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ABSTRACT

Supermassive black holes (SMBHs) are commonly found at the centers of most massive
galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of
SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic
data, which is costly.We present an algorithm thatweighs SMBHs using quasar light time series
information, including colors, multiband magnitudes, and the variability of the light curves,
circumventing the need for expensive spectra. We train, validate, and test neural networks
that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a
sample of 38, 939 spectroscopically confirmed quasars to map out the nonlinear encoding
between SMBH mass and multi-band optical light curves. We find a 1𝜎 scatter of 0.37 dex
between the predicted SMBHmass and the fiducial virial mass estimate based on SDSS single-
epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate.
Our results have direct implications for more efficient applications with future observations
from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https:
//github.com/snehjp2/AGNet.

Key words: accretion discs – black hole physics – galaxies: active – galaxies: nuclei – quasars:
general

1 INTRODUCTION

Supermassive black holes (SMBHs) with masses ∼ 105𝑀�–
1010𝑀� are commonly observed at the centers of most mas-
sive galaxies (e.g., Kormendy & Ho 2013). Quasars are accreting
SMBHs whose central region outshines the rest of the combined
luminosity of the stars in the host galaxy with emission across all
wavelengths, providing a window to study how a SMBH grows with
time (Soltan 1982). Active SMBHs with masses ∼ 1010𝑀� power-
ing the most luminous quasars have formed when the universe was
less than a Gyr old after the Big Bang (e.g., Wu et al. 2015; Wang
et al. 2021). Understanding how SMBHs formed so quickly is an
outstanding problem in astrophysics (Inayoshi et al. 2020). Quasars
may also offer a unique “standard candle” to study the expansion
history of the universe to understand the nature of Dark Energy –
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arguably the biggest mystery in contemporary astrophysics (e.g.,
King et al. 2014; Lusso & Risaliti 2017; Dultzin et al. 2020).

Measuring SMBHmass is important for understanding the ori-
gin and growth of quasars (Shen 2013). However, traditional SMBH
weighingmethods require spectroscopic datawhich is highly expen-
sive to gather; the existing ∼1,000,000 masses represent & 20 years’
worth of state-of-the-art community efforts (e.g., Shen et al. 2011;
Rakshit et al. 2020). The Legacy Survey of Space and Time (LSST)
at the Vera C. Rubin Observatory (Ivezić et al. 2019) will discover
∼ 108 new quasars1, which would not be feasible to weigh with
traditional methods. Therefore, a much more efficient approach is
needed to maximize LSST SMBH science. Burke et al. (2021) used
optical continuum variability observed in 67 active galactic nuclei
and found a correlation between characteristic variability timescale
and the SMBHmass. McHardy et al. (2006) also had similar finding
with X-ray variations. While these methods shows promising hints,

1 https://www.lsst.org/sites/default/files/docs/

sciencebook/SB_10.pdf
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to fully model each individual SMBH observed in the future could
be challenge due to several reasons: (1) The encoding is likely to
be highly nonlinear and may be difficult to fully model using tra-
ditional human-engineered statistics, (2) the number of observed
AGN would be huge.

Hence, we present a new approach to potentially solve the effi-
ciency problem of SMBH mass estimates based on Deep Learning
(DL). DL is an outstanding tool in the current age of astroinfor-
matics and has been applied for many applications in astrophysics,
including solar flare forecast (Huang et al. 2018), star-galaxy clas-
sification (Kim & Brunner 2017), large scale structure (Buncher &
CarrascoKind 2020), galaxy surface-brightness-profile fitting (Tuc-
cillo et al. 2018), transient detection (Cabrera-Vives et al. 2017),
supernova classification (Charnock & Moss 2017), strong gravita-
tional lens detection (Lanusse et al. 2018), gravitational-wave de-
tection (George & Huerta 2018), cosmological parameter inference
from weak gravitational lensing (Ribli et al. 2018), and image de-
blending and classification (Burke et al. 2019), just to name a few.
Recently, DL has been employed to classify quasars and predict their
cosmological redshifts (Pasquet-Itam & Pasquet 2018) using light
curve data from the Sloan Digital Sky Survey (SDSS; York et al.
2000). Tachibana et al. (2020) has utilized Recurrent Autoencoders
(RAE) to extract features from the Catalina Real-time Transient
Survey and simulated data to model the quasar variability using
single-band light curves, and also searched for potential correla-
tions between the RAE derived features and the physical properties
of the sample. Park et al. (2021) used Bayesian neural networks
to infer black hole proprieties using simulated AGN light curves.
Yao-Yu Lin et al. (2020) has applied traditional machine learning
techniques in photometric redshift and SMBH mass estimation for
SDSS quasars.

In Yao-Yu Lin et al. (2020), the authors used features that are
directly using the fitting function from Damped Random Walk pa-
rameters, and passed those features to a machine learning algorithm
such as a K-Nearest-Neighbors and a multilayer perceptron (KNN
and MLP). While the pipeline performs on estimating quasar mass,
the pipeline does not directly use the photometric light curve data
for quasar mass estimation. This motivated the further investigation
as to whether a hybrid neural network architecture that takes the full
photometric light curve as input data could estimate quasar mass.

In this paper, we introduce AGNet, a hybrid, deep neural net-
work used to estimate SMBH mass and photometric redshift. This
work represents the first DL application for predicting quasar’s
SMBH mass with multi-band light curve data. Our overall strat-
egy of using a DL approach is motivated by empirical evidence and
theoretical reasons to believe that the quasar light curve encodes
physical information about the central SMBH which powers the
optical-continuum-emitting accretion disk (e.g., Kelly et al. 2009;
MacLeod et al. 2010; Burke et al. 2021). The encoding is likely to
be highly nonlinear and may be difficult to fully model using tradi-
tional human-engineered statistics. We train deep neural networks
in a supervised fashion that directly learn from the light curve data
to map out the nonlinear encoding. AGNet directly weighs SMBHs
using quasar light curves, which are much cheaper to collect for
large samples. Our approach will be directly applicable for future,
more efficient applications with the LSST, circumventing the need
for expensive spectroscopic observations for large samples.

The paper is organized as follows. We describe our data and
methodology of the DL algorithm in §2. We introduce the hybrid
deep neural network in §3. We present our results in §4 on sum-
mary statistics of quasar SMBH mass estimation. We discuss the
implications of our results in §5. Finally, we summarize our conclu-

sions and suggest directions for future work in §5.3. A concordance
ΛCDM cosmology with Ω𝑚 = 0.3, ΩΛ = 0.7, and 𝐻0 = 70 km s−1
Mpc−1 is assumed throughout. We use the AB magnitude system
(Oke 1974).

2 DATA AND METHOD

2.1 Data

2.1.1 SDSS Stripe 82 Light Curves

Weadoptmulti-band photometric light curves from the SDSSStripe
82, a 2.5 degree wide strip along the Southern Galactic Cap (Ivezić
et al. 2007), as our training and testing data. The SDSS Stripe 82
provides deep photometry in 5 broad optical (𝑢𝑔𝑟𝑖𝑧) bands. There
are on average 60 epochs of observation on Stripe 82. Observations
spanned roughly 2-3 months for a decade of total observation time,
providing an effective cadence of time-scales from days to years
(e.g.,MacLeod et al. 2010; Liao et al. 2020). The photometry used in
Stripe 82 is PSF-based as the targets are quasars (i.e. point sources).

We gather the Stripe 82 light curves from the publicly avail-
able repositories from two main sources. The University of Wash-
ington catalog2 contains 9, 038 total light curves after cleaning.
Light curves with anomalous data points of mag = ±99 and un-
physical gaps are removed so as to not negatively effect the perfor-
mance of AGNet. The Richards Group LSST Training Set 3 being
constructed by researchers at Drexel University contains a total of
84, 790 quasars which is reduced to 38, 939 quasars in Stripe 82.
From the Richards Group catalog, we additionally utilize the SDSS
point-spread function (PSF)magnitudes that are corrected for galac-
tic extinction for each quasar.

2.1.2 Virial Black Hole Mass and Spectroscopic Redshift

We take the virial black hole mass estimates from the SDSS DR7
catalog of∼100,000 quasars (Shen et al. 2011) and theDR14Quasar
catalog (Pâris et al. 2018) of ∼500,000 quasars (Rakshit et al. 2020)
and assume them as the “ground truth”. These estimates are made
from the virial mass method based on SDSS single-epoch spectra
(Shen 2013).

We find that some of the SMBH mass estimates have rela-
tively large uncertainties (> 0.3 dex) and some unphysical mass
measurements, which would negatively affect the performance of
AGNet. In training, we find much improved performance of AGNet
when filtering out high uncertainty mass measurements. We clean
any unphysical quasar SMBH estimates (𝑀SMBH < 0) as well as
measurements meeting the error criteria. Eliminating quasars with
this criteria reduces our DR14 dataset by ∼100,000 objects. A dis-
tribution of our cleaned catalog of quasars in mass-redshift space is
shown in Figure 1.

For estimating quasar’s cosmological redshift, we also utilize
the spectroscopic redshift from the SDSS DR14 Quasar catalog as
the ground truth. We also find that K-corrected 𝑖-band magnitude
(𝑀𝑖), which is available in SDSS DR7 and DR14 (Abazajian et al.
2009; Pâris et al. 2018), is a useful feature in estimating SMBH

2 The data underlying this article are available in Southern Sample (SDSS
Stripe 82) at http://faculty.washington.edu/ivezic/macleod/
qso_dr7/Southern.html, and can be accessed with (MacLeod et al.
2012).
3 The data underlying this article are available in Richards Group LSST
Training Set at https://github.com/RichardsGroup/LSSTprep.
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Figure 1. Distribution of 417, 618 cleaned DR14 quasars in mass-redshift
space with top and right panels showing quasar redshift and SMBH mass
histograms, respectively.Mass ismeasured in units of 𝑙𝑜𝑔 (𝑀𝑆𝑀𝐵𝐻 /𝑀�) .
Redshifts are provided in the DR7 and DR14 catalogs and cross-matched
with redshift values from the Stripe 82 light curves.Unphysical supermassive
black hole masses (𝑀𝑆𝑀𝐵𝐻 < 0) and unreliable estimates with error > .3
dex are removed.

mass. 𝑀𝑖 is not used as a feature when predicting SMBH redshift as
redshift is used in the calculation of 𝑀𝑖 . The K-correction provides
spectroscopic information of the underlying quasar in its rest frame
which may also encode (secondary) information of the underlying
SMBHmass because of the correlation between quasar redshift and
SMBH mass in a flux-limited sample. This relationship correlation
between redshift and SMBH mass is clearly seen in Figure 1.

2.2 Data Preprocessing

2.2.1 Data Matching

We use astropy to match the two data sets given a 0.5 arcsec
tolerance and verify by matching redshift values between the Stripe
82 and DR14 data sets. In matching our light curve catalog of ∼40k
light curves, and the cleanedDR14 catalog of∼400,000 quasar virial
mass estimates, we find that∼10,000 quasars do not have virial mass
estimates in the DR14 catalog. In addition to the cleaning applied on
the DR14 catalog, this brings the final dataset to ∼20,000 quasars.

2.2.2 From Light Curves to Images

We aim to use convolutional neural networks (CNNs), which have
been shown to have state-of-the-art performance on images, to en-
code the information from the light curves. While the light curves
are not naturally interpreted as 2D images, (Pasquet-Itam & Pas-
quet 2018) has shown promising results on using CNNs on light
curves for redshift estimation. To transform the light curve data into
images, we take the Stripe 82 photometric light curves as input and
the black hole masses as labels. The Stripe 82 light curves have 5

bands (u, g, r, i, z) and span over 3000 MJD, so we transform the
light curve data into “images” by putting the 5-band light curves
into a 5×3340 numpy array and taking the MJD as an integer using
rounding. To match the dimensionality properly, the arrays are filled
with zeros when no data (observations) is present. This is known as
zero padding. The data would need to have zero padding when the
light curve data are in the gaps. We then interpolate it into 224×224
numpy array images. For using the pretrained model, we stack over
the same 224 × 224 images three times to fill the RGB channel.

2.2.3 Feature Extraction from Light Curves

In addition to using the deredded ugriz bands as features, we com-
pute the colors (𝑢−𝑔, 𝑔−𝑟, 𝑟− 𝑖, 𝑖− 𝑧, 𝑧−𝑢) as features for a quasar.
For the RichardsGroup light curves, we adopt the PSF magnitudes
and compute the colors from these. For the University of Washing-
ton light curves, we take the mean of each band observation across
the observational epoch and compute the colors from the mean.
The colors are more robust features than the individual bands in
that they provide more information regarding the quasar’s spectral
energy distribution (SED) and temperature. To standardize the ef-
fect of our features in training we apply the scikit-learn Stan-

dardScaler which removes the mean and scales the data to unit
variance. For SMBH mass estimation, we add additional features
including best-fit damping time scale 𝜏, best-fit driving amplitude
of short-term fluctuations 𝜎 as well as K-corrected absolute i band
magnitude 𝑀𝑖 .

2.2.4 Train, Validation, and Test Set Splitting

We split our baseline data set into an 70% training, 15% validation,
and 15% testing set using the sklearn train test split. It is
best-practices inmachine learning to train amodel on the bulk of the
available data using the training set. During training, the model can
be continuously evaluated on the validation set to benchmark perfor-
mance and tune the hyperparameters of the model. The validation
performance is also a good indicator if the model is overfitting, the
phenomena where a model will learn features of the training set that
are exclusive to the training distribution and will not aid the models
performance in real-world applications. The testing set is used for a
final, unbiased evaluation of the model’s performance.

2.2.5 Underlying Spectral Energy Distribution

A quasars SED provides information of the quasar’s energy output
as a function of its emitted wavelength. A quasar’s observed SED
is primarily determined by the intrinsic luminosity, accretion rate,
and redshift (Elvis et al. 1994; Richards et al. 2006). It also con-
tains secondary information about the black hole mass through the
dependence on luminosity and accretion rate. By providing features
(bands, colors) that are indicative of the underlying SED, we feed
the neural network with information to infer the SMBH mass.

In analysis of the principal components of our data in §5.1
, we see artifacts of the SED in our features. The 𝑢-band has the
shortest wavelength of the five bands, and therefore also the largest
variability amplitude (e.g., di Clemente et al. 1996; Ulrich et al.
1997). The 𝑧 − 𝑢 color provides the largest difference in wavelength
and has the largest color gradient. These characteristics are most
sensitive to the shape of the quasar’s SED (Dunlop et al. 2003).

MNRAS 000, 1–9 (2021)
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Figure 2.Convolutional Neural NetworkArchitecture. A basic ResNet block is composed of two layers of 3x3 convolutions, subsequently applying a batchnorm
transformation and ReLU as activation. We modified the last layer of the ResNet18 so it outputs the parameter of our interest (quasar SMBH mass/redshift).

3 DEEP NEURAL NETWORK

3.1 Introduction to Neural Networks

The foundation ofmodern deep learning andmachine learning is the
deep neural network (DNN), a computational model that is inspired
by biological neurons. Individual neurons in general are parameter-
ized by a matrix of weights and a bias vector. These networks and
their intrinsic parameters can be refined to learn structure of data
or predict some output through the process of training via gradient
descent. A function known as the loss function is responsible for
how the network learns, and is chosen according to the machine
learning task at hand (regression vs. classification) and the quality
of the data. Finding the global minima of the loss function’s associ-
ated loss landscape corresponds to the best-performance achieved
by the DNN. Certain architectures of DNNs have been shown to
excel at specific tasks (Krizhevsky et al. 2012). For example, CNNs
are excellent candidates in analyzing image data, whereas the more
simple multilayer perceptron (MLP) is sufficient when dealing with
vectorized data. The first stage of the AGNet pipeline utilizes a
ResNet18 architecture, which is a pretrained CNN, to output an
encoded representation of the light curves. The encoded light curve
features from the ResNet18 are combined with other hand-selected
features and fed into a MLP in the second stage of the pipeline. The
MLP is then trained on and outputs the SMBH mass.

Transfer learning is a popular technique used in applying deep
learning algorithms. Many state-of-the-art deep learning architec-
tures are trained and benchmarked on large datasets like ImageNet,
containing 14 million images. These pretrained models’ weights
have already been optimized to recognize features in images and
therefore should perform well on complex tasks without the com-
putational efficiency needed to train them from scratch. The models
with their pretrained weights can be readily accessed through pop-
ular deep learning libraries. In this work and others which utilize
transfer learning, the output layer weights are retrained for the task
at hand.

3.2 Convolutional Neural Networks

CNNs can be decomposed into three main components: a convolu-
tional layer, pooling layer, and fully-connected layer. The convolu-
tional layer functions by passing a filter or kernel over the image,
which produces a representation of the image that is sensitive to fea-
tures defined by the kernel. In this way, convolutional layers are able
to efficiently extract features from an image. The pooling is used to
’fill in the gaps’ after the convolution operation. The pooling layer
typically assigns the value to missing pixels to be the mean of the
neighboring pixels. The fully connected layer at the end allows the
flexible application of CNNs to regression and classification tasks.

Deep residual neural networks, or ResNets, are a successful
architecture (He et al. 2016) that introduces the residual block. The
residual block features all the aforementioned components of typical
CNNs with the introduction of skip connections. Skip connections
introduce alternative passes in the information-flow through the
network and have been shown effective in avoiding the vanishing
gradient problem (He et al. 2016). If a network encounters vanishing
gradients, it gets stuck in a local minima or saddle point of the loss
landscape and ceases to learn more information. It has been shown
that neural networks with skip connections can better approach the
minimum of highly non-convex loss functions with smoother loss
surface (Li et al. 2018). This further motivates the use of pretrained
ResNets in scientific research.

In recent years, CNNs have shown promising results on classi-
fying or extracting parameters from astrophysical images (Hezaveh
et al. 2017; Khan et al. 2019; Lin et al. 2020; Wu & Peek 2020).
Whilemost CNNs are designed primarily for 2-dimensional images,
we found that they could be applied appropriately to our light curve
data after reshaping the 1-dimensional data into 2-dimensional
images with zero padding as shown in Figure 2. The pretrained
ResNet18 is modified and retrained in its last two layers to output
10 encoded light-curve features. The addition of the fully-connected
layers after the CNN allows the desired parameter output. The first
branch of the neural network is a feature extractor, wherein ear-
lier layers detect low-level features (e.g. each magnitude measured

MNRAS 000, 1–9 (2021)
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quasar lightcurves in ugriz bands from S82

Match with DR7 Ground Truth

Predict quasar SMBH mass

Match with Extracted Features

light curve image

Encoder (CNN)

MLP Predict quasar redshift

Figure 3. AGNet: A hybrid combination of a MLP and CNN.

at individual MJD) and later layers detect high-level features (e.g.
magnitude correlation across larger MJD).

3.3 Fully-connected Neural Networks

We use fully-connected neural networks, also known as multilayer
perceptrons (MLPs), as our basic framework to predict SMBHmass
and redshift. Our MLP architecture for SMBH mass prediction is
a deep neural network with a 12-neuron input layer followed by 5
hidden layers. Our architecture for redshift is identical with excep-
tion of the input size (10-neuron input layer). The mass estimation
pipeline uses information from the SDSS bands, colors, redshift,
and 𝑀𝑖 as features, and just the SDSS magnitudes and colors as
features in predicting quasar redshift. Details of the input features
are listed at Table 1.

We empirically determined the best set of hyperparameters for
our MLP. We use ReLU activation on all neurons (Agarap 2018)
after each fully connected layer.

3.4 AGNet: A Hybrid Combination of CNN and MLP

A good representation of our data will contain information to es-
timate the SMBH’s parameters. To maximize the information we

could extract from the light curves, we merge the information from
our feature extractors and the encoded representation from CNN as
shown in Figure 3. AGNet is a hybrid combination of CNN and
MLP that utilizes advantages of both architectures. In AGNet, the
CNN acts as an encoder to generate a representation that could
potentially provide more robust information from the light time se-
ries, while themanually extracted features provide adequate spectral
information to estimate the SMBH mass.

To train the CNN as an encoder, we first use the CNN to train
an end-to-end prediction for redshift and SMBH masses directly
from the the light curve images, as mentioned in section 3.2. Once
the training is done, we extract the features at the last hidden layer
and concatenate with other physical features.

3.5 Loss Function and Hyperparameters

We train our neural network with gradient descent based AdamW op-
timizer, an adaptive learning rate optimization algorithm (Kingma
& Ba 2014; Loshchilov & Hutter 2017), with default learning rate
set as 0.001 for 50 epochs of training. The learning rate parameter
dictates the step-size of the neural network in the loss-landscape
throughout training. Small learning rates (.005 < 𝑙𝑟 < .001) were
found to work best. Instead of using a standard mean squared er-

MNRAS 000, 1–9 (2021)
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ror (MSE) loss, also known as 𝜒2 and commonly used for fitting
astrophysical data, we optimize the MLP with SmoothL1 loss to
minimize the effect of outlier SMBH masses in training, and en-
courage appropriate mass estimations at both the high (> 109𝑀�)
and low-end (< 108𝑀�) of the ground truth SMBH mass distribu-
tion. The SmoothL1 loss function is given as:

L =

{
0.5(𝑥 − 𝑦)2, |𝑥 − 𝑦 | < 1
|𝑥 − 𝑦 |−0.5, otherwise

(1)

where 𝑥 is the network prediction and 𝑦 is the ground truth value.
The MLP operates with ∼30,000 trainable parameters.
In this work, we use PyTorch (Paszke et al. 2019), a Python3

deep learning library to build our neural network. Model training
was done on an individual workstation utilizing an Nvidia 1080Ti
GPUand theHALcluster at theNationalCenter for Supercomputing
Applications (NCSA) (Kindratenko et al. 2020).

4 RESULTS

To evaluate our models, we use the 𝑅2 score metric, also known as
the coefficient of determination, which is a function of root mean
square error (RMSE) as a metric to evaluate the network perfor-
mance. RMSE is defined as the average square of the difference
vector between ground truth and prediction. Table 1 lists the results
of our network performance. The 𝑅2 score is defined as:

1 − variance of data
mean of squared residuals

, (2)

which is a measure of the difference between the prediction and the
ground truth.

4.1 Network Performance on Redshift

Following Pasquet-Itam&Pasquet (2018), we compare our network
performance on redshift estimation. We use ugriz bands and colors
as features for predicting redshift following the architecture outlined
above. Our best AGNet performance gives a RMSE = 0.373 and
a 𝑅2 = 0.724, which is the same as the MLP and better than
CNN, showing that AGNet is performing well on the redshift task
compared with other models, and our result on redshift is also
comparable to Pasquet-Itam&Pasquet (2018). Results can be found
in Table 1.

There are noticeable spikes in redshift estimation at 𝑧 ∼ 0.9
and 𝑧 ∼ 2. These are due to degeneracies in the colors of the quasars
(e.g., Yang et al. 2017) as shown in Figure 4.We also noticed that the
same scores are obtained with and without the light curve image, so
the redshift determination is completely dominated by the colours
and the single band magnitudes. We trained AGNet with only colors
and multi-bands, and we get (RMSE: 0.396, r2 score 0.689) for
bands only, and (RMSE: 0.441, r2 score 0.617) for colors only -
showing that AGNet performs better when both colors and multi
bands are used as features for redshift estimation. We found no
further improvement when the light curve information is provided
- showing that 1) the existing pipeline for redshift estimation relies
on color and multibands formation rather than variability or 2)
the encoded representation of the light curve does not capture any
existing variability that may correlate with redshift.
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Figure 4. AGNet predictions for quasar SMBH redshift. Ground truth red-
shifts are shown by 1:1 black line with network predictions as the scatter.
Trained on over 27, 000 quasars and tested on roughly 5, 800 quasars.
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Figure 5. AGNet predictions for quasar SMBH mass. Ground truth masses
are shown by 1:1 black line with network predictions as the scatter. Trained
on over 27, 000 quasars and tested on roughly 5, 800 quasars.

4.2 Network Performance on Black Hole Mass

Our best performance of AGNet gives a RMSE = 0.371 and a
𝑅2 = 0.728, which outperforms both the MLP and CNN, as well
as KNN §5.2 . Our results also achieve the mean value of 1-sigma
errors in the catalog.

All of the results presented here are from the predictions of the
test set to prevent over-fitting from the training set.

MNRAS 000, 1–9 (2021)
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Our best CNN performance gives a RMSE = 0.481 and a
𝑅2 = 0.040. Our best MLP performance gives a RMSE = 0.385 and
a 𝑅2 = 0.384. More statistics can be found in Table 1.

We also found that the model consistently predicts lower
masses for quasars with masses larger than 109.3𝑀� , and con-
sistently larger masses for quasars with masses below 108.5𝑀� . We
use spectroscopic redshift (spec-z) for one of the features as our
AGNet input when performing SMBH mass estimation. However,
in some cases in the future (e.g. era of LSST), we may not have
spec-z for our target AGN so we also train an AGNet without spec-z
provided. We found that AGNet performs the best when spec-z is
provided. We have color-coded the SMBH mass prediction with
𝑀𝑖 (given by the catalog).There exists a bias (that exists across all
training/validation/testing sets). However, we still find in our analy-
sis that AGNet also takes into account other information from colors
and other bands, as well as variability of the light curve.

5 DISCUSSION

In this paper, we have shown that using photometric light curves
our AGNet pipeline, which consists of a feature extraction step and
neural networks, can provide a fast and automatic way to predict
SMBH mass and redshift. We draw the following conclusions:

• AGNet is able to learn from information provided from the
quasar light time series without expensive spectroscopic spectra.

• Our prediction reaches the uncertainty limit of the ground truth
data (i.e., systematics in the single-epoch virial estimates), however
with better estimates frommulti-object reverberationmapping (e.g.,
Shen et al. 2016; Dalla Bontà et al. 2020; Li et al. 2021), we could
in principle improve the quality of ground truth and hence improve
the performance of AGNet.

In the future, our pipeline could serve as a tool to give efficient pre-
dictions using photometric light curves only and grant us a glimpse
of the underlying SMBH mass distribution of quasars.

5.1 Principal Component Analysis on Selected Features

Principal Component Analysis (PCA) is an unsupervised statistical
technique used to reduce the dimensionality of data such that the
information explaining a certain percentage of the variance is pre-
served. In our analysis we choose to preserve 95% of the variance.

It is also possible to train on the principal components. This
can be beneficial to generalize a model and reduce risk of over
fitting. For our purposes, we use PCA as an analysis tool for the
features used in the MLP and still train on the original light curves
and features.

It is shown that to preserve 95% of the variance that we could
cut the dimensionality of our data in half. Figure 6 and figure 7 show
the results of our PCA analysis in features predicting SMBHMass. It
is shown in Figure 7 that to preserve 95% of the variance, the initial
12-dimensional feature set can be cut in half. It is additionally shown
that the z-u color explains most of the variance in the first principal
component, and similarly 𝑀𝑖 in the second principal component.
Our PCA results indicate that much of the variance of our features
comes from 𝑧 − 𝑢 color and 𝑀𝑖 . However, with internal tests with
linear regression using z-u and 𝑀𝑖 showing that using only those
features would not achieve such a performance on SMBH mass
estimation, suggesting that AGNet is still able to capture some of
the information using other features, including the nonlinearity of
the variability from the light curve images.

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

PC
9

PC
10

PC
11

PC
12

zu
ri

gr
iz
z

ug
M_i

z_band
i_band
r_band
g_band
u_band

Normalized Data Heatmap

2

1

0

1

2

Figure 6.Aheatmap showing the correlations between features and principal
components. Positive correlations are shown in shades of blue and negative
correlations in shades of red. Correlations are broken down by effect on
individual principal componenets.
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5.2 Comparison to Machine Learning KNN Algorithm

We now compare AGNet performance to a K-Nearest Neighbors
(KNN) algorithm following Pasquet-Itam & Pasquet (2018). A
KNN algorithm is traditionally used for classification but can also
be adapted for regression tasks. The algorithm makes predictions
by analyzing the proximity data points have with their neighbors.
For an arbitrary data point in a regression task, the predicted value
(SMBH mass) takes on the average of the values of the neighbors.
The number of neighbors considered, K, is determined by the user.
We follow the same features and preprocessing as our AGNet im-
plementation, with an ideal K value of 𝐾 = 19. The optimal value
of K was found through a simple search. For quasar redshift, we
achieve a RMSE = 0.442 and for mass we achieve a RMSE = 0.388
which can be seen in Table 1. Using AGNet predicted redshift (z*)
values, KNN achieves RMSE = 0.396, which is comparable to AG-
Net performance. The KNN performance suggests that spectral and
time series features of limited data cannot be extracted as efficiently
by traditional machine learning methods.
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8 Lin et al.

Summary Statistics

ML algorithm Inputs Parameters RMSE 𝑅2

AGNet light curve image + colors and bands redshift (z) 0.373 0.724
CNN light curve image redshift (z) 0.521 0.451
MLP colors and bands redshift (z) 0.373 0.724
KNN colors and bands redshift (z) 0.442 0.603

AGNet (w spec-z) light curve image + colors, 𝜏, 𝜎, 𝑀𝑖 , z SMBH mass 0.371 0.428
CNN light curve image SMBH mass 0.481 0.04
MLP (w spec-z) colors, 𝜏, 𝜎, 𝑀𝑖 , z SMBH mass 0.385 0.384
KNN (w spec-z) colors, 𝜏, 𝜎, 𝑀𝑖 , z SMBH mass 0.388 0.374

AGNet (w/o spec-z) light curve image + colors, 𝜏, 𝜎, 𝑀𝑖 , z* SMBH mass 0.384 0.385
CNN light curve image SMBH mass 0.481 0.04
MLP (w/o spec-z) colors, 𝜏, 𝜎, 𝑀𝑖 , z* SMBH mass 0.393 0.358
KNN (w/o spec-z) colors, 𝜏, 𝜎, 𝑀𝑖 , z* SMBH mass 0.396 0.350

Table 1. Summary Statistics. Above z* denotes predicted redshift values. ’spec-z’ denotes spectroscopic redshift. When spec-z is provided, the best version of
AGNet achieves a RMSE of 0.371. When only using photometric information (with out spec-z), the best version of AGNet achieves a RMSE of 0.384.

5.3 Future Work

For future research, there are many improvements that can be made.
Constructing a streamlined quasar catalog that contains more train-
ing data than what was used in this work would be beneficial. We
will expand our work with larger data sets in future, such as the
LSST. Improving the quality of our ground truth SMBH mass mea-
surements by using reverberation mapping measured values would
improve the quality of AGNet. Our predictions reach the uncertainty
limit of the ground truth data, however with better estimates from
reverberation mapping measured masses we can in principle im-
prove the performance. In terms of model parameters, time series
features could be further studied to predict the mass of quasars.
We will explore additional time series features for AGNet to learn
from using the python library Feature Analysis Time Series (FATS)
(Nun et al. 2015). Uncertainty measurements in redshift and SMBH
mass predictions will be included in the future work. We plan on
implementing negative log-likelihood loss to quantify uncertainties
in our network predictions (Levasseur et al. 2017).

Understanding potential biases in our training set and how they
would effect the predictions could be crucial. Sánchez-Sáez et al.
(2021) provides a useful analysis and could be potentially helpful
for related work in the future.

This paper establishes feasibility of the DL approach for quasar
black hole mass for the first time on multi-band light curves. Given
the large volume of data expected from upcoming surveys such as
the Vera C. Rubin Observatory, AGNet could provide a pivotal tool
in SMBH research.
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