such as the ones found
in [24]. This is justified by the fact that his construction presented for each
logic (based on a special case of Grove’s spheres systems, in which each theory
is finitely axiomatizable) satisfies the AGM-like postulates, but the converse
result is not proved. That is, a representation theorem for each operation is
missing. Being so, the constructions are too specific, whence results as the
collapse of revision with expansion mentioned above could be expected. In
contrast, our proposal is based on AGM-like postulates, on the one hand, and
a family of constructions based on selection functions, on the other, obtaining
a representation theorem for each operation. With this general framework at
hand, it is possible to analyze the relationship between paraconsistency and
belief change from a broad perspective, avoiding such trivializing results.

10Note that in mbCciw (and its extensions) the sentences ∼p and ◦p∧¬p are interderivable.
Thus, given that ∼p ∈ K it follows that ◦p ∈ K.
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8 Final Remarks

This papers studies, from a very general perspective, AGM-like systems of belief
change based on paraconsistent logics. Two basic proposals were developed with
full technical details: AGMp and AGM◦. The first one is oriented to supraclassi-
cal paraconsistent logics, that its, expansions of the classical propositional logic
CPL by adding (at least) a paraconsistent negation ¬ satisfying (at least) the
law of excluded middle. It is shown that revision can be defined from contrac-
tion, as usual, by means of the Levi identity (namely, K ∗α =def (K÷¬α)+α),
and basically these operations are the same as in AGM, by changing the classical
negation ∼ by the paraconsistent negation ¬; however, some minor adjustements
are required. The real novelty of AGMp is that, capitalizing on the features of
the paraconsistent negations, it is possible to define, for belief sets, revisions
from contractions by means of the reverse Levi identity introduced by Hansson
only for belief bases, namely: K ~ α =def (K + α)÷ ¬α.

The second paradigm proposed here, AGM◦, is specifically designed for the
Logics of Formal Inconsistency (LFIs), in which a consistency operator ◦ allows
us to recover all the classical inferences (including the explosion law) within the
logic. The idea behind AGM◦ is that, if ◦α ∈ K then α cannot be retracted
from K (similar to what happens when α is a theorem of the underlying logic).
Thus, only ‘unsecure’ or ‘unreliable’ information is subject to change. Besides
contraction, both internal and external revisions are defined in AGM◦ by means
of (direct and reverse) Levi identity. Of course both the postulates and the
concrete constructions by means of selection functions must be adapted to this
setting.

Finally, Hansson’s consolidation and semi-revision for belief bases are ex-
tended to belief sets, capitalizing once again on the non-explosiveness of the
paraconsistent negation ¬. Additionally, the ‘classical’ Levi identity (that is,
w.r.t. the classical negation) was also considered for AGMp and AGM◦ in order
to define ‘classical’ internal revision (even though based on paraconsistent log-
ics). A few toy examples show that paraconsistent revision do not necessarily
coincides with plain expansion, as it is claimed by some authors.

Both systems AGMp and AGM◦ presented in this paper apprehend the
dynamics of contradictory theories, particularly represented by the operators of
external revision and semi-revision. Furthermore, AGM◦ provides to the Logics
of Formal Inconsistency an intuitive interpretation for the formal consistency
connective, as an epistemic attitude.
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Appendix: Proofs of the main results

Firstly, some general properties about tarskian logics and remainder sets will
be stated in order to prove the representation theorems. Recall the definition
of tarskian and standard propositional logics:

Definition (Tarskian and standard logics)
A logic L defined over a language L and with a consequence relation ` is tarskian
if it satisfies the following properties, for every X ∪ Y ∪ {α} ⊆ L:

(i) if α ∈ X then X ` α;

(ii) if X ` α and X ⊆ Y then Y ` α;

(iii) if X ` α and Y ` β for every β ∈ X then Y ` α.

A tarskian logic L is finitary if it satisfies the following:

(iv) if X ` α then there exists a finite subset X0 of X such that X0 ` α.

A tarskian logic L defined over a propositional language L generated by a sig-
nature from a set of propositional variables is called structural if it satisfies the
following property:

(v) if X ` α then σ[X] ` σ(α), for every substitution σ of formulas for vari-
ables.

A propositional logic is standard if it is tarskian, finitary and structural (see [30]).

All the logics considered in this paper are standard, and so ‘logic’ will stand
for ‘standard propositional logic’. The consequence operator Cn : ℘(L)→ ℘(L)
associated to a logic L is defined as follows: Cn(X) = {α ∈ L : X ` α}.

Lemma A (Distributivity)
Let L be a logic with a classical disjunction ∨ and a classical conjunction ∧.
That is, for every set of formulas X ∪ {α, β}: Cn(X ∪ {α}) ∩ Cn(X ∪ {β}) =
Cn(X ∪{α∨β}), and Cn(X ∪{α, β}) = Cn(X ∪{α∧β}). Then, the following
distributivity law holds: if ∅ 6= Xi = Cn(Xi) (for i = 1, 2) then

Cn(X1 ∪ {α}) ∩ Cn(X2 ∪ {α}) = Cn((X1 ∩X2) ∪ {α})
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for every formula α.

Proof. By monotonicity of Cn, Cn((X1 ∩ X2) ∪ {α}) ⊆ Cn(Xi ∪ {α}) (for
i = 1, 2). Thus Cn((X1∩X2)∪{α}) ⊆ Cn(X1∪{α})∩Cn(X2∪{α}). Now, let
β ∈ Cn(X1∪{α})∩Cn(X2∪{α}). Then β ∈ Cn(Xi∪{α}) and so, by finitariness
and monotonicity of Cn, there exists a finite set of formulas Fi ⊆ Xi such that
β ∈ Cn(Fi ∪ {α}), for i = 1, 2. By monotonicity of Cn, it can be assumed
that each Fi has at least one element. Since L has a classical conjunction ∧
then there exists a formula αi (the conjunction of the elements of Fi) such that
β ∈ Cn({αi}∪ {α}), for i = 1, 2. Since L has a classical disjunction ∨ it follows
that β ∈ Cn({α1 ∨ α2} ∪ {α}). But α1 ∨ α2 ∈ Cn(X1) ∩ Cn(X2) = X1 ∩X2,
hence β ∈ Cn((X1 ∩X2) ∪ {α}). 2

Lemma B Let L be a logic with a classical disjunction ∨ (see Lemma A) and
with a negation ¬ such that ` α∨¬α in L, for every formula α. Let X∪{α} ⊆ L.
Then,

X,α ` ¬α implies X ` ¬α.

Proof. Suppose that X,α ` ¬α. Since L is a tarskian logic then X,¬α ` ¬α.
By the basic property of disjunction ∨ (see Lemma A) it follows that X,α∨¬α `
¬α. But ` α ∨ ¬α by hypothesis and then X ` ¬α, since L is tarskian. 2

Lemma C If X ∈ K⊥α, then X ∈ Th(L).

Proof. Let X ∈ K⊥α. If β ∈ Cn(X) \X then α ∈ Cn(X ∪ {β}). Since L is
tarskian, this implies that α ∈ Cn(X), a contradiction. Then X = Cn(X) and
so X ∈ Th(L). 2

Next result, a fundamental one, is an adaptation to the present framework
of a well-known result due to Lindembaum- Los.

Lemma D (Upper-bound)
Let K be a belief set in L and α ∈ K. If X ⊆ K is such that α 6∈ Cn(X), then
there is a set X ′ ∈ K⊥α such that X ⊆ X ′.

Proof. First, assuming that the language L is denumerable, let us arrange the
sentences of K into a sequence β1, β2, . . . (if L is not denumerable, the proof
above must be extended in order to use transfinite induction). Let X = X0 and
for each n ≥ 0 we define Xn+1 as follows:

Xn+1 =

{
Xn if α ∈ Cn(Xn ∪ {βn+1})
Xn ∪ {βn+1} otherwise

.

By construction, for every n, α 6∈ Cn(Xn). Let X ′ =
⋃
nXn. It is easy to

verify that X ⊆ X ′ ⊆ K. By compactness, if α ∈ Cn(X ′) then α ∈ Cn(X ′′) for
some finite X ′′ ⊆ K. It follows that α ∈ Cn(Xn) for some n, a contradiction.
Then α 6∈ Cn(X ′). Moreover, if β ∈ K and β 6∈ X ′ then, in particular, β 6∈ Xn+1

where n + 1 is such that β = βn+1. This means that α ∈ Cn(Xn ∪ {β}), by
construction, and so α ∈ Cn(X ′ ∪ {β}), by monotonicity. Thus, X ′ ∈ K⊥α. 2

37



Corollary E
Let K be a belief set in L. Then α ∈ K \ Cn(∅) if and only if K⊥α 6= ∅.
Proof. ‘Only if’ part: Let α ∈ K \ Cn(∅) and take X = ∅ in Lemma D. It
guarantees that K⊥α 6= ∅.
‘If’ part: By Definition 2.3 of remainder, if α /∈ K or α ∈ Cn(∅) then K⊥α = ∅.
2

Theorem 4.6
An operation ∗ : Th(L)×L→ Th(L) is an AGMp internal revision over L iff it
is an internal partial meet revision operator over L, that is: there is an AGMp
selection function γ in L such that K ∗α =

(⋂
γ(K,¬α)

)
+α = (K÷γ ¬α)+α,

for every K and α.

Proof.
(construction ⇒ postulates)
Let γ be an AGMp selection function, and define K ∗α =

(⋂
γ(K,¬α)

)
+α

for every (K,α) ∈ Th(L)× L. We have to prove that ∗ satisfies the postulates
for internal AGMp partial meet revision of Definition 4.5.

The satisfaction of the ∗closure, ∗success and ∗inclusion postulates follows from
the construction (and the definition of γ).

∗vacuity: Suppose that ¬α 6∈ K. Hence γ(K,¬α) = {K} (by Corollary E and
Definition 4.3). From this, K ∗ α =

(⋂
γ(K,¬α)

)
+ α = K + α.

∗non-contradiction: Suppose that ¬α /∈ Cn(∅). If K⊥¬α 6= ∅ then ∅ 6=
γ(K,¬α) ⊆ K⊥¬α and so ¬α /∈ K ′ =

⋂
γ(K,¬α). By Lemma B, ¬α /∈

K ′ + α = K ∗ α. On the other hand, if K⊥¬α = ∅ then γ(K,¬α) = {K}
and so K ∗ α = K + α. By Corollary E, ¬α /∈ K or ¬α ∈ Cn(∅). But
¬α /∈ Cn(∅), hence ¬α /∈ K. By Lemma B, ¬α /∈ K + α = K ∗ α.

∗relevance: Let β ∈ K \K ∗α. Then β /∈
(⋂

γ(K,¬α)
)

+α whence there exists
X ∈ K⊥¬α such that β 6∈ X. By definition of ∗, K∩(K∗α) ⊆ K∩(X+α).
Observe that X ⊆ K ∩ (X +α). Suppose that there exists ψ ∈ (K ∩ (X +
α)) \ X. Then X,ψ ` ¬α (since X ∈ K⊥¬α). But X,α ` ψ, therefore
X,α ` ¬α. Then X ` ¬α by Lemma B, a contradiction. This means that
X = K ∩ (X + α) and so K ∩ (K ∗ α) ⊆ X = Cn(X) ⊆ K. From the fact
that X ∈ K⊥¬α, it follows that ¬α /∈ Cn(X) and ¬α ∈ Cn(X) +β, since
β ∈ K \X.

(postulates ⇒ construction)
Let ∗ be an operator satisfying the postulates of Definition 4.5 and consider

a function γ : Th(L)× L −→ ℘(Th(L)) \ {∅} defined as follows:
(i) Suppose that (K,β) ∈ Th(L)× L is such that β = ¬α for some α. Then

γ(K,β) =

{
{X ∈ K⊥¬α : K ∩ (K ∗ α) ⊆ X} if K⊥¬α 6= ∅,

{K} otherwise
.
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(ii) Otherwise (that is, if β 6= ¬α), let

γ(K,β) =

{
K⊥β if K⊥β 6= ∅,

{K} otherwise
.

It will be proven that (1) γ is an AGMp selection function, and (2) K ∗α =(⋂
γ(K,¬α)

)
+ α for every (K,α).

1. If K⊥¬α = ∅ then γ(K,¬α) = {K}. If K⊥¬α 6= ∅, it must be proven
that γ(K,¬α) 6= ∅. By Corollary E, ¬α ∈ K \ Cn(∅). Then, by ∗non-
contradiction, ¬α 6∈ K ∗ α. From this, ¬α 6∈ K ∩ (K ∗ α) ⊆ K. By
Lemma D, there exists X ′ ∈ K⊥¬α such that K ∩ (K ∗ α) ⊆ X ′, hence
X ′ ∈ γ(K,¬α) and then γ(K,¬α) 6= ∅.

2. Firstly it will be proven that K ∗α ⊆
(⋂

γ(K,¬α)
)

+α. By construction,

K∩ (K ∗α) ⊆
⋂
γ(K,¬α). Hence,

(
K∩ (K ∗α)

)
+α ⊆

(⋂
γ(K,¬α)

)
+α.

Since the logic L satisfies the hypothesis of Lemma A, and K and K∗α are
non-empty closed theories of L, it follows that

(
K ∩ (K ∗ α)

)
+ α = (K +

α)∩ ((K ∗α)+α). From this, (K+α)∩ ((K ∗α)+α) ⊆
(⋂

γ(K,¬α)
)

+α.
By ∗success and ∗inclusion, (K ∗ α) + α = K ∗ α ⊆ K + α. From this,
K ∗α ⊆

(⋂
γ(K,¬α)

)
+α. In order to prove the other inclusion, suppose

by absurd that β ∈
(⋂

γ(K,¬α)
)
\ (K ∗ α). Since

⋂
γ(K,¬α) ⊆ K then

β ∈ K \ (K ∗ α). By ∗relevance, there exists X such that K ∩ (K ∗
α) ⊆ Cn(X) ⊆ K, ¬α /∈ Cn(X), and ¬α ∈ Cn(X) + β. From this,
¬α ∈ K \ Cn(∅). By Corollary E, K⊥¬α 6= ∅ and so γ(K,¬α) = {X ∈
K⊥¬α : K ∩ (K ∗ α) ⊆ X}. By Lemma D and Lemma C, there exists
X ′ ∈ K⊥¬α such that K ∩ (K ∗ α) ⊆ Cn(X) ⊆ X ′ = Cn(X ′). This
means that X ′ ∈ γ(K,¬α) and so

⋂
γ(K,¬α) ⊆ X ′. Thus, β ∈ X ′. But

¬α ∈ Cn(X)+β, then ¬α ∈ Cn(X ′), a contradiction (since X ′ ∈ K⊥¬α).
Therefore

⋂
γ(K,¬α) ⊆ K ∗α. From this,

(⋂
γ(K,¬α)

)
+α ⊆ (K ∗α) +

α = K ∗ α, by ∗success.

2

Theorem 4.8
An operation ~ : Th(L) × L → Th(L) is an AGMp external revision over L
iff it is an external partial meet revision operator over L, that is: there is an
AGMp selection function γ in L such that K ~ α =

⋂
γ(K + α,¬α), for every

K and α.

Proof. (construction ⇒ postulates)

~closure: By the definition of ~.

~success: Suppose that (K + α)⊥¬α 6= ∅ and let X ∈ (K + α)⊥¬α such
that α 6∈ X. Consider X ′ = X ∪ {α}. Since X ⊂ X ′ ⊆ K + α then
¬α ∈ Cn(X ′), by item (iii) of Definition 2.3, that is, X,α ` ¬α. Hence
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X ` ¬α by Lemma B. But this contradicts the fact that ¬α 6∈ Cn(X),
by item (ii) of Definition 2.3. Hence α ∈ X for every X ∈ (K + α)⊥¬α.
Thus, if (K + α)⊥¬α 6= ∅ then α ∈

⋂
γ(K + α,¬α) = K ~ α. Now, if

(K + α)⊥¬α = ∅ then α ∈
⋂
γ(K + α,¬α) = K ~ α, since in this case

γ(K + α,¬α) = {K + α}, by Definition 5.10 (and obviously α ∈ K + α).

~inclusion: Clearly K ~ α =
⋂
γ(K + α,¬α) ⊆ K + α, by definitions 2.3

and 4.3.

~non-contradiction: Supose that ¬α ∈ K ~ α = (K + α)÷γ ¬α. By Theorem
4.4 and ÷success (see Definition 4.2), it follows that ¬α ∈ Cn(∅).

~relevance: Let β ∈ K \ ((K +α)÷γ ¬α). Hence (K +α)⊥¬α 6= ∅ (otherwise
K ~ α = (K + α) ÷γ ¬α = K + α and then K \ ((K + α) ÷γ ¬α) = ∅,
a contradiction). Then there exists X ∈ γ(K + α,¬α) ⊆ (K + α)⊥¬α
such that β 6∈ X. By Lemma C, X = Cn(X). By definition of ~,
K ~ α ⊆ X ⊆ K + α. Let X ′ = Cn(X ∪ {β}). Hence X ⊂ X ′ ⊆ K + α
(since β ∈ K). By Definition 2.3, ¬α /∈ Cn(X) and X ′ ` ¬α, that is,
X,β ` ¬α.

~pre-expansion: (K+α)~α = ((K+α)+α)÷γ ¬α = (K+α)÷γ ¬α = K~α.

(postulates ⇒ construction)
Let ~ be an operator satisfying the postulates of Definition 4.7 and consider a
function γ : Th(L)× L −→ ℘(Th(L)) \ {∅} defined as follows:
(i) Suppose that (K,β) ∈ Th(L) × L is such that β = ¬α for some α, where
α ∈ K. Then

γ(K,β) =

{
{X ∈ K⊥¬α : K ~ α ⊆ X} if K⊥¬α 6= ∅,

{K} otherwise
.

(ii) Otherwise (that is, if β 6= ¬α, or β = ¬α but α /∈ K), let

γ(K,β) =

{
K⊥β if K⊥β 6= ∅,

{K} otherwise
.

We will prove that (1) it is an AGMp selection function (recall Definition 4.3),
and (2) K ~ α =

⋂
γ(K + α,¬α).

1. It is obvious that item (ii) of the definition of γ characterizes a selection
function in the sense of Definition 4.3. For item (i), suppose that α ∈ K
(and so K = K + α). Clearly γ(K,¬α) ⊆ K⊥¬α when K⊥¬α 6= ∅,
and γ(K,¬α) = {K} otherwise. It remains to prove that γ(K,¬α) 6= ∅
if K⊥¬α 6= ∅. Then, suppose that K⊥¬α 6= ∅. Hence ¬α 6∈ Cn(∅) by
Corollary E. By ~non-contradiction it is the case that ¬α 6∈ K ~ α. By
~closure and ~inclusion, ¬α 6∈ K~α = Cn(K~α) ⊆ K+α = K. Hence,
by Lemma D, there exists X ∈ K⊥¬α such that K~α ⊆ X (observe that
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K⊥¬α 6= ∅ implies, by Corollary E, that ¬α ∈ K and so Lemma D can
be applied). Then X ∈ γ(K,¬α) and so γ(K,¬α) 6= ∅ if K⊥¬α 6= ∅.

2. Now let us prove that K ~ α = (K + α)÷ ¬α =
⋂
γ(K + α,¬α).

(a) Suppose that (K + α)⊥¬α 6= ∅. Then ¬α ∈ K + α, by Corollary E.
Clearly K ~ α ⊆

⋂
γ(K + α,¬α) by definition of γ. Let β 6∈ K ~ α.

We have to prove that there exists X ∈ γ(K + α,¬α) such that
β 6∈ X. If β 6∈ K + α then β 6∈ X for any X ∈ γ(K + α,¬α) (since
every X ∈ γ(K + α,¬α) is contained in K + α). Suppose now that
β ∈ K + α. By ~pre-expansion β 6∈ (K + α) ~ α and then, by
~relevance, there exists Z such that K ~ α = (K + α) ~ α ⊆ Z ⊆
(K + α) + α = K + α, ¬α 6∈ Cn(Z) and ¬α ∈ Cn(Z) + β. By
Lemma D there exists X ∈ (K + α)⊥¬α such that K ~ α ⊆ Z ⊆ X.
Hence X ∈ γ(K + α,¬α). Since ¬α ∈ Cn(Z) + β, then X,β ` ¬α
and hence X 0 β (otherwise X ` ¬α). Then β 6∈ X as required. It
proves that K ~ α =

⋂
γ(K + α,¬α) if (K + α)⊥¬α 6= ∅.

(b) Finally suppose that (K + α)⊥¬α = ∅. Then
⋂
γ(K + α,¬α) =

K + α, by definition of γ, whence K ~ α ⊆ K + α by ~inclusion.
On the other hand, if there exists β ∈ (K + α) \ (K ~ α) then, by
~pre-expansion and ~relevance, there is a set X ⊆ K + α such that
¬α 6∈ Cn(X) (hence ¬α 6∈ Cn(∅)) but ¬α ∈ Cn(X) + β (hence
¬α ∈ K + α). By Corollary E, (K + α)⊥¬α 6= ∅, a contradiction.
Then K ~ α = K + α =

⋂
γ(K + α,¬α).

2

Theorem 5.11
An operation ÷ : Th(L) × L −→ Th(L) satisfies the postulates of AGM◦ con-
traction iff there exists an AGM◦ selection function ς in L such that K ÷ α =⋂
ς(K,α), for every K and α.

Proof. (construction ⇒ postulates)

÷closure: Since every X ∈ K⊥α is a closed theory (by Lemma C) and K itself
is a closed theory, then K ÷ς α =

⋂
ς(K,α) is a closed theory, since the

intersection of closed theories is also closed.

÷success: Suppose that α /∈ Cn(∅) and ◦α /∈ K. If K⊥α = ∅ then α /∈ K, by
Corollary E. Then α /∈

⋂
ς(K,α) since, in this case, ς(K,α) = {K}. On

the other hand, if K⊥α 6= ∅ then ∅ 6= ς(K,α) ⊆ K⊥α. But α /∈ X for
every X ∈ K⊥α and so α /∈

⋂
ς(K,α).

÷inclusion: Follows directly from the construction.

÷failure: Follows directly from the construction.

÷relevance: If β ∈ K \(K÷ςα) then there exists X ∈ ς(K,α) such that β /∈ X.
By definition of K⊥α and by Lemma C, K ÷ς α ⊆ X = Cn(X) ⊆ K,
α /∈ Cn(X) and α ∈ Cn(X ∪ {β}) = Cn(X) + β.

41



(postulates ⇒ construction)
Let ÷ be an operator satisfying the postulates for AGM◦ contraction of

Definition 5.9 and let ς be the following function:

ς(K,α) =

{
{X ∈ K⊥α : K ÷ α ⊆ X} if ◦α /∈ K and K⊥α 6= ∅,

{K} otherwise
.

We have to prove that 1) ς is an AGM◦ selection function, and 2) K ÷ α =⋂
ς(K,α).

1. The fact that ς(K,α) ⊆ Th(L) follows directly by construction. If ◦α /∈ K
and K⊥α 6= ∅ then α ∈ K and α /∈ Cn(∅), by Corollary E. Then, the
÷success and ÷inclusion postulates guarantee that α /∈ K ÷ α ⊆ K. By
Lemma D, there exists X such that K÷α ⊆ X ∈ K⊥α, whence ς(K,α) 6=
∅. On the other hand, if ◦α ∈ K or K⊥α = ∅ then ς(K,α) = {K}.

2. Note that K ÷ α ⊆
⋂
ς(K,α) = K ÷ς α by construction. Suppose that

β ∈
⋂
ς(K,α) \ (K ÷ α). Then, β ∈ K \ (K ÷ α), since

⋂
ς(K,α) ⊆ K by

definition. By ÷relevance, there exists X such that K ÷ α ⊆ Cn(X) ⊆ K
and α /∈ Cn(X), but α ∈ Cn(X) + β. Thus, α ∈ K \ (K ÷ α). By
Lemma D, there exists X ′ ∈ K⊥α such that X ⊆ X ′, whence K⊥α 6= ∅.
By ÷failure, ◦α /∈ K. Thus, by definition of ς(K,α), X ′ ∈ ς(K,α). From
this, β ∈ X ′. But α ∈ Cn(X) + β, hence α ∈ Cn(X ′) + β. This means
that α ∈ Cn(X ′), a contradiction. Therefore K ÷ α =

⋂
ς(K,α).

2

Theorem 5.13
An operation ∗ : Th(L)×L −→ Th(L) over L satisfies the postulates for internal
partial meet AGM◦ revision (see Definition 5.12) if and only if there exists an
AGM◦ selection function ς in L such that K ∗α =

(⋂
ς(K,¬α)

)
+α, for every

K and α.

Proof.
(construction ⇒ postulates)
Let ς be an AGM◦ selection function (recall Definition 5.10), and define

K ∗ α =
(⋂

ς(K,¬α)
)

+ α for every (K,α) ∈ Th(L) × L. We have to prove
that ∗ satisfies the postulates for internal AGM◦ partial meet revision of Defi-
nition 5.12.

The satisfaction of the ∗closure, ∗success and ∗inclusion postulates follows from
the construction (and the definition of ς).

∗vacuity: Suppose that ¬α 6∈ K. This implies that ς(K,¬α) = {K}, by
Corollary E and Definition 5.10. Therefore K ∗ α =

(⋂
ς(K,¬α)

)
+ α =

K + α.

∗non-contradiction: Suppose that ¬α /∈ Cn(∅) and ◦¬α /∈ K. If K⊥¬α 6= ∅
then ∅ 6= ς(K,¬α) ⊆ K⊥¬α and so ¬α /∈ K ′ =

⋂
ς(K,¬α). By Lemma B,
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¬α /∈ K ′ + α = K ∗ α. On the other hand, if K⊥¬α = ∅ then ς(K,¬α) =
{K} and so K ∗α = K+α. By Corollary E, ¬α /∈ K or ¬α ∈ Cn(∅). But
¬α /∈ Cn(∅), hence ¬α /∈ K. By Lemma B, ¬α /∈ K + α = K ∗ α.

∗failure: If ◦¬α ∈ K then K ′ =
⋂
ς(K,¬α) is K, by definition of ς. Hence

K ∗ α = K ′ + α = K + α.

∗relevance: It is proved as in the proof of Theorem 4.6 for the corresponding
postulate.

(postulates ⇒ construction)
Let ∗ be an operator satisfying the postulates of AGM◦ internal revision and

consider a function ς : Th(L)× L −→ ℘(Th(L)) \ {∅} defined as follows:
(i) Suppose that (K,β) ∈ Th(L)× L is such that β = ¬α for some α. Then

ς(K,β) =

{
{X ∈ K⊥¬α : K ∩ (K ∗ α) ⊆ X} if ◦¬α 6∈ K and K⊥¬α 6= ∅,

{K} otherwise
.

(ii) Otherwise (that is, if β 6= ¬α), let

ς(K,β) =

{
K⊥β if K⊥β 6= ∅,

{K} otherwise
.

It will be proven that (1) ς is an AGM◦ selection function (recall Defini-
tion 5.10), and (2) K ∗ α =

(⋂
ς(K,¬α)

)
+ α for every (K,α).

1. If K⊥¬α = ∅ then ς(K,¬α) = {K}. If K⊥¬α 6= ∅, it must be proven
that ς(K,¬α) 6= ∅. By Corollary E, ¬α ∈ K \ Cn(∅). If ◦¬α ∈ K
then ς(K,¬α) = {K} 6= ∅. If ◦¬α /∈ K then, by ∗non-contradiction,
¬α 6∈ K ∗ α. From this, ¬α 6∈ K ∩ (K ∗ α) ⊆ K. By Lemma D, there
exists X ′ ∈ K⊥¬α such that K ∩ (K ∗α) ⊆ X ′, hence X ′ ∈ ς(K,¬α) and
then ς(K,¬α) 6= ∅.

2. Firstly it will be proven that K ∗ α ⊆
(⋂

ς(K,¬α)
)

+ α. By the very

construction, K ∩ (K ∗ α) ⊆
⋂
ς(K,¬α). Hence,

(
K ∩ (K ∗ α)

)
+ α ⊆(⋂

ς(K,¬α)
)

+α. Since the logic L satisfies the hypothesis of Lemma A,

and K and K ∗α are non-empty closed theories of L, it follows that
(
K ∩

(K ∗α)
)
+α = (K+α)∩((K ∗α)+α). From this, (K+α)∩((K ∗α)+α) ⊆(⋂

ς(K,¬α)
)
+α. By ∗success and ∗inclusion, (K∗α)+α = K∗α ⊆ K+α.

From this, K∗α ⊆
(⋂

ς(K,¬α)
)
+α. In order to prove the other inclusion,

there are two cases to analyze:

(a) If ◦¬α ∈ K then, by ∗failure, K ∗α = K +α. Using Corollary E and
definition of ς it follows that ς(K,¬α) = {K}, hence

(⋂
ς(K,¬α)

)
+

α = K + α = K ∗ α.
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(b) If ◦¬α /∈ K, suppose by absurd that β ∈
(⋂

ς(K,¬α)
)
\ (K ∗ α).

Then β ∈ K \ (K ∗ α), since
⋂
ς(K,¬α) ⊆ K . Using ∗relevance,

there exists X such that K ∩ (K ∗ α) ⊆ Cn(X) ⊆ K, ¬α /∈ Cn(X),
and ¬α ∈ Cn(X) + β. Thus, ¬α ∈ K \ Cn(∅). Using Corollary E
it follows that K⊥¬α 6= ∅, whence ς(K,¬α) = {X ∈ K⊥¬α :
K ∩ (K ∗ α) ⊆ X}. By Lemma D and Lemma C, there exists X ′ ∈
K⊥¬α such that K ∩ (K ∗ α) ⊆ Cn(X) ⊆ X ′ = Cn(X ′). But then
X ′ ∈ ς(K,¬α) and so

⋂
ς(K,¬α) ⊆ X ′. As a consequence of this,

β ∈ X ′. But ¬α ∈ Cn(X) + β, then ¬α ∈ Cn(X ′), a contradiction
(sinceX ′ ∈ K⊥¬α). This means that

⋂
ς(K,¬α) ⊆ K∗α. Therefore,(⋂

ς(K,¬α)
)

+ α ⊆ (K ∗ α) + α = K ∗ α, by ∗success.

2

Theorem 5.15
An operation ~ : Th(L) × L −→ Th(L) over L satisfies the postulates for
external partial meet AGM◦ revision (see Definition 5.14) iff there is an AGM◦
selection function ς in L such that K~α =

⋂
ς(K+α,¬α), for every K and α.

Proof. (construction ⇒ postulates)

~closure: It follows as in the proof of Theorem 5.11.

~success: Suppose that ◦¬α ∈ K or (K + α)⊥¬α = ∅. Then, ς(K + α,¬α) =
{K+α} by definition and so α ∈ K+α =

⋂
ς(K+α,¬α). Now, suppose

that ◦¬α /∈ K and (K + α)⊥¬α 6= ∅. Let X ∈ (K + α)⊥¬α, and suppose
by absurd that α /∈ X = Cn(X). Then X ⊂ X ∪ {α} ⊆ K + α and
so X,α ` ¬α (by item (iii) of Definition 2.3). But then X ` ¬α, by
Lemma B, a contradiction. Therefore α ∈ X for every X ∈ (K + α)⊥¬α
and so α ∈

⋂
ς(K + α,¬α).

~inclusion: It follows by construction.

~non-contradiction: Suppose that ¬α /∈ Cn(∅) and ◦¬α /∈ K + α. If (K +
α)⊥¬α = ∅ then ς(K+α,¬α) = {K+α} and ¬α /∈ K+α, by Corollary E.
This implies that

⋂
ς(K +α,¬α) = K +α, whence ¬α /∈

⋂
ς(K +α,¬α).

On the other hand, if (K + α)⊥¬α 6= ∅ then ∅ 6= ς(K + α,¬α) ⊆ (K +
α)⊥¬α. This implies that ¬α /∈

⋂
ς(K + α,¬α).

~failure: Suppose that ◦¬α ∈ K + α. By Definition 5.10, ς(K + α,¬α) =
{K + α}. Then

⋂
ς(K + α,¬α) = K + α.

~relevance: Let β ∈ K\
⋂
ς(K+α,¬α). Therefore (K+α)⊥¬α 6= ∅ (otherwise,⋂

ς(K + α,¬α) = K + α and so K \
⋂
ς(K + α,¬α) = K \ (K + α) = ∅,

a contradiction). Hence, there exists X ∈ ς(K + α,¬α) ⊆ (K + α)⊥¬α
such that β /∈ X. By construction and Lemma C,

⋂
ς(K + α,¬α) ⊆ X =

Cn(X) ⊆ K + α. Let X ′ = X ∪ {β}. Therefore X ⊂ X ′ ⊆ K + α by the
fact that β ∈ K. Then ¬α ∈ Cn(X ′) and hence ¬α ∈ Cn(X) + β, while
¬α /∈ Cn(X).
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~pre-expansion:
⋂
ς((K + α) + α,¬α) =

⋂
ς(K + α,¬α).

(postulates ⇒ constructions)
Let ~ be an operator satisfying the postulates of AGM◦ external revision

and consider a function ς : Th(L)× L −→ ℘(Th(L)) \ {∅} defined as follows:
(i) Suppose that (K,β) ∈ Th(L) × L is such that β = ¬α for some α, where
α ∈ K. Then

ς(K,β) =

{
{X ∈ K⊥¬α : K ~ α ⊆ X} if ◦¬α /∈ K and K⊥¬α 6= ∅,

{K} otherwise
.

(ii) Otherwise (that is, if β 6= ¬α, or β = ¬α but α /∈ K), let

ς(K,β) =

{
K⊥β if K⊥β 6= ∅,

{K} otherwise
.

We have to prove that (1) ς is an AGM◦ selection function (see Definition 5.10),
and (2) K ~ α =

⋂
ς(K + α,¬α).

1. By considering the case (ii) of the construction of ς, it is clear that the
conditions of Definition 5.10 are fullfilled. Now, suppose that α ∈ K
(hence K = K + α) and let us analyze the definition of ς(K,¬α). If
K⊥¬α = ∅ then ς(K,¬α) = {K} as required. It remains to prove that
∅ 6= ς(K,¬α) if K⊥¬α 6= ∅, and that ς(K,¬α) ⊆ K⊥¬α if, additionally,
◦¬α /∈ K. The latter holds by the very definition of ς. Suppose then that
K⊥¬α 6= ∅; by Corollary E, ¬α 6∈ Cn(∅), and ¬α ∈ K. If ◦¬α ∈ K
then ς(K,¬α) = {K} 6= ∅. Finally, if ◦¬α 6∈ K then ς(K,¬α) = {X ∈
K⊥¬α : K~α ⊆ X}. By ~non-contradiction, ¬α 6∈ K~α. By ~closure
and ~inclusion, ¬α 6∈ K ~ α = Cn(K ~ α) ⊆ K + α = K. By Lemma D
(recalling that ¬α ∈ K), there exists X ∈ K⊥¬α such that K ~ α ⊆ X.
This means that X ∈ ς(K,¬α), whence ς(K,¬α) 6= ∅.

2. Suppose firstly that ◦¬α /∈ K+α and (K+α)⊥¬α 6= ∅. Then ¬α ∈ K+α
and ¬α /∈ Cn(∅). By construction, K ~ α ⊆

⋂
ς(K + α,¬α). In order

to prove the converse inclusion, let β /∈ K ~ α. It is enough to prove
that there exists X ∈ ς(K + α,¬α) such that β 6∈ X. If β 6∈ K + α
then β 6∈ X for every X ∈ ς(K + α,¬α) (since X ⊆ K + α for every
X ∈ ς(K + α,¬α)). Suppose now that β ∈ K + α. By ~pre-expansion,
β /∈ (K+α)~α and then, by ~relevance, there exists Z such that K~α =
(K + α) ~ α ⊆ Cn(Z) ⊆ (K + α) + α = K + α, ¬α /∈ Cn(Z) and
¬α ∈ Cn(Z) + β. By Lemma D (taking into account that ¬α ∈ K + α),
there exists X ∈ (K + α)⊥¬α such that K ~ α ⊆ Cn(Z) ⊆ X. Hence,
X ∈ ς(K + α,¬α). Since ¬α ∈ Cn(Z) + β, then ¬α ∈ X + β and
therefore β /∈ X = Cn(X) (otherwise, ¬α ∈ Cn(X)). It follows that
β /∈

⋂
ς(K+α,¬α). From this it is concluded thatK~α =

⋂
ς(K+α,¬α).
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Finally, suppose that ◦¬α ∈ K +α or (K +α)⊥¬α = ∅. By construction,
it follows that

⋂
ς(K + α,¬α) = K + α. Hence K ~ α ⊆

⋂
ς(K + α,¬α),

by ~inclusion. There are two case to analyze:

(a) If ◦¬α ∈ K+α then, by ~failure, K~α = K+α =
⋂
ς(K+α,¬α).

(b) If (K+α)⊥¬α = ∅ then, by Corollary E, ¬α /∈ K+α or ¬α ∈ Cn(∅).
Suppose (by absurd) that there exists β ∈ (K + α) \ (K ~ α). By
~pre-expansion, β ∈ (K + α) \ ((K + α) ~ α). By ~relevance, there
exists X ⊆ K + α such that ¬α /∈ Cn(X) and ¬α ∈ Cn(X) + β.
But then ¬α ∈ K + α and ¬α /∈ Cn(∅), a contradiction. From this
K ~ α = K + α =

⋂
ς(K + α,¬α).

2

Theorem 4.14 (Representation for extensional AGMp contraction)

Proof. The proof is similar to the one for standard AGM, with minor differences
with respect to ÷extensionality, on the one hand, and the first property of the
selection function, on the other. Let us concentrate on these differences:

(construction ⇒ postulates)
Let γ be a general AGMp selection function. In order to prove that K÷γα =⋂
γ(K,α) satisfies ÷extensionality, suppose that α ≡L β and ¬α ≡L ¬β. By

Definition 4.13, γ(K,α) = γ(K,β). Being so, K ÷γ α = K ÷γ β.
(postulates ⇒ construction)
Suppose now that ÷ is an extensional AGMp contraction over L, and define

a function γ as follows:

γ(K,α) =

{
{X ∈ K⊥α : K ÷ α ⊆ X} if K⊥α 6= ∅,

{K} otherwise
.

We have to prove that 1) γ is a general AGMp selection function, and 2) K ÷
α =

⋂
γ(K,α). For 1), it is enough to prove that item 1 of Definition 4.13 is

satisfied (since the other properties are proved as in classical AGM, using AGM-
compliance). Thus, suppose that α ≡L β and ¬α ≡L ¬β. Then K⊥α = K⊥β,
and K ÷ α = K ÷ β, by ÷extensionality. This means that γ(K,α) = γ(K,β).
The proof of 2) is as in classical AGM, using AGM-compliance (observe that
÷extensionality is not used here). 2

Theorem 4.15 (Representation for extensional AGMp internal revi-
sion)

Proof. It is similar to the one given for Theorem 4.6, with the following changes:
(construction ⇒ postulates)
Given a general AGMp selection function γ, it is necessary to prove that

K ∗ α =
(⋂

γ(K,¬α)
)

+ α satisfies, additionally, ∗extensionality. Thus, sup-
pose that α ≡L β and ¬α ≡L ¬β. Then ¬¬α ≡L α ≡L β ≡L ¬¬β and so
γ(K,¬α) = γ(K,¬β), by Definition 4.13. From this, K ∗ α =

(⋂
γ(K,¬α)

)
+
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α =
(⋂

γ(K,¬β)
)

+ α =
(⋂

γ(K,¬β)
)

+ β = K ∗ β.

(postulates ⇒ construction)
Let ∗ be an operator satisfying the postulates of an external AGMp internal

revision and consider a function γ : Th(L) × L −→ ℘(Th(L)) \ {∅} defined as
follows:

γ(K,α) =

{
{X ∈ K⊥α : K ∩ (K ∗ ¬α) ⊆ X} if K⊥α 6= ∅,

{K} otherwise
.

With a proof similar to that for Theorem 4.6, it can be seen that 1) γ is an
AGMp selection function, and 2) K ∗ α =

(⋂
γ(K,¬α)

)
+ α for every (K,α).

To see 1), the only detail to be taken into account is that α ≡L ¬¬α (and
so ¬α ≡L ¬¬¬α), whence K ∗ α = K ∗ ¬¬α by ∗extensionality. Finally, using
again ∗extensionality, it is immediate to prove that γ is, in fact, a general AGMp
selection function.

2

Theorem 4.16 (Representation for extensional AGMp external revi-
sion)

Proof. It is similar to the one given for Theorem 4.8, with minor changes.
These changes are analogous to the ones given in the proof of Theorem 4.15.
The details are left to the reader. 2

Theorem 5.20 (Representation for extensional AGM◦ contraction)

Proof. It is similar to the one given for Theorem 5.11, with minor changes.
These changes are analogous to the ones given in the respective proof of the-
orems 4.15 and 4.16. For instance, in order to see that, given an extensional
AGM◦ contraction ÷, the induced mapping ς is a general AGM◦ selection func-
tion, it is enough to observe the following: if α ≡L β, ¬α ≡L ¬β and ◦α ≡L ◦β
then K ÷ α = K ÷ β, K⊥α = K⊥β, and ◦α ∈ K iff ◦β ∈ K. From this
ς(K,α) = ς(K,β). The details are left to the reader. 2

Theorem 5.21 (Representation for extensional AGM◦ internal revi-
sion)

Proof. It is similar to the one given for Theorem 5.13, with minor changes.
These changes are analogous to the ones given in the proof of Theorem 4.15.
For instance, in order to see that, given an extensional AGM◦ internal revision
∗, the induced mapping ς is a general AGM◦ selection function, observe that ς
must be defined as follows:

ς(K,α) =

{
{X ∈ K⊥α : K ∩ (K ∗ ¬α) ⊆ X} if K⊥α 6= ∅,

{K} otherwise
.

Now, it is enough to observe the following: if α ≡L β, ¬α ≡L ¬β and
◦α ≡L ◦β then ¬¬α ≡L ¬¬β and so K ∗ ¬α = K ∗ ¬β. On the other hand,
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K⊥α = K⊥β, and ◦α ∈ K iff ◦β ∈ K. From this ς(K,α) = ς(K,β). The
details are left to the reader. 2

Theorem 5.22 (Representation for extensional AGM◦ external revi-
sion)

Proof. It is similar to the one given for Theorem 5.15, with minor changes.
These changes are analogous to the ones given in the proof of theorem 5.21. 2

The upper-bound lemma (Lemma D) as well as its corollary (Corollary E)
can be generalized for sets, taking into account Definition 6.4.

Lemma F If X ∈ K⊥A then X ∈ Th(L). Proof. It is analogous to the proof
of Lemma C. 2

Lemma G (Upper-bound for sets)
Let K be a belief set in L, and ∅ 6= A ⊂ L such that K ∩ A 6= ∅. Let X ⊆ K
such that Cn(X) ∩A = ∅. Then, there exists X ′ ∈ K⊥PA such that X ⊆ X ′.

Proof. It is analogous to the proof of Lemma D, but now Xn+1 is defined as
follows:

Xn+1 =

{
Xn if Cn(Xn ∪ {βn+1}) ∩A 6= ∅
Xn ∪ {βn+1} otherwise

2

Corollary H Let K be a belief set in L, and ∅ 6= A ⊂ L. Then: K⊥PA 6= ∅
if and only if K ∩ A 6= ∅ and Cn(∅) ∩ A = ∅. Proof. If K ∩ A 6= ∅ and
Cn(∅) ∩ A = ∅ take X = ∅ in Lemma G. The converse follows by the very
definition of K⊥PA. 2

Recall that a set X in a normal paraconsistent logic is contradictory if α ∧
¬α ∈ Cn(X) for some formula α. Then:

Corollary I Let K be a belief set in a normal paraconsistent logic L, and let
ΩK be the set of contradictory sentences of K (recall Definition 6.5). Then:
K⊥PΩK 6= ∅ if and only if K is contradictory. Proof. Immediate from Corol-
lary H and the definitions. 2

Theorem 6.7
An operation ! : Th(L) −→ Th(L) over a normal paraconsistent logic L satisfies
the postulates of Definition 6.3 iff there exists a consolidation function γf in L
(in the sense of Definition 6.6) such that K! =

⋂
γf (K) for every belief set K

in L.

Proof.
(construction ⇒ postulates)
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closure: By Lemma F, every X ∈ K⊥PΩK is a closed theory, and K itself is a
closed theory. From this,

⋂
γf (K) is a closed theory, since the intersection

of closed theories is also closed.

inclusion: It follows by construction.

non-contradiction: Suppose that K 6= L. If K⊥PΩK 6= ∅ then ∅ 6= γf (K) ⊆
K⊥PΩK . Let X ∈ K⊥PΩK . Then,

(⋂
γf (K)

)
∩ ΩK ⊆ X ∩ ΩK = ∅.

On the other hand, if K⊥PΩK = ∅ then γf (K) = {K}. By Corollary I,
K ∩ ΩK = ∅. Thus

(⋂
γf (K)

)
∩ ΩK = K ∩ ΩK = ∅.

failure: It follows from the definition of γf .

relevance: Let β ∈ K \
⋂
γf (K). Then,

⋂
γf (K) 6= K and so, by construction,

K⊥PΩK 6= ∅. Thus, there exists X ∈ γf (K) ⊆ K⊥PΩK such that
β /∈ X. By construction and by Lemma F,

⋂
γf (K) ⊆ X = Cn(X) ⊆ K.

Let X ′ = X ∪ {β}. Then X ⊂ Cn(X ′) ⊆ K by the fact that β ∈ K. By
Definition 6.4, ΩK ∩ Cn(X ′) 6= ∅, that is, ΩK ∩ (Cn(X) + β) 6= ∅.

(postulates ⇒ construction)
Consider the following function:

γf (K) =

{
{X ∈ K⊥PΩK : K! ⊆ X} if K 6= L and K⊥PΩK 6= ∅,

{K} otherwise
.

We must prove that (1) γf is a consolidation function in the sense of Defini-
tion 6.6, and (2) K! =

⋂
γf (K).

1. It follows by construction that γf (K) ⊆ K⊥PΩK ifK 6= L andK⊥PΩK 6=
∅, and γf (K){K} otherwise. It remains to prove that γf (K) 6= ∅ whenever
K 6= L and K⊥PΩK 6= ∅. Observe that, if K 6= L and K⊥PΩK 6= ∅,
then ΩK ∩ Cn(K!) = ∅, by non-contradiction and closure. By inclusion,
K! ⊆ K. Then, by Lemma G, there exists X ∈ K⊥PΩK such that
K! ⊆ X. It follows that X ∈ γf (K) and then γf (K) 6= ∅.

2. It follows by construction and by inclusion that K! ⊆ γf (K). We must
show that γf (K) ⊆ K!. To this end, it is sufficient to show that, if
β /∈ K! then β /∈

⋂
γf (K). Thus, let β /∈ K!. If β /∈ K then β /∈ γf (K)

trivially. Now, suppose that β ∈ K. By relevance, there exists X such
that K! ⊆ Cn(X) ⊆ K, Cn(X) ∩ ΩK = ∅, but Cn(X ∪ {β}) ∩ ΩK 6= ∅.
By Lemma G and Lemma F, there exists X ′ ∈ K⊥PΩK such that K! ⊆
Cn(X) ⊆ X ′ = Cn(X ′). Hence, X ′ ∈ γf (K). Since ΩK∩Cn(X∪{β}) 6= ∅
it follows that β /∈ Cn(X ′) = X ′ (otherwise ΩK ∩ Cn(X ′) 6= ∅). From
this, β /∈

⋂
γf (K).

2
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